
A Learner Model based on a Bayesian Network for Garp3

Project in the Specialty Science Discipline,
Master’s in Mathematics & Science Education

Miriam Brielmann

AMSTEL Institute
Faculty of Science
University of Amsterdam
Student Number: 0642924

Supervisor: Bert Bredeweg

Human Computer Studies Laboratory
Informatics Institute
Faculty of Science
University of Amsterdam

April 1, 2009



2 Contents

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Bayesian Networks – an Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Underlying Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Designing Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Bayesian Networks for Learner Modeling . . . . . . . . . . . . . . . . . . . . . 6
3.1 Knowledge Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Belief Networks for Modeling Student Knowledge . . . . . . . . . . . . . 8
3.3 Contextual Estimation of Slip and Guess Probability . . . . . . . . . . . 12
3.4 Does Help Help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 A Learner Model for Garp3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The Tree and Shade Model in Garp3 . . . . . . . . . . . . . . . . . . . . 19
4.3 Question Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 The Learner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6.1 Value of shade1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6.2 Derivative of shade1 . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.3 Influence of growth rate1 on size1 . . . . . . . . . . . . . . . . . . 42
4.6.4 Finishing the Dialog . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 The Tree and Shade User Model . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 The Implementation of the Bayesian Network . . . . . . . . . . . . . . . 63
A.3 Learner Model Specific Interface for Bayesian Network . . . . . . . . . . . 68
A.4 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



1

1 Introduction

Bayesian networks are tools for reasoning with uncertain knowledge (Darwiche, 2008).
There are several examples in which Bayesian networks have been used for learner mod-
eling (e.g. (Baker et al., 2008; Beck et al., 2008; Reye, 2004)). The goal of the project
described in this report is to study the feasibility of using a learner model based on
Bayesian networks for guiding the learner in the process of studying a model represented
in the Garp3 software.

The Garp3 software provides a workbench for building, simulating and inspecting
qualitative models. It facilitates the formalization of conceptual knowledge which is
important for understanding the behavior of systems (Bredeweg et al., 2006). One ap-
plication of Garp3 is in education, for learning about the behavior of systems. However,
domain models and their simulations easily grow complex and become difficult to grasp.
This is why some means for guiding a learner through the model is needed. Quags is a
question generator for Garp3 (Goddijn, 2002; Goddijn et al., 2003; Bouwer, 2005) which
generates questions about a simulation. The purpose of the new learner model is to focus
the question generation on the parts that are important for the learner.

This document first summarizes the basic principles of Bayesian networks (2) and ex-
amples how Bayesian networks have been used for learner modeling (3). Then the main
part of the project is reported (4), i.e. the development of a prototype of a learner model
based on a Bayesian network for the Garp3 software for testing the applicability of this
technique. This includes a representation of the learner’s knowledge and an implemen-
tation for an example. Quags, the question generation module for Garp3 is controlled
according to the state of the learner’s knowledge recorded in the network. The usability
of the approach is shown by a dialog in which the system guides the learner through all
parts of the model until full knowledge (on behalf of the learner) is reached with the
probabilities reflecting the increase of knowledge for the respective elements.

2 Bayesian Networks – an Overview

Bayesian networks are tools for reasoning with uncertain knowledge (Darwiche, 2008).
A Bayesian network is a data structure which is used for representing dependencies be-
tween the probabilities of variables. It displays the structure of reasoning knowledge, in
particular including independence relations, which help to reduce the complexity of the
reasoning. Bayesian networks are also known as belief networks, probabilistic networks,
causal networks and knowledge maps. For understanding Bayesian networks in more de-
tail, we look at the underlying principles first (2.1), give a definition of Bayesian networks
(2.2) and summarize key points in the design of Bayesian networks (2.3). This summary
is based on Russell & Norvig (1995), unless otherwise noted.
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2.1 Underlying Principles

Bayesian networks are an application of probability theory. In this section, we given an
overview of the basic rules needed for the networks.

Unconditional vs. Conditional Probability There are two types of probability we deal
with. The first one is the unconditional probability. It expresses with which probability
we expect a proposition to be true without any further information, or, before we know
anything else. This is why it is also called the prior probability. For example we denote
P (Cavity) = 0.1 for saying that the probability that a dentist’s client is having a cavity
is 10%.

As soon as we have some evidence about a proposition, we talk about conditional or
posterior probability. We then write P (Cavity|Toothache) = 0.8 (read: “the probability
of Cavity given Toothache . . . ”) for saying that if we know that a dentist’s patient has
toothache, there is a 80% probability that he has a cavity. The product rule is a way to
relate conditional to unconditional probabilities.

P (A ∧B) = P (A|B)P (B) (1)

It can be explained: For A and B to be true, we need B to be true and then A has to be
true given B. This can also be applied the other way around:

P (A ∧B) = P (B|A)P (A) (2)

The Joint Probability Distribution It is called an atomic event when all the variables
contained in a model are assigned values. The joint probability distribution (or “joint”)
is the collection of the probabilities of all the atomic events in a model. (Simple) joint
probability distributions can be displayed in a table in which all the probabilities sum to
1 (table 2.1).

Toothache ¬Toothache
Cavity 0.04 0.06
¬Cavity 0.01 0.89

Tab. 1: A joint probability distribution (joint)

Taking the probabilities from the joint, we can apply the product rule to our example
and compute the probability of a cavity given toothache:

P (Cavity|Toothache) =
P (Cavity ∧ Toothache)

P (Toothache)
=

0.04

0.05
= 0.8 (3)

Bayes’ Rule Bayes’ Rule can be derived from the two forms of the product rule and
writes:

P (Y |X) =
P (X|Y )P (Y )

P (X)
(4)



2.2 Bayesian Networks 3

The rule enables us to calculate the probability of a hypothesis given some evidence, if
we only know the probability with which an evidence follows a cause (the hypothesis).

Take a patient having a stiff neck (S). We would like to know the probability of this
patient having Meningitis (M). The doctor knows that meningitis is causing a stiff neck in
50% of the cases. (Currently) the probability of meningitis is 1/50,000 and the probability
of a patient having a stiff neck is 1/20. The probability of the patient having meningitis
given the evidence that he has a stiff neck is then:

P (M |S) =
P (S|M)P (M)

P (S)
=

1/2 ∗ 1/50, 000

1/20
= 0.000001 (5)

Combining Evidence The problem with Bayes’ rule is that if we want to combine evi-
dence we need to estimate many conditional probabilities. Say we know P (Cavity|Toothache)
and P (Cavity|Catch), but want to know the probability of a cavity if both pieces of ev-
idence are collected:

P (Cavity|Toothache ∧ Catch) =
P (Toothache ∧ Catch|Cavity)P (Cavity)

P (Toothache ∧ Catch)
(6)

Now we should know the probability of the two symptoms occurring in combination
given there is a cavity. If we look at n symptoms we would have to look at n2 conditional
probabilities for two symptoms at once, and end up with an exponential increase of the
number if we look at more of them in combination.

A method to reduce this complexity is to identify the conditional independence of
variables. A cavity is the direct cause of a dentist catching this cavity using the steel
probe as well as it is the direct cause of the patient having toothache. As soon as we
know that there is a cavity, we do not need to base the probability of the probe catch on
the patient’s toothache anymore and vice versa. The catch and the toothache are then
conditionally independent:

P (Catch|Cavity ∧ Toothache) = P (Catch|Cavity) (7)

P (Toothache|Cavity ∧ Catch) = P (Toothache|Cavity) (8)

or to generally say that X and Y are independent given Z:

P (X|Y, Z) = P (X|Z) (9)

2.2 Bayesian Networks

Coming back to the Bayesian networks, it becomes clear why it is important to structure
the reasoning knowledge. By every conditional independence we identify, the complexity
of the reasoning is reduced.
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Bayesian networks are directed acyclic graphs (DAGs) that connect random variables
(the nodes) by influences (the directed links). For each node there is a conditional proba-
bility table (CPT) that contains the probability values for the conditioning cases, i.e. the
combinations of states of the parent nodes1. For root nodes the prior probability is given.

The Joint Probability Distribution A Bayesian network can be seen as a representa-
tion of the joint probability distribution. All the entries in the joint can be calculated
from what is given in the network. An entry can be calculated by the product of the
probabilities of the events given in the conditional probabilities of the network. We use
the following formula, describing that the probability of an event (i.e. the conjunction of
particular assignments to each variable) is the product of the probability of each node
given its parents:

P (x1, . . . , xn) =
n∏

i=1

P (xi|Parents(Xi)) (10)

In figure 1 we see an example for a Bayesian network (Russell & Norvig, 1995). The
owner of a house has installed an alarm which is activated if there is a burglary or
sometimes also if there is an earthquake. Two neighbors agreed on calling the house
owner if they hear the alarm. However, for both of them there is a chance that they do
not call if there is an alarm, and also a chance that they call if there is no alarm.

Now the owner can calculate the probability of an alarm with neither a burglary or
an earthquake and both of the neighbors calling:

P (J ∧M ∧ A ∧ ¬B ∧ ¬E) = P (J |A)P (M |A)P (A|¬B ∧ ¬E)P (¬B)P (¬E) (11)

= 0.90× 0.70× 0.001× 0.999× 0.998 (12)

= 0.000628 (13)

Dynamic Bayesian networks In a dynamic Bayesian network (DBN) the dimension of
time is added to the Bayesian network. The nodes are partitioned into slices in different
points of time. The structure of the network stays the same in the slices2. Because of
that, the structure is recurrent and usually specified using two slices for t and t+1. Two
simples example are shown in figures 2 and 3 (Darwiche, 2008).

2.3 Designing Bayesian Networks

For defining a Bayesian network, a definition of the structure and probabilities is needed,
and an appropriate algorithm needs to be chosen.

1 In the CPTs the entries of the rows sum to 1, so often one column of the table is left out because
the value can be calculated using the given ones.

2 Except in the first one possibly
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Fig. 1: A Bayesian network
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Fig. 2: A simple dynamic Bayesian network, repeating the structure.

Fig. 3: Another simple dynamic Bayesian network, specified by two time slices.
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Structure The structure of the network can be defined by an expert or produced by
machine-learning. The structure of the network is important, because the structure
determines the complexity of updating the probabilities for a given piece of evidence.
Identifying independent sections of the network reduces the number of probabilities that
have to be set for defining the joint probability distribution. Also, choosing an appropriate
order for the nodes helps in coming up with the conditional probabilities. A causal model
is recommended (Russell & Norvig, 1995).

Probabilities The (conditional) probabilities, i.e. the entries of the probability tables,
can be estimated by an expert or machine-learned based on collected data (Charniak,
1991).

Algorithm for Computation The algorithms for computing the conditional probabilities
given an evidence can be divided into two categories:

1. Exact Solutions are NP-hard. This method is usually only used for singly connected
networks (i.e. “the underlying directed graph has no more than one path between
any two nodes”). There are ways of turning a multiply connected network into a
singly connected one (e.g. clustering). However this can lead to an “explosion of
values” due to the combinations of values of nodes that have to be considered.

2. Approximate Solutions There are different methods for finding approximations of
the conditional probabilities in the network. One of them is stating the initial values
of some nodes and using them for deciding on the states of the other nodes. This
is done for a certain number of times and the statistics are used to determine the
needed probabilities. Some of the methods do not take evidence into account, some
do.

Which algorithm suits best depends on the nature of the network. (Charniak, 1991)

3 Bayesian Networks for Learner Modeling

This section discusses examples of Bayesian networks for learner modeling. “Knowledge
Tracing” as used in the ACT programming tutor of Corbett & Anderson (1995) is an
approach to student modeling that uses Bayesian inference for tracking the learners’
knowledge (3.1). It does not explicitly discuss the use of Bayesian networks but lays
the foundation for later work that does so. Reye (2004) gives a detailed description
of the theory underlying the design of a learner model based on a Bayesian Network
(3.2). Baker, Corbett, & Aleven (2008) discuss the topic of estimating the slip and guess
probability in a learner model based on Bayesian networks (3.3); Beck et al. (2008) use
such a learner model for evaluation whether help really helps (3.4). Finally, we give a
summary of the design issues found in the literature (3.5).
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3.1 Knowledge Tracing

Corbett & Anderson (1995) discuss an approach for student modeling that they used in
the ACT Programming Tutor (APT). The APT was used in introductory programming
courses at high school and university level. It is an environment that allows students to
practice writing short programs in Lisp, Prolog or Pascal. The student is presented a unit
as a piece of text. This is followed by a number of exercises that are given to the student
until the system believes that the student has reached mastery in all the skills that were
introduced in the section. The user interface offers the student a list of templates that
can be selected for use in the program and completed by typing in the identifiers and
constants.

Every step the student does in the editor is compared to the ideal student model. The
ideal student model is a set of several hundred language-specific rules for writing pro-
grams that form a “complete, executable model of procedural knowledge of the domain”.
Immediate feedback depending on the result of the comparison is given. If the student’s
action matches an applicable rule in the ideal student model, the action is accepted and
the internal problem representation as well as the window are updated. If the action
does not match an applicable rule, it is not accepted and a hint to the student is shown
in the window. Because of that, “the student always stays on a recognizable solution
path”. In addition, the tutor shows the “skill meter” with bars that indicate the stu-
dent’s knowledge state, displaying the probability that the student has acquired the skills
of that section. Check marks are used to signalize that the student has reached mastery
in a skill.

Knowledge Tracing and Mastery Learning Knowledge tracing was introduced in order
to support the students’ mastery learning. A two-state model is used: Each rule is in the
state of being “learned” or “unlearned” (Corbett & Anderson, 1995, i.e. known or not
known). The transition from “learned” to “unlearned” can be done by reading a text or
practice. There is no forgetting. There is a chance of guesses and slips. The four initial
parameters used for knowledge tracing are:

1. G = the Guess parameter, i.e. the probability with which the student gives a correct
response when she actually does not know it,

2. S = the Slip parameter, i.e. the probability with which the student gives a wrong
response when she actually does know the correct one,

3. L0 = the probability of the student knowing each skill in the beginning of using a
tutor,

4. T = the probability of learning this skill, regardless whether the answer is correct,
at each opportunity to practice a skill the student does not know.

The system’s belief that the student knows a rule is calculated after an action (n)
using the action as evidence for the posterior probability:

p(Ln|evidence) = p(Ln−1|evidence) + ((1− p(Ln−1|evidence)) ∗ P (T )) (14)
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Fig. 4: Modeling the relationship between two topics

The student is given exercises for practicing a skill/acquiring a rule until a certain
probability of mastery is reached. In the tutor the “mastery criterion” for a rule is a
probability of 0.95.

3.2 Belief Networks for Modeling Student Knowledge

Reye (2004) discusses an approach of using belief networks for modeling student knowl-
edge, taking into account that students should be considered as unreliable source of
information and therefore dealing with uncertainty.

Structuring Knowledge In Reye’s model, relationships between topics are formulated
using conditional dependencies in order to be able to express how closely the topics are
related, including both strict prerequisite relationships and weaker connections. Examples
of relationships between the topics given in figure 4 are:

• knowing A is prerequisite of knowing B

p(student-knows(A)|student-knows(B)) = 1 (15)

• if A and B are closely related (a student who knows A most likely also knows B)

p(student-knows(B)|student-knows(A)) = 0.95 (16)

• the knowledge of A does not affect the knowledge of B and the prior probability of
B is p(B) = 0.01 then

p(student-knows(B)|student-knows(A)) = p(B) = 0.01 (17)

More than two topics can be connected. A belief (=Bayesian) network is a way to
design and visualize the model.

For making the design easier, the direction of the arcs is chosen to be the same as
the order in which the topics should be learned. The causal relationships (causal in the
sense that not knowing A will cause not knowing B) also make understanding the belief
network easier.

The belief network supports gathering of information about the student’s state of
knowledge. There is an analogy of the prerequisite structure and a digital circuit built of
AND gates with inputs for the prerequisite topics and one output: each gate outputs 1
only if all the inputs are 1 (all the prerequisite topics are known) and it is functioning
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Fig. 5: The student’s response as unreliable source of information

properly (the topic itself is known). If the student does not know one prerequisite topic,
he will not know any of the topics building on that. Analogously the non-functioning of
one gate disables all the following gates. Because of this analogy, for student modeling
the GDE (General Diagnostic Engine; De Kleer & Williams, 1987) approach can be used
for minimizing the number of measurements for finding a fault. The measurements are
selected maximizing the expected amount of information gained by that measurement by
minimizing the the entropy of the belief network after gathering that information.

The detection of the fault in a student’s knowledge is less complex than in an electrical
circuit. In the student model it is expected that if a prerequisite topic is not known all
the following topics are not known, so the number of combinations of possible states of
knowledge is less than in an electrical circuit (in a chain of items the growth of possible
combinations is linear instead of exponential).

Students are unreliable sources of information because their responses do not always
reflect their actual knowledge directly. There is the chance of lucky guesses and slips.
Because of that evidence is collected from the student’s responses (outcome) to compute
the probability of him really knowing the topic (the learned state, see figure 5). The
following probabilities are used to calculate the probability that the student has learned
a topic:

1. p(outcome = correct|learned) is the probability of a correct outcome if the student
knows the topic

2. p(outcome = correct|¬learned) is the probability of a lucky guess, i.e. the outcome
is correct, although the student has not learned it yet,

3. p(learned) is the prior probability that the student knows the topic that is estimated
before any information is collected.

Reye combines nodes of three types:

1. the “student-knows(topic)” nodes are linked in the belief net backbone, according
to their prerequisite relationships,

2. each student-knows(topic) node is connected to supporting local nodes that are
used for making inferences about the learned state from the outcome (e.g. “when-
opportune-student-demonstrates-usage-of(topic)), comprising a topic cluster,
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Fig. 6: A belief net backbone

3. the “global nodes” are keeping track of the student’s overall characteristics, e.g.
“student-is-bored()” and “student-overall-aptitude”, and are used for fine-tuning
the topic clusters.

Figure 6 shows the student-knows(topic) nodes (blue) and the local nodes (yellow) con-
nected by the belief net backbone.

Updating Knowledge The student model is updated over time in steps according to
the interactions with the system. For every interaction the update happens in two phases
which are visualized in figure 7:

1. In phase one the (estimated) state of the student’s knowledge before the interaction
is updated,

2. In phase two the expected state of the student’s knowledge after the interaction is
calculated.

In phase one, i.e. for updating the system’s belief in the student’s knowledge before
the interaction, the following parameters are used:

1. On a possible outcome of interaction n, i.e. a student’s response like “correct” or
“incorrect” or different levels of help,

2. Ln−1 the system’s belief that the student knows the topic prior to the n’th interac-
tion,

3. p(On|Ln−1) the system’s belief that outcome On will occur when the student already
knows the topic (which is the slip probability if On is an incorrect outcome),
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Fig. 7: Updating the student model in two phases

4. p(On|¬Ln−1) the system’s belief that outcome On will occur when the student does
not know the topic yet (which is the guess probability if On is a correct outcome).

On the occurrence of outcome On the system’s belief in the student’s previous state
of knowledge p(Ln−1|On) is revised using Bayes’ rule:

p(Ln−1|On) =
p(On|Ln−1)p(Ln−1)

p(On|Ln−1)p(Ln−1) + p(On|¬Ln−1)p(¬Ln−1)
(18)

This means that the system’s belief that the student did already know a topic before the
interaction given outcome of the interaction On, is the probability of the student knowing
the topic and giving outcome On over the overall probability of outcome On.

For phase two, i.e. for calculating the expected state of knowledge after the interaction
(the expected changes in the student’s knowledge due to tutoring), the following two
conditional probabilities are relevant. Suppose that On is correct. Then:

1. p(Ln|Ln−1, On) is the rate of remembering/not forgetting, i.e. the student remem-
bers (Ln) what was known previously (Ln−1), given outcome On of interaction n
and

2. p(Ln|¬Ln−1, On) is the rate of learning given the outcome (learning from the inter-
action).

The belief about the student’s knowledge after the interaction is computed by adding
the probability of the student knowing something before the interaction and remember-
ing it, and the probability of the student not knowing it before and learning it by the
interaction.

p(Ln|On) = p(Ln|Ln−1, On)p(Ln−1|On) + p(Ln|¬Ln−1, On)p(¬Ln−1|On) (19)

Reyes names as the essential parameters that have to be selected for each skill:
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• γ = p(On|Ln−1)
p(On|¬Ln−1)

which is the likelihood ratio of an outcome given that the student
knows and of the outcome given the student does not know

• ρ = p(Ln|Ln−1, On) which is the rate of remembering/not forgetting and

• λ = p(Ln|¬Ln−1, On) which is the rate of learning.

Depending on them, the system’s belief of the student’s learned state evolves.

Applicability Reye compares his approach to Corbett and Anderson’s Knowledge Trac-
ing (3.1). Corbett and Anderson’s model also uses two states for representing the stu-
dent’s knowledge. Their equations for updating the model after a student’s action can be
derived from Reyes’s approach if the assumptions of Corbett and Anderson are considered
and parameters are chosen accordingly.

Moreover, Reye shows how his concept of using a belief network is suitable to Shute’s
SMART student modeling approach. Shute had developed functions for updating the
student model by finding the best-fitting curves to points that were given by experts’
opinions. Estimates of the final knowledge of students given by these functions were
close to the results of post-tests of the students’ knowledge and hence quite successful.
The approach was used for problem solving in Shute’s SMART system where the student
can choose from different levels of help. Reye associates the level of help with the outcome
and shows that if the parameters are chosen appropriately, his approach of belief nets
produces nearly the same curves as Shute’s approach.

Finally, Reye is discussing some issues on the computational complexity of his ap-
proach to student modeling. Available algorithms for singly connected networks cannot
be used because the network is more complex: the prerequisite relationships can lead to
more than one path between two topics and the topic clusters will be connected by the
global nodes. Reye introduces the term barren nodes for nodes that no information is
available for yet and because of which no inferences about the descendant nodes can be
made yet. The barren nodes and the descendant parts of the network can be left out to
aid computational efficiency.

3.3 Contextual Estimation of Slip and Guess Probability

In the work of Baker, Corbett, & Aleven (2008), Bayesian networks are used for modeling
students’ knowledge in an Intelligent Tutoring System (ITS). Based on the model, the
student is given tasks for practicing skills until mastery is reached. The authors’ work is
based on Corbett and Anderson’s Bayesian Knowledge Tracing model which constantly
assesses the student’s knowledge for every skill based on behavior (3.1). The four pa-
rameters used for the Knowledge Tracing are fit for each skill using data from students
applying that skill within an intelligent tutor in order to find the combination that best
predicts the pattern of correct and incorrect answers.
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Problems with the Bayesian Knowledge Tracing Model The article at hand is ad-
dressing two statistical problems which the Knowledge Tracing models have been vulner-
able to:

• ‘Identifiability’ = different combinations of the four parameters can fit the given
data equally well, but produce different estimates of the students knowledge. Each
combination leads to different assignments of exercises to the student which can
result in under- or over-practice.

• ‘Model degeneracy’ = a model is theoretically degenerate when the Guess or Slip
parameter is greater than 0.5. That means that the probability of a correct answer
is higher if the student does not know the skill than if he does, or the probability
of an incorrect answer is higher if the student knows the skill than if he does not,
respectively. A model is empirically degenerate when after a number N of correct
answers the belief that the student knows the skill has decreased (first test) and
when after a number M of correct answers the student is not estimated to have
reached mastery (second test).

Previous ways of fitting the parameters in the Bayesian Network to the skills in the
tutoring system:

• The baseline approach, allowing the parameters taking any value between 0 and 1;
the authors use the Bayes Toolkit-Student Modeling (BNT-SM) for it.

• The bounded guess and slip approach, bounding the guess and slip parameter to
be in a certain range and making model degeneracy impossible; the authors use
Microsoft Excel for it.

• The Dirichlet Priors approach, using a Gaussian probability distribution for pa-
rameter values across skills and constraining the values for the parameters for all
skills and thus biasing the values of the single parameters to values that fit the
whole dataset; the authors use the BNT-SM for it.

Contextual Estimation of Guess and Slip The contextual estimation of guess and slip
is the authors’ new approach to find the guess and slip parameters. The difference to
the previous approaches is that the values of the parameters are not held constant for all
situations but estimated for individual actions, i.e. related to the context.

• Log files from previous student interactions are used to estimate whether an answer
was a guess or a slip, including subsequent steps.

• Machine-learning is used to identify features of an action that are independent from
subsequent actions and characterize the guess/slip probability. They can be used
for evaluating the guess/slip probability for an action immediately.

• P (T ) and P (L0) are fit for each skill, using curve-fitting.



14 3 Bayesian Networks for Learner Modeling

Evaluation of the New Approach The approach is evaluated using the student log data
from the ITS. The outcome of the evaluation is that using the contextual guess and slip
model there are still cases of degeneracy, but the model is “substantially less degenerate”
than the models used before. In terms of accuracy (comparison of the model’s prediction
with the answer of the student), the new model scores best as well.

3.4 Does Help Help?

The goal of Beck, Chang, Mostow, & Corbett (2008) is to measure the effectiveness of
help in an ITS. Because a pre- and post-test experiment is often “impractical” and asking
the students about their opinion only provides qualitative feedback, they seek for a way
of deriving the help’s influence from observational data.

Comparison to Other Approaches Before the new approach is introduced, two other
approaches that could be applied to the data are discussed:

1. Experimental Trials, comparing two outcomes. It is difficult to decide what to
compare. In the authors’ example in a reading tutor, the accuracy of the reading of
words for which a student asked for help and the accuracy of the reading of words
which he did not ask for help are compared. The immediate effect of the help is
positive, the student reads the words help was given for more accurately. If only
the outcomes of the words that the student encounters a day later are compared in
order to avoid memory effects, it shows that the student performs worse on words
that help was given for.

2. Learning Decomposition “is a variant of learning curves”. In this approach the
relative value of different types of learning opportunities are estimated. It does not
require the comparison of two data sets, but “computes the impact of help compared
to reading the word”, that is the value of help compared to one opportunity to
practice. Examining the data with this approach leads to the result that receiving
help actually causes students to perform worse.

For both of the approaches, the authors suspect that the apparent negative outcome
which implies the help is rather inhibiting the students’ learning rather than supporting
it, results from the students asking for help when they are lacking knowledge. So the act
of asking for help is not cause but evidence of a lack of knowledge.

New Approach: Bayesian Evaluation and Assessment For the new approach, the
Bayesian Evaluation and Assessment, there are two analysis goals. Firstly, the student’s
knowledge should be assessed. This assessment of student knowledge is based on knowl-
edge tracing (3.1). Secondly, as for the others, the effect of help is to be evaluated. Both
of them are integrated in one model as displayed in figure 8. Hn is a binary variable that
signals whether the help intervention was used or not. The model integrates the influence
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Fig. 8: Bayesian Evaluation and Assessment architecture

Fig. 9: Equations for parameters in Bayesian Evaluation and Assessment model

of the occurrence of help both on the (current) student performance (Cn) and on the stu-
dent’s (long-term) knowledge (Kn). The effect of the help intervention can be calculated
from the values that are learned by the model (see figure 9). E.g. the probability of a stu-
dent learning a skill with help (learn|help ≡ Pr(Kn = true|Kn−1 = false,Hn = true))
can be compared to the probability that the student will acquire the skill by merely
practicing it (learn|nohelp ≡ Pr(Kn = true|Kn−1 = false,Hn = false)).

Application The Bayesian Evaluation and Assessment approach was tested on data
from a reading tutor. This tutor used speech recognition to determine the correctness of
the student’s reading word by word and accordingly set Cn, the student’s performance.
The students could ask for help for challenging words.

For the student modeling, a generic Bayes net toolkit (BNT-SM) was used. It takes
as an input a data set and an XML specification of a student model and trains and tests
the model.
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Fig. 10: Parameters estimated by the models

Results Figure 10 shows the learned parameters for the Bayesian Evaluation and Assess-
ment (Help) model that is considering the effects of help compared to a simpler knowledge
tracing (KT) model.

The results are interpreted as follows:

• The probability of already know is higher if there is no help, so the tutor help is
more likely to be asked if the student does not know the word yet.

• Learning is higher if there is help than if there is no help.

• The probability of a guess is higher if there is help; that means the student will more
likely give the right response even if it is not really known yet; the help is providing
scaffolding to the student’s immediate performance; even if long-term knowledge
is the higher goal, the positive effect of helping the student “to become unstuck”
should not be ignored.

In summary, the model indicates a positive impact of help on students’ learning.
However, the new model was not more precise than the simpler knowledge tracing model
in modeling student knowledge. This was tested on the training data, comparing the
predictions of the models whether the student would read the next word correctly.

3.5 Design Issues

In the articles discussed, the following points were made about the design of the student
model.

Structure An important relationship to be modeled is the causal relationships between
behavior and knowledge. For that, a two-node Bayesian network can be used for modeling
the student’s knowledge of each skill, like in Corbett & Anderson’s knowledge tracing
(3.1). Other features that can be modeled in a learner model based on a Bayesian
network are the influence of a tutor intervention and the dependencies between topics
(the backbone). In the given examples the structure was pre-defined by the researcher.

Probabilities The probabilities are determined by machine learning using logs of previ-
ous uses of the ITS.
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Algorithms for updating Which algorithms are used for updating the probabilities was
not described in the given articles. However, Reye (2004) discusses an approach how to
reduce the complexity of computations by not taking into account nodes for which there
is no information, and their descendants (barren nodes).

4 A Learner Model for Garp3

The goal of this project is to develop a learner model that can serve as basis for “dis-
cussing” a model in Garp3 with a learner. During the dialog, elements the learner does
not know should be emphasized in order to facilitate learning, and the learner should not
be bored by questions about parts that are known. The dialog should run until confi-
dence is reached that the learner has understood all parts of the model. For evaluating
the approach, the learner model is coupled with the Quags question generator for Garp3
(Goddijn, 2002) and an example discourse is analyzed whether it reaches the goals set.

As basis for showing the integration of the learner model, we first discuss the em-
bedding of the learner model in a tutoring system (4.1). Then, we give an overview of
the “tree and shade” model in Garp3 which serves as running example for the subject
matter input (4.2) and “Quags”, the question generator for Garp3 (section 4.3). The
design of the learner model based on a Bayesian network (BN) is described in section 4.4.
Finally, the experimental setup for the evaluation (4.5) and the generated discourse (4.5)
are explained.

4.1 Architecture

Figure 11 shows the the architecture of a tutoring system as proposed by de Koning
et al. (2000) and discussed in Brielmann (2008). The red box highlights the parts that
are particularly important in this project. The components can be grouped according to
their responsibilities.

The Knowledge Base components are responsible for storing and generating knowl-
edge. The generic qualitative knowledge is a collection of facts and rules in a form suitable
as input for the qualitative simulator. The qualitative simulation produces the input for
the subject matter model which is a collection of articulate simulation models that are
prepared for the presentation to the learner.

Curriculum Generation is mainly handled by the subject matter sequencing module
which generates the curriculum by putting the topics given in the subject matter model
into a sensible sequence. The module is supplemented by the question/assignment gen-
eration, prediction exercise generation and explanation generation modules that convert
the target topics given by the subject matter sequencing into the mode that is appropriate
for the current learner interaction (question/assignment, explanation or exercise).
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Fig. 11: The learner model embedded in the system
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Fig. 12: Scenario “a small tree”

Learner Interaction is most obvious in the learner interface. Its responsibility is to
pack the questions, explanations and exercises into sensible forms of communications
and presentations for the learner. Other parts are the performance assessment module
and the closely related behaviour diagnosis module. All relevant information about the
learner, e.g. previously discussed topics and presentation preferences, are saved in the
learner model + history.

In the system used for this project, the knowledge base is implemented in Garp3. We
focus on the processing of one topic. Subject matter sequencing is not implemented. It
is assumed that an appropriate topic is given as input which is then processed by Quags
(question/assignment generation) together with the input from the learner model. In this
project, we implement the learner model, using a Bayesian network.

4.2 The Tree and Shade Model in Garp3

As subject matter for our student model, we use the “tree and shade” model (Bredeweg
et al., 2006). It is a simple example of a Garp3 model which models the growth of a tree
and its shade and contains all ingredients of a typical model3.

The starting scenario for the simulation describes a small tree with a small shade
using the entity tree and the quantities size and shade (figure 12).

The static model fragment “tree with shade” (figure 13) describes the relation between
the size of the tree and the shade. If the size is increasing, the shade is increasing as
well (positive proportionality between size and shade). Size and shade have the same
magnitudes during the simulation (quantity space correspondence between the quantity
spaces of size and shade).

The process model fragment growth of the tree (figure 14) models the growth of the
tree using the quantity growth rate, i.e. the rate at which the tree is growing. If there is
growth, the size of the tree increases proportionally (positive influence of growth rate on
size).

3 We simplified the model by leaving out one proportionality described in the article because it is not
needed for demonstration purposes.
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Fig. 13: Static model fragment “tree with shade”

Fig. 14: Process model fragment “growth of tree”

Fig. 15: Simulation with starting scenario “small tree”
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Fig. 16: Value history of size

Fig. 17: Value history of shade

Fig. 18: Value history of growth rate
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Fig. 19: Dependencies in all states

The simulation produces a graph with three states (figure 15). The tree is growing
from small size in state 1 via medium size in state 2 to large size in state 3 (figure 16).
The same happens for the shade (figure 17). The growth rate is constant (figure 18).

Because the model fragments are applicable in all states, the causal model stays the
same during the simulation. It is an aggregation of the information from the model
fragments (figure 19).

4.3 Question Generation

For testing the student model, “Quags” (Goddijn et al. 2003; Goddijn 2002; Bouwer
2005), the question generator for Garp3, is used. For showing how the student is guided
through the parts of the model, the key point for the question generation is how to set
the scope.

Quags uses a number of methods to reduce the total set of possible questions about a
model to a set of sensible questions for the student. The approach is to first restrict the
number of questions by certain criteria which can be set (e.g. by the user, the curriculum
designer or another module), and then automatically select the most interesting ones
according to built in heuristics.

The restriction methods that are used by QUAGS are:

1. Question type criteria

2. Selection of states
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3. System scope (can be entities and quantities)

4. Included subject quantities

5. Forbidden subject quantities

The first restriction method is working on a “global” level, using a taxonomy for
selecting the question templates for the admitted question types:

1. Perspective (changing values vs. reasons of change)

2. Concept (concept used, e.g. values, causal relations, inequality, correspondence, . . . )

3. Behavior (real/all/submissive)

4. Infostate (info available in present state or not)

5. Answer method (strategy to find the answer, where is the information to be found)

The learner model contains information about combinations of quantities and concepts
(e.g. the value of shade). The two possible options for setting the scope of the question
generation are (1) to exclude elements of the model as soon as they are known and (2)
to focus on the elements that are not known. We choose approach 2, in the first place
because Quags does not offer the feature of excluding an element at the level of detail that
is desired for the student model, while it does offer the possibility of including particular
elements. This is needed for demonstrating the functionality of the learner model by
selecting the elements with the lowest probability of knowledge. Moreover, focusing on
these particular elements allows addressing the weak points of the learner specifically.

4.4 The Learner Model

Our learner model represents each primitive in the Garp3 model as a node in a Bayesian
network (figure 20). The pieces of knowledge that are tracked in interaction with the
learner are the magnitudes, derivatives, dependencies and correspondences. In the net-
work, these “knowledge nodes” are the root nodes. From them, the knowledge about the
quantities is derived which again can be used to derive the knowledge about the entities.
An alternative approach for the tracking of knowledge would be to use the quantities as
main pieces of knowledge and to derive the state of knowledge about the magnitudes,
derivatives and quantities from them. However, the current approach is chosen over this,
because we consider it as an advantage that the direction of dependency corresponds with
the desired way of reasoning about the learner’s knowledge in the form of “if the learner
knows all the elements connected to a quantity, he knows the quantity”. Only tracking
the knowledge about quantities would not offer enough detail.

The observations from the interactions with the learner are connected as extra nodes
to the knowledge nodes. This makes it possible to include the chance that the learner’s
answer is a guess or slip (also see the discussion of Reye, 2004 in 3.2). Hence, each
“knowledge node” has an observation as a child node.
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Tree and shade, 1 time slice

Tree
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observation observation

observation

Fig. 20: A learner model network for a small growing tree, 1 time slice/interaction

Finally, the learners knowledge changes over time. This is why the learner model
does not only consist of one set of nodes but is extended by another time slice after each
interaction with the learner, as shown in figure 21 (the figure includes only the relevant
nodes from the first one and leaves out the observation nodes for clarity). One “time
slice” stands for one system-learner interaction. This facilitates the collection of more
than one piece of evidence for a piece of knowledge. Moreover, the projection of the
probabilities of the learner’s knowledge provides the means to include the possibility that
the learner learns or forgets something between interaction n and interaction n+1.

The implementation of the Bayesian network is based on the example of Bratko (2001)
and can be found in appendix A. Dealing with time slices is added in order to make the
network dynamic.

Selection of parameters At the moment, the parameters are set as follows:

• The prior probabilities of the knowledge nodes are set to 0.5, i.e. the probabilities
that the learner knows or does not know a topic in advance are the same;

• The conditional probabilities for the quantities and the entity express a prerequisite
relation: if all of the connected components are known the probability of knowing is
1, if not, the value is according to the ratio of known parents over the total number
of parents;

• The probability of a guess (i.e. that the learner gives a correct answer although he
does not know the topic) is 0.01; the probability of a slip (i.e. that the learner gives
an incorrect answer although he knows the topic) is 0.1;

• Learn/forget are both 0.

The conditional probability tables are displayed in tables 2, 3, 4, 5, 6 and 7.
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Tree and shade, 2 time slices

Tree

Size Growth Rate

observation
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observation observation

observation

magn magnderivative derivativemagn derivative

Fig. 21: A learner model network for a growing tree, 2 time slices/interactions

Tab. 2: The CPT for entity tree

size1/N growth rate1/N shade1/N p(tree|size1/N, growth rate1/N, shade1/N)
known known known 1
known known unknown 0.7
known unknown known 0.7
known unknown unknown 0.3
unknown known known 0.7
unknown known unknown 0.3
unknown unknown known 0.3
unknown unknown unknown 0
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Tab. 6: The CPT for observations

Know/N p(Observation/N |Know/N)
true 0.9
false 0.01

Tab. 7: The CPT for extension of the network (learning/forgetting)

Know/N p(Know/N + 1|Know/N)
true 1
false 0

4.5 Experimental Setup

In 4.6, we describe a use case about the “tree and shade” model (4.2), using a simulation
about the scenario “a small tree”, with the question generation steered according to the
state of the learner model.

The dialog listed is generated using a prototype user interface. This user interface
controls the components involved and provides a simple interface for adding observations
to the student model. Figure 22 gives an overview of the relevant parts. The Quags
question generator is used as it is. The Bayesian network (BN) and the mappings con-
nected to it are implemented in this project. The direct user interaction is realized as a
mockup, with the question history and the heuristics for selecting a question being done
manually. For the question history the listing of the dialog is used. The “heuristic” used
for selecting the most appropriate question is to not ask a question two times in a row if
alternative questions exist. If only one question was generated for the given restrictions,
this question is repeated.

In the experiment, for each of the questions the following sequence is applied:

1. The user interface triggers Quags question generation with restriction to the quan-
tity and concept described by the knowledge node with the lowest probability in
the student model45. The quantity for the restriction is retrieved by looking up the
child quantities of the knowledge node6. The concept to be applied for question
generation is selected using a mapping of the knowledge nodes to the respective
concepts which is given as part of the network definition.

2. Manually, one question from the generated list is selected according to the given
heuristic and the history of questions that have been asked before. This question
is also manually added to the “history”.

3. In the listing of the use case (4.6), we state a possible system-learner interaction,
including the system asking the question, the learner’s answer and the system’s

4 The second sorting criterion is the name of the node. If there is a group of nodes with the same
probability, the alphabetically first one is selected.

5 For first question, question generation is run without restrictions.
6 I.e. all child nodes which are not observations.
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feedback. This is not happening in the prototype system, but given in order to
provide a better idea what the interaction can look like in a more complete tutoring
system.

4. Using the user interface, we enter the learner’s answer in the form of [Node,

Correct]. Node is a number that encodes the knowledge node in the learner net-
work which the question is about. Correct encodes whether the answer was right or
wrong (r for right and w for wrong). The respective node is selected from a mapping
of the number to the knowledge node which is included in the network definition
and the evidence is added to the learner model. The network is extended by a new
time slice. The root nodes are the (estimated) state of the students knowledge at
time n+1 based on the probabilities given the previous evidence at time n.

4.6 Results

The main result of the experiment is the use case of a dialog which is produced as
described in the previous section (4.5) and listed below. Figure 23 visualizes how the
probabilities in the learner model network evolve for the conversation until all parts of
the model have been discussed sufficiently. The probability numbers are given in tables
24 and 25.

In this example, the learner has difficulties with three concepts. We use these three
episodes for showing how the sequence is generated and list questions until the end of the
dialog.

4.6.1 Learner’s difficulty with the value of the quantity shade1 (questions 1-4)

Question 1 In the beginning all of the probabilities have the same starting value (0.5):

obs d growth rate1 0.455
obs d shade1 0.455
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.455
obs v size1 0.455

d growth rate1 0.500
d shade1 0.500
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
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v growth rate1 0.500
v shade1 0.500
v size1 0.500

growth rate1 0.500
shade1 0.500
size1 0.500

tree 0.500

The Quags question generation is called without any restrictions. The resulting ques-
tions are:

Now look at state 1

question(1, What is the value of shade1 of entity tree?, The value of

shade1 is small)

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

question(1, What is the value of size1 of entity tree?, The value of

size1 is small)

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(8, Why does shade1 of entity tree have the value small?, size1

of entity tree has the value small and there is a quantity

correspondence between shade1 and size1)

question(11, How does growth_rate1 of entity tree influence shade1 of

entity tree?, growth_rate1 has a positive influence on size1 which

propagates its change to shade1)

question(5, Why does shade1 of entity tree increase?, size1 of entity

tree increases and changes in size1 are followed by changes in shade1)

question(5, Why does size1 of entity tree increase?, growth_rate1 of

entity tree is positive and growth_rate1 has a positive influence on

size1)

We select the first question, as there are no questions in the learner history.

A possible system-learner interaction:

System: What is the value of shade1 of entity tree?
Learner: Medium.
System: This is not true.
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The learner’s answer is wrong, we enter [1, w]. The evidence is added to the learner
model, the probability of v shade1 decreases from 0.500 to 0.092, and the model is ex-
tended by one time slice.

Question 2 Following the wrong answer, the knowledge node for the value of shade1
(v shade1) has the lowest probability of being known. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.455
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.092
obs v size1 0.455

d growth rate1 0.500
d shade1 0.500
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.092
v size1 0.500

growth rate1 0.500
shade1 0.398
size1 0.500

tree 0.465

By looking up the children of the node with the lowest probability in the Bayesian
network (v_shade1) the quantity shade1 is identified as the next focus of the dialog. The
mapping of the knowledge nodes to concepts given with the network definition determines
that the concept to be used is val (value). Accordingly, the Quags question generation
is called with restriction to quantity shade1 and concept val (value). The resulting set
of questions is:

Now look at state 1

question(17, Which values can shade1 of entity tree adopt?, small, and

point(medium(shade1)), and large.)

question(1, What is the value of shade1 of entity tree?, The value of

shade1 is small)
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question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

We select the first question because it has not been asked yet.
A possible system-learner interaction:

System: Which values can shade1 of entity tree adopt?
Learner: Small and large.
System: This is only part of the answer.

The learner’s answer is wrong, we enter [1, w]. The evidence is added to the learner
model, the probability of v shade1 decreases from 0.092 to 0.010, and the model is ex-
tended by one time slice.

Question 3 Following the wrong answer, the knowledge node for the value of shade1 has
an even lower and thus still the lowest probability of being known. The list of probabilities
is:

obs d growth rate1 0.455
obs d shade1 0.455
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.019
obs v size1 0.455

d growth rate1 0.500
d shade1 0.500
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.010
v size1 0.500

growth rate1 0.500
shade1 0.378
size1 0.500

tree 0.458
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Again, the Quags question generation is called with restriction to quantity shade1
and concept value. The resulting set of questions is the same:

Now look at state 1

question(17, Which values can shade1 of entity tree adopt?, small, and

point(medium(shade1)), and large.)

question(1, What is the value of shade1 of entity tree?, The value of

shade1 is small)

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

We select the second question, because the first one was asked in the previous step.
A possible system-learner interaction:

System: What is the value of shade1 of entity tree?
Student: The value of shade1 is small.
System: True.

The learner’s answer is right, we enter [1, r]. The evidence is added to the learner
model, the probability of v shade1 increases from 0.010 to 0.479, and the model is ex-
tended by one time slice.

Question 4 Because of the correct answer, the probability for the knowledge node for
the value of shade1 was increased. However, it is still the lowest. The list of probabilities
is:

obs d growth rate1 0.455
obs d shade1 0.455
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.436
obs v size1 0.455

d growth rate1 0.500
d shade1 0.500
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.479
v size1 0.500
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growth rate1 0.500
shade1 0.495
size1 0.500

tree 0.498

Again, the Quags question generation is called with restriction to quantity shade1
and concept value. The resulting set of questions is the same:

Now look at state 1

question(17, Which values can shade1 of entity tree adopt?, small, and

point(medium(shade1)), and large.)

question(1, What is the value of shade1 of entity tree?, The value of

shade1 is small)

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

We select the first question again, because it was not asked in the step before.
A possible system-learner interaction:

System: Which values can shade1 of entity tree adopt?
Student: small, and point(medium(shade1)), and large.
System: Indeed.

The learner’s answer is right, we enter [1, r]. The evidence is added to the learner
model, the probability of v shade1 increases from 0.479 to 0.988, and the model is ex-
tended by one time slice.

4.6.2 Learner’s difficulty with the derivative of the quantity shade1 (questions
5-8)

Question 5 Now, the value of the shade is more probable to be known than the rest of
the items. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.455
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455
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d growth rate1 0.500
d shade1 0.500
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
shade1 0.622
size1 0.500

tree 0.542

The interaction moves on with the next item, the derivative of growth rate1,
(d_growth_rate1) which is alphabetically the first one in the list of nodes with the lowest
probability. The child node of d_growth_rate1 determines that the next focus of the
dialog is the quantity growth_rate1. The mapping of knowledge nodes to concepts given
with the network definition returns der (derivative) as corresponding concept. The Quags
question generation is called with restriction to quantity growth_rate1 and concept der
(derivative). For this knowledge node no questions can be generated.

Thus, the generation is re-run for the next piece of knowledge, i.e. the node d_shade1.
Its child node in the network gives as the next focus quantity shade1, and the mapping
in the network definition returns der (derivative) as corresponding concept. Hence, the
Quags question generation is called with restriction to quantity shade1 and concept der
(derivative). The resulting question is:

Now look at state 1

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

The only question is selected and posed to the learner.

A possible system-learner interaction:

System: What is going to happen with shade1 of entity tree during the
simulation?

Student: shade1 will stay the same.
System: This is not correct.

The learner’s answer is wrong, we enter [2, w]. The evidence is added to the learner
model, the probability of d shade1 decreases from 0.500 to 0.092, and the model is ex-
tended by one time slice.
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Question 6 Following the wrong answer, the knowledge node for the derivative of shade1
has the lowest probability of being known. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.092
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.092
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
shade1 0.520
size1 0.500

tree 0.507

Accordingly, the Quags question generation is called with restriction to quantity
shade1 and concept derivative. The resulting question is:

Now look at state 1

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

The only question is selected and posed to the learner.
A possible system-learner interaction:

System: What is going to happen with shade1 of entity tree during the
simulation?

Student: shade1 will rise.
System: This is only part of the answer.

The learner’s answer is wrong, we enter [2, w]. The evidence is added to the learner
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model, the probability of d shade1 decreases from 0.092 to 0.010, and the model is ex-
tended by one time slice.

Question 7 Following the wrong answer, the probability of the knowledge node for the
derivative of shade1 is even lower and thus still the lowest. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.019
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.010
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
shade1 0.500
size1 0.500

tree 0.500

Again, the Quags question generation is called with restriction to quantity shade1
and concept derivative. The resulting question is the same:

Now look at state 1

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

There is only one question to select.

A possible system-learner interaction:
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System: What is going to happen with shade1 of entity tree during the
simulation?

Student: shade1 will rise and reach its maximum value, ending up in state 3
via state 2.

System: Correct.

This time, the learner’s answer is right, maybe somebody explained the topic in the
meantime. We enter [2, r]. The evidence is added to the learner model, the probability
of d shade1 increases from 0.010 to 0.479, and the model is extended by one time slice.

Question 8 Because of the correct answer, the probability for the knowledge node for the
derivative of shade1 was increased. However, it is still the lowest. The list of probabilities
is:

obs d growth rate1 0.455
obs d shade1 0.436
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.479
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
shade1 0.617
size1 0.500

tree 0.540

Again, the Quags question generation is called with restriction to quantity shade1
and concept derivative. The resulting question is the same:

Now look at state 1

question(4, What is going to happen with shade1 of entity tree during the
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simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

There is only one question to select.
A possible system-learner interaction:

System: What is going to happen with shade1 of entity tree during the
simulation?

Student: shade1 will rise and reach its maximum value, ending up in state 3
via state 2.

System: Good.

The learner’s answer is still right. We enter [2, r]. The evidence is added to the
learner model, the probability of d shade1 increases from 0.479 to 0.988, and the model
is extended by one time slice.

Question 9 The probability of the node for the derivative of the shade is now amongst
the highest ones in the list. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.455
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.500
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
shade1 0.744
size1 0.500

tree 0.585
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The interaction moves on with the next item, d_size1. Its child quantity, and hence
the quantity to be focused on next, is size1. The network definition maps knowledge
node to the concept der (derivative). The Quags question generation is called with
restriction to quantity size1 and concept der (derivative). The resulting question is:

Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

We select the only question.
A possible system-learner interaction:

System: What is going to happen with size1 of entity tree during the simu-
lation?

Student: size1 will rise and reach its maximum value, ending up in state 3
via state 2.

System: Indeed.

The learner’s answer is right. We enter [6, r]. The evidence is added to the learner
model, the probability of d size1 increases from 0.500 to 0.989, and the model is extended
by one time slice.

Question 10 The sorted list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.455
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.500
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
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shade1 0.744
size1 0.598

tree 0.619

The next node in the list is dir_q_correspondence_size1_shade1 with child quanti-
ties size1 and shade1, and mapped concept corr (correspondence). The Quags question
generation is called with restriction to quantities size1 and shade1 and concept corr

correspondence. The resulting set of questions is:

Now look at state 1

question(8, Why does shade1 of entity tree have the value small?, size1

of entity tree has the value small and there is a quantity

correspondence between shade1 and size1)

question(4, What is going to happen with shade1 of entity tree during the

simulation?, shade1 will rise and reach its maximum value, ending up

in state 3 via state 2)

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

We select the first question, because it has not been asked yet.
A possible system-learner interaction:

System: Why does shade1 of entity tree have the value small?
Student: size1 of entity tree has the value small and there is a quantity

correspondence between shade1 and size1.
System: Yes.

The learner’s answer is right. We enter [4, r]. The evidence is added to the learner
model, the probability of dir q correspondence size1 shade1 increases from 0.500 to 0.989,
and the model is extended by one time slice.

4.6.3 Learner’s difficulty with the positive influence of the quantity growth rate1
on the quantity size1 (questions 11-17)

Question 11 The next item questions are generated for is the influence of growth rate1
on size1. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.455
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
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obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.500
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.500
shade1 0.866
size1 0.696

tree 0.695

The next node in the group of nodes with the lowest probability is
inf_pos_size1_growth_rate1 (positive influence of size1 on growth rate1) with child
quantities size1 and growth_rate1, and mapped concept crel (causal relation). The
Quags question generation is called with restriction to quantities size1 and growth_rate1

and concept crel (causal relation). The resulting set of questions is:

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on

size1 of entity tree., growth_rate1 has a positive influence on size1)

We select the first question.
A possible system-learner interaction:

System: What is going to happen with size1 of entity tree during the simu-
lation?

Student: size1 is going to increase.
System: This is only part of the answer.

The learner’s answer is wrong. We enter [7, w]. The evidence is added to the learner
model, the probability of inf pos size1 growth rate1 decreases from 0.500 to 0.092, and
the model is extended by one time slice.

Question 12 Following the wrong answer, the knowledge node for the influence of
growth rate1 on size1 has the lowest probability of being known. The list of probabilities
is:
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obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.092
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.092
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.357
shade1 0.866
size1 0.614

tree 0.619

Accordingly, the Quags question generation is called with restriction to quantities
growth rate1 and size1 and concept causal relation. The resulting set of questions is:

Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on

size1 of entity tree., growth_rate1 has a positive influence on size1)

We select the second question because the first one was asked in the previous step.
A possible system-learner interaction:

System: Describe the influence of growth rate1 of entity tree on size1 of
entity tree.

Student: growth rate1 has no influence on size1.
System: This is not true.

The learner’s answer is wrong. We enter [7, w]. The evidence is added to the learner
model, the probability of inf pos size1 growth rate1 decreases from 0.092 to 0.010, and
the model is extended by one time slice.
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Question 13 Following another wrong answer, the probability of the knowledge node
for the influence of growth rate1 on size1 is even lower and thus still the lowest. The list
of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.019
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.010
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.329
shade1 0.866
size1 0.598

tree 0.604

Again, the Quags question generation is called with restriction to quantities growth rate1
and size1 and concept causal relation. The resulting set of questions is the same:

Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on

size1 of entity tree., growth_rate1 has a positive influence on size1)

The first question is asked again.

A possible system-learner interaction:
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System: What is going to happen with size1 of entity tree during the simu-
lation?

Student: size1 is going to increase.
System: This is only part of the answer.

The learner’s answer is wrong. We enter [7, w]. The evidence is added to the learner
model, the probability of inf pos size1 growth rate1 decreases from 0.010 to 0.001, and
the model is extended by one time slice.

Question 14 The probability of the knowledge node for the influence of growth rate1
on size1 is still the lowest. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.011
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.001
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.325
shade1 0.866
size1 0.596

tree 0.602

The restrictions for Quags and the resulting set of questions are the same:

Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on
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size1 of entity tree., growth_rate1 has a positive influence on size1)

We select the second question, because the first one was just asked.
A possible system-learner interaction:

System: Describe the influence of growth rate1 of entity tree on size1 of
entity tree.

Student: growth rate1 has a positive influence on size1.
System: Indeed.

The learner’s answer is right. Maybe somebody has given an explanation in the
meantime. We enter [7, r]. The evidence is added to the learner model, the probability
of inf pos size1 growth rate1 increases from 0.001 to 0.085, and the model is extended by
one time slice.

Question 15 The probability of the knowledge node for the influence of growth rate1
on size1 increased but it is still the lowest. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.086
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.085
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.355
shade1 0.866
size1 0.613

tree 0.618

Thus, the restrictions for Quags and the resulting set of questions are the same:
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Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on

size1 of entity tree., growth_rate1 has a positive influence on size1)

We select the first question, because the second one was just asked.
A possible system-learner interaction:

System: What is going to happen with size1 of entity tree during the simu-
lation?

Student: size1 is going to increase.
System: This is only part of the answer.

The learner’s answer is wrong. Maybe the learner has not understood what influence
is doing. We enter [7, w]. The evidence is added to the learner model, the probability
of inf pos size1 growth rate1 decreases from 0.085 to 0.009, and the model is extended
by one time slice.

Question 16 The probability of the knowledge node for the influence of growth rate1
on size1 is still the lowest. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.018
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.009
v growth rate1 0.500
v shade1 0.988
v size1 0.500

growth rate1 0.328
shade1 0.866
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size1 0.597

tree 0.604

Thus, the restrictions for Quags and the resulting set of questions are the same:

Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on

size1 of entity tree., growth_rate1 has a positive influence on size1)

We select the second question, because the first one was just asked.
A possible system-learner interaction:

System: Describe the influence of growth rate1 of entity tree on size1 of
entity tree.

Student: growth rate1 has a positive influence on size1.
System: Good.

The learner’s answer is right. We enter [7, r]. The evidence is added to the learner
model, the probability of inf pos size1 growth rate1 increases from 0.009 to 0.457, and
the model is extended by one time slice.

Question 17 The probability of the knowledge node for the influence of growth rate1
on size1 increased but it is still the lowest. The list of probabilities is:

obs d growth rate1 0.455
obs d shade1 0.889
obs d size1 0.890
obs dir q correspondence size1 shade1 0.890
obs inf pos size1 growth rate1 0.417
obs prop pos shade1 size1 0.455
obs v growth rate1 0.455
obs v shade1 0.889
obs v size1 0.455

d growth rate1 0.500
d shade1 0.988
d size1 0.989
dir q correspondence size1 shade1 0.989
prop pos shade1 size1 0.500
inf pos size1 growth rate1 0.457
v growth rate1 0.500
v shade1 0.988
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v size1 0.500

growth rate1 0.485
shade1 0.866
size1 0.687

tree 0.687

Thus, the restrictions for Quags and the resulting set of questions are the same:

Now look at state 1

question(4, What is going to happen with size1 of entity tree during the

simulation?, size1 will rise and reach its maximum value, ending up in

state 3 via state 2)

question(20, Describe the influence of growth_rate1 of entity tree on

size1 of entity tree., growth_rate1 has a positive influence on size1)

We select the first question, because the first one was just asked.
A possible system-learner interaction:

System: What is going to happen with size1 of entity tree during the simu-
lation?

Student: size1 will rise and reach its maximum value, ending up in state 3
via state 2.

System: Correct.

The learner’s answer is right. We enter [7, r]. The evidence is added to the learner
model, the probability of inf pos size1 growth rate1 increases from 0.457 to 0.987, and
the model is extended by one time slice.

4.6.4 Finishing the Dialog

The dialog moves on to the next knowledge node, and in the same manner as shown in
the three episodes, the process of question generation and updating the learner model is
repeated until the lowest probability of a knowledge nodes that questions can be generated
for is sufficiently close to 100%.

In the example used in figures 23, 24 and 25, the sequel consists of questions 18 to
28 which are all answered correctly by the learner. The sequence of questions which are
generated and selected as described above is:

(18) What is going to happen with shade1 of entity tree during the
simulation?
[shade1 will rise and reach its maximum value, ending up in state
3 via state 2.]
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(19) Which values can growth rate1 of entity tree adopt?
[point(zero), and plus.]

(20) Which values can size1 of entity tree adopt?
[small, and point(medium(size1)), and large.]

(21) What is going to happen with size1 of entity tree during the sim-
ulation?
[size1 will rise and reach its maximum value, ending up in state 3
via state 2.]

(22) What is going to happen with shade1 of entity tree during the
simulation?
[shade1 will rise and reach its maximum value, ending up in state
3 via state 2.]

(23) Which values can shade1 of entity tree adopt?
[small, and point(medium(shade1)), and large.]

(24) What is going to happen with size1 of entity tree during the sim-
ulation?
[size1 will rise and reach its maximum value, ending up in state 3
via state 2.]

(25) Why does shade1 of entity tree have the value small?
[size1 of entity tree has the value small and there is a quantity
correspondence between shade1 and size1.]

(26) What is going to happen with size1 of entity tree during the sim-
ulation?
[size1 will rise and reach its maximum value, ending up in state 3
via state 2.]

(27) Which values can growth rate1 of entity tree adopt?
[point(zero), and plus.]

(28) Which values can size1 of entity tree adopt?
[small, and point(medium(size1)), and large.]
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Fig. 23: The probabilities that the learner knows certain pieces of knowledge (graphs)
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Fig. 24: The probabilities that the learner knows certain pieces of knowledge (numbers,
part 1; changing values marked yellow)
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Fig. 25: The probabilities that the learner knows certain pieces of knowledge (numbers,
part 2; changing values marked yellow)
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5 Discussion

The generated dialog demonstrates how weak points of the learner are identified and
selected as subjects of the discourse. Moreover, figures 23, 24 and 25 show that the im-
plementation of the learner model can serve for guiding the system-learner-dialog through
all parts of the model until all probabilities are close to 100%7. Not only the graphs of the
probabilities of the “knowledge nodes”, but also the graphs of the according quantities
and entity increase in the course of the dialog. This indicates that controlling the dialog
according to the knowledge about values, derivatives etc., the “knowledge nodes”, can be
used to derive the knowledge about the sub systems of the model. The discourse does
reach the goals set and the model fulfills its purpose as it was planned.

A disadvantage of the approach as it is now is the size of the conditional probability
tables. Whenever a parent node is added, the number of entries in the probability table
doubles, for example when a dependency is added to a quantity. This can result in big
conditional probability tables that are difficult to manage. Automatically generating the
conditional probability tables could be a way of eliminating these unmanageable tables.

As next step for further work, we propose the automatic generation of the Bayesian
network as the basis of the student model including the automatic generation of the con-
ditional probability tables. The “tree and shade” model which is used for our feasibility
study contains all typical ingredients of a Garp3 model. The automatic generation of the
Bayesian network should be realizable by a generalization of the given network based on
the types and numbers of the model components and their connections.

Moreover, a topic for further work is the refinement of network parameters, i.e. the
probabilities. A user study should be done in order to obtain more precise values. A
decision to be made as part of the refinement is whether the guess and slip as well as the
learn and forget parameters are the same for all pieces of knowledge or if they should be
distinguished, e.g. for each node or different concepts.

Finally, we recommend to investigate the role of the simulation’s states for representing
learners’ knowledge. One way how states could influence the learner model would be in
the choice of parameters. They could be set in a way that the probability of knowing
something increases more or less fast depending on the complexity of the state graph,
so the learner is asked a suitable number of questions until it is decided that a topic is
known. For example, in a state graph with three states it might be enough to ask about
one item three times to consider it as known; in a state graph with 20 states, a higher
number should be required.

We conclude that the discussed approach of a learner model based on a Bayesian
network can be used as basis for further developing a learner model for Garp3.

7 With the exception of the derivative of growth rate1, because questions about the values of derivatives
are not implemented in Quags.
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A Implementation

A.1 The Tree and Shade User Model

% A Bayesian network for the tree and shade model
:- [bayes_if].

:- dynamic
parent/2,
p/2,
p/3.

:- retractall(parent(_, _)),
retractall(p(_, _)),
retractall(p(_, _, _)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% define the network structure %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% atoms replace the structures for initial testing of the network

% shade(tree, shade1, continuous, sml)
parent(shade1/N, tree/N).
% size(tree, size1, continuous, sml)
parent(size1/N, tree/N).
% growth_rate(tree, growth_rate1, continuous, zp)
parent(growth_rate1/N, tree/N).

% value(shade1, unk, small, plus)
parent(v_shade1/N, shade1/N).
parent(d_shade1/N, shade1/N).

% value(size1, unk, small, plus)
parent(v_size1/N, size1/N).
parent(d_size1/N, size1/N).

% value(growth_rate1, unk, plus, zero)
parent(v_growth_rate1/N, growth_rate1/N).
parent(d_growth_rate1/N, growth_rate1/N).

% prop_pos(shade1, size1)
parent(prop_pos_shade1_size1/N, shade1/N).
parent(prop_pos_shade1_size1/N, size1/N).

% inf_pos_by(size1, growth_rate1)
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parent(inf_pos_size1_growth_rate1/N, growth_rate1/N).
parent(inf_pos_size1_growth_rate1/N, size1/N).

% dir_q_correspondence(shade1, size1)
parent(dir_q_correspondence_size1_shade1/N, shade1/N).
parent(dir_q_correspondence_size1_shade1/N, size1/N).

% observations are child nodes of hidden knowledge , i.e. latent nodes
% observation(Interaction/Result, Knowledge)
parent(Knowledge, Observation) :-

observation(Observation, Knowledge).

observation(obs_v_shade1/N, v_shade1/N).
observation(obs_d_shade1/N, d_shade1/N).

observation(obs_v_size1/N, v_size1/N).
observation(obs_d_size1/N, d_size1/N).

observation(obs_v_growth_rate1/N, v_growth_rate1/N).
observation(obs_d_growth_rate1/N, d_growth_rate1/N).

observation(obs_prop_pos_shade1_size1/N, prop_pos_shade1_size1/N).
observation(obs_inf_pos_size1_growth_rate1/N, inf_pos_size1_growth_rate1/N).
observation(obs_dir_q_correspondence_size1_shade1/N,

dir_q_correspondence_size1_shade1/N).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% define the probabilities %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Prior probabilities

% prior prob of knowing an observed node in the beginning
p(Know/0, 0.5) :-

observation(_, Know/0).

% Conditional probabilities
%
% quantities
p(tree/N, [size1/N, growth_rate1/N, shade1/N], 1).
p(tree/N, [size1/N, growth_rate1/N, \+shade1/N], 0.7).
p(tree/N, [size1/N, \+growth_rate1/N, shade1/N], 0.7).
p(tree/N, [size1/N, \+growth_rate1/N, \+shade1/N], 0.3).
p(tree/N, [\+size1/N, growth_rate1/N, shade1/N], 0.7).
p(tree/N, [\+size1/N, growth_rate1/N, \+shade1/N], 0.3).
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p(tree/N, [\+size1/N, \+growth_rate1/N, shade1/N], 0.3).
p(tree/N, [\+size1/N, \+growth_rate1/N, \+shade1/N], 0).

% size
p(size1/N, [v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 1).
p(size1/N, [v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.8).
p(size1/N, [v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.8).
p(size1/N, [v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.6).
p(size1/N, [\+v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.8).
p(size1/N, [\+v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.6).
p(size1/N, [\+v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.6).
p(size1/N, [\+v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N,

dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.4).

p(size1/N, [v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.8).

p(size1/N, [v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.6).

p(size1/N, [v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.6).

p(size1/N, [v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.4).

p(size1/N, [\+v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.6).

p(size1/N, [\+v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.4).

p(size1/N, [\+v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.4).

p(size1/N, [\+v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, prop_pos_shade1_size1/N], 0.2).

p(size1/N, [v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.8).

p(size1/N, [v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.6).

p(size1/N, [v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.6).

p(size1/N, [v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.4).
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p(size1/N, [\+v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.6).

p(size1/N, [\+v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.4).

p(size1/N, [\+v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.4).

p(size1/N, [\+v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N,
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.2).

p(size1/N, [v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.6).

p(size1/N, [v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.4).

p(size1/N, [v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.4).

p(size1/N, [v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.2).

p(size1/N, [\+v_size1/N, d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.4).

p(size1/N, [\+v_size1/N, d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.2).

p(size1/N, [\+v_size1/N, \+d_size1/N, inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0.2).

p(size1/N, [\+v_size1/N, \+d_size1/N, \+inf_pos_size1_growth_rate1/N, \+
dir_q_correspondence_size1_shade1/N, \+prop_pos_shade1_size1/N], 0).

% shade
p(shade1/N, [v_shade1/N, d_shade1/N, dir_q_correspondence_size1_shade1/N,

prop_pos_shade1_size1/N], 1).
p(shade1/N, [v_shade1/N, \+d_shade1/N, dir_q_correspondence_size1_shade1/N,

prop_pos_shade1_size1/N], 0.75).
p(shade1/N, [\+v_shade1/N, d_shade1/N, dir_q_correspondence_size1_shade1/N,

prop_pos_shade1_size1/N], 0.75).
p(shade1/N, [\+v_shade1/N, \+d_shade1/N, dir_q_correspondence_size1_shade1/N,

prop_pos_shade1_size1/N], 0.5).

p(shade1/N, [v_shade1/N, d_shade1/N, \+dir_q_correspondence_size1_shade1/N,
prop_pos_shade1_size1/N], 0.75).

p(shade1/N, [v_shade1/N, \+d_shade1/N, \+dir_q_correspondence_size1_shade1/N,
prop_pos_shade1_size1/N], 0.5).

p(shade1/N, [\+v_shade1/N, d_shade1/N, \+dir_q_correspondence_size1_shade1/N,
prop_pos_shade1_size1/N], 0.5).

p(shade1/N, [\+v_shade1/N, \+d_shade1/N, \+dir_q_correspondence_size1_shade1/N
, prop_pos_shade1_size1/N], 0.25).
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p(shade1/N, [v_shade1/N, d_shade1/N, dir_q_correspondence_size1_shade1/N, \+
prop_pos_shade1_size1/N], 0.75).

p(shade1/N, [v_shade1/N, \+d_shade1/N, dir_q_correspondence_size1_shade1/N, \+
prop_pos_shade1_size1/N], 0.5).

p(shade1/N, [\+v_shade1/N, d_shade1/N, dir_q_correspondence_size1_shade1/N, \+
prop_pos_shade1_size1/N], 0.5).

p(shade1/N, [\+v_shade1/N, \+d_shade1/N, dir_q_correspondence_size1_shade1/N,
\+prop_pos_shade1_size1/N], 0.25).

p(shade1/N, [v_shade1/N, d_shade1/N, \+dir_q_correspondence_size1_shade1/N, \+
prop_pos_shade1_size1/N], 0.5).

p(shade1/N, [v_shade1/N, \+d_shade1/N, \+dir_q_correspondence_size1_shade1/N,
\+prop_pos_shade1_size1/N], 0.25).

p(shade1/N, [\+v_shade1/N, d_shade1/N, \+dir_q_correspondence_size1_shade1/N,
\+prop_pos_shade1_size1/N], 0.25).

p(shade1/N, [\+v_shade1/N, \+d_shade1/N, \+dir_q_correspondence_size1_shade1/N
, \+prop_pos_shade1_size1/N], 0).

% growth_rate1
p(growth_rate1/N, [v_growth_rate1/N, d_growth_rate1/N,

inf_pos_size1_growth_rate1/N], 1).
p(growth_rate1/N, [v_growth_rate1/N, d_growth_rate1/N, \+

inf_pos_size1_growth_rate1/N], 0.7).
p(growth_rate1/N, [v_growth_rate1/N, \+d_growth_rate1/N,

inf_pos_size1_growth_rate1/N], 0.7).
p(growth_rate1/N, [v_growth_rate1/N, \+d_growth_rate1/N, \+

inf_pos_size1_growth_rate1/N], 0.3).
p(growth_rate1/N, [\+v_growth_rate1/N, d_growth_rate1/N,

inf_pos_size1_growth_rate1/N], 0.7).
p(growth_rate1/N, [\+v_growth_rate1/N, d_growth_rate1/N, \+

inf_pos_size1_growth_rate1/N], 0.3).
p(growth_rate1/N, [\+v_growth_rate1/N, \+d_growth_rate1/N,

inf_pos_size1_growth_rate1/N], 0.3).
p(growth_rate1/N, [\+v_growth_rate1/N, \+d_growth_rate1/N, \+

inf_pos_size1_growth_rate1/N], 0).

% Observations:
%
% The probabilites for the observations can be set separately, but
% for now all p(slip) = 1 - 0.9 = 0.1
p(Obs/N, [Know/N], Prob) :-

observation(Obs/N, Know/N),
Prob = 0.9.
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% for now all p(guess) = 0.01
p(Obs/N, [\+Know/N], Prob) :-

observation(Obs/N, Know/N),
Prob = 0.01.

% Connection between two time slices
% For now, students are not learning and not forgetting
% Remember (i.e. not forget)
p(X/N, [X/M], 1) :-

parent(X/M, X/N).

% Learn
p(X/N, [\+X/M], 0) :-

parent(X/M, X/N).

% mapping the knowledge nodes to their information types
% do automatically in the future?
% types to be found in inputorganizer:
% val, rel, der, ineq, corr, calc

type(Node/_, Type) :-
type(Node, Type).

type(\+Node/_, Type) :-
type(Node, Type).

type(v_shade1, val).
type(d_shade1, der).

type(v_size1, val).
type(d_size1, der).

type(v_growth_rate1, val).
type(d_growth_rate1, der).

type(prop_pos_shade1_size1, rel).

type(inf_pos_size1_growth_rate1, rel).

type(dir_q_correspondence_size1_shade1, corr).

number(1, obs_v_shade1).
number(2, obs_d_shade1).
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number(3, obs_prop_pos_shade1_size1).
number(4, obs_dir_q_correspondence_size1_shade1).

number(5, obs_v_size1).
number(6, obs_d_size1).

number(7, obs_inf_pos_size1_growth_rate1).

number(8, obs_v_growth_rate1).
number(9, obs_d_growth_rate1).
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A.2 The Implementation of the Bayesian Network

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computing the probabilities in a Bayesian network
% (adapted from Bratko’s code, p. 370)
% Miriam Brielmann, 18.02.2009
%
% Computing the probabilities in a Bayesian network:
%
% Belief network is represented by relations:
% parent( ParentNode, Node)
% p( Node, ParentStates, Prob)
% where Prob is conditional probability of Node given
% values of parent variables ParentStates, for example:
% p( alarm, [ burglary, \+earthquake], 0.99)
% p( Node, Prob)
% probability of node without parents
%
% prob( Event, Condition, P):
% probability of Event, given Cond, is P;
% Event is a variable, its negotiation, or a list
% of simple events representing their conjunction

% probT is used to cache the probabilities of one time slice
:- dynamic

probT/3.

:- retractall(probT(_, _, _)).

% bayes(+Px, +PyGivenX, +Py, -PxGivenY)
%
% Bayes rule for Y being a child node of X
% p(X|Y) = p(X) * p(Y|X) / p(Y)
% in general, with Cond0 = Y and Cond:
% p(X|Cond0) = p(X|Cond) * p(X and Cond) / p(Y|Cond)
%
%
bayes(Px, PyGivenX, Py, PxGivenY) :-

PxGivenY is Px * PyGivenX / Py.

% prob(+X, +Cond, -Prob)
% with X the node the probability should be calculated for,
% Cond a list of conditions,
% Prob the resulting probability

% The probability is already given by the combination of the parent nodes
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prob(X, Cond, Prob) :-
p(X, Cond, Prob),

% permutation(Cond, Given),
%writef(’prob of %w given %w is %w\n’, [X, Cond, Prob]),
!.

% The probability is already given (has been computed)
prob(X, Cond, Prob) :-

probT(X, Cond, Prob),
!.

% Probability of one node
prob([X], Cond, P) :-

!,
prob(X, Cond, P).

% Probability of conjunction (of X and the other Xs)
% p(X1 and X2 | Cond) = p(X1 | Cond) * p(X2 | X1 and Cond)

% if the negation of X is member of the conditions the result is 0
prob( [(\+X)|Rest], Cond, 0) :-

member(X, Cond),
!,
asserta(probT([(\+X)|Rest], Cond, 0):-!).
%writef(’prob of %w given %w is %w\n’, [[X|Xs], Cond, P]).

% if the negation of X is member of the conditions the result is 0
prob( [X|Rest], Cond, 0) :-

member((\+X), Cond),
!,
asserta(probT([X|Rest], Cond, 0):-!).
%writef(’prob of %w given %w is %w\n’, [[X|Xs], Cond, P]).

% if X is member of the conditions, it must not be added to the list of
% conditions! the prob of the first term is one, can be skipped
prob( [X|Xs], Cond, P) :-

member(X, Cond),
!,
prob( Xs, Cond, P),
%writef(’prob of %w given %w is %w\n’, [[X|Xs], Cond, P]).
asserta(probT([X|Xs], Cond, P):-!).

prob( [X|Xs], Cond, P) :-
!,
prob( X, Cond, Px),
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prob( Xs, [X|Cond], PRest),
P is Px * PRest,
%writef(’prob of %w given %w is %w\n’, [[X|Xs], Cond, P]).
asserta(probT([X|Xs], Cond, P):-!).

% Empty conjunction
prob( [], _, 1) :-

writef(’Empty conjunction!\n’),
!.

% Condition implies X (X is part of the evidence set)
prob( X, Cond, 1) :-

member( X, Cond),
%writef(’prob of %w given %w is %w\n’, [X, Cond, 1]),
!.

% Condition implies X is false
prob( X, Cond, 0) :-

member( (\+X), Cond),
%writef(’prob of %w given %w is %w\n’, [X, Cond, 0]),
!.

% Probability of negation is 1 - probability of event
prob( (\+X), Cond, P) :-

!,
prob( X, Cond, P0),
P is 1 - P0,
asserta(probT((\+X), Cond, P):-!).
%writef(’prob of (\+%w)\%w given %w is %w (1)\n’, [X, N, Cond, P]).

%%%%

% Use Bayes rule if condition involves a descendant of X
prob( X, Cond0, P) :-

% produce a list of conditions without Y
delete_element( Y, Cond0, Cond),
% if Y is a descendant of X
predecessor( X, Y),

% writef(’descendant involved: p(%w|%w)\n’, [X, Cond0]),
!,
prob( X, Cond, Px),
prob( Y, [X|Cond], PyGivenX),
prob( Y, Cond, Py),
%writef(’prob of Y (%w) given %w is %w\n’, [Y, Cond, Py]),
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bayes(Px, PyGivenX, Py, P),
%writef(’prob of X (%w) given %w is %w\n’, [X, Cond0, P]),
asserta(probT(X, Cond0, P):-!).

% Cases when condition does not involve a descendant
% a) X a root cause - its probability given
prob( X, _, P) :-

p( X, P),
%writef(’%w is a root cause, no descendants involved.\n’, [X]),
%writef(’prob of %w is %w\n’, [X, P]),
!.

% b) X has parents: P(X|Cond) = sum(p(X|S)*p(S|Cond))
% with S representing all possible states of the parent nodes
prob( X, Cond, P) :-

%writef(’check for parents of %w with condition %w\n’, [X, Cond]),
% Conditions on parents
% the probabilities of X given the parent states
findall((CONDi, Pi), p(X, CONDi, Pi), CPlist),
%writef(’parents: %w\n’, [CPlist]),
% only do it if the node is connected to the network!
\+ CPlist = [],
!,
sum_probs( CPlist, Cond, P),
%writef(’prob of X (%w) given %w is %w\n’, [X, Cond, P]).
asserta(probT(X, Cond, P):-!).

prob( X, _, _) :-
writef(’no prob could be calculated for %w\n’, [X]),
fail.

% sum_probs( CondsProbs, Cond, WeightedSum)
% CondsProbs is a list of conditions and corresponding probabilities,
% WeightedSum is weighted sum of probabilities of Conds given Cond

sum_probs([], _, 0).

% S is COND1, P1 is p(X|S)
sum_probs([(COND1, P1)|CondsProbs], COND, P) :-

%writef(’sum_probs\n’,[]),
% p(S|Cond)
prob( COND1, COND, PC1),
%writef(’p(%w|%w)=%w\n’,[COND1, COND, PC1]),
sum_probs( CondsProbs, COND, PRest),
P is P1 * PC1 + PRest.
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predecessor( X, Y) :-
parent( X, Y).

predecessor( X, (\+Y)) :-
parent( X, Y),
!.

predecessor( (\+X), Y) :-
parent( X, Y),
!.

predecessor( X, Z) :-
parent( X, Y),
predecessor( Y, Z).

% delete_element(X, OldList, NewList)
% needed for deleting an element from a list
% because the standard built-in delete is only dealing with lists of
% elements to be deleted
delete_element( X, [X|L], L).

delete_element( X, [Y|L], [Y|L2]) :-
delete_element( X, L, L2).
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A.3 Learner Model Specific Interface for Bayesian Network

% Miriam Brielmann, 18.02.2009
%
% Interface for manipulating a Bayesian network
%

:- [bayesian].

:- dynamic
interaction/1,
evidence/2.

% filter(+Threshold, -Filtered)
% Creates a list of all nodes that have a probability above the
% threshold for the current time slice
filter(Thresh, Filtered) :-

interaction(Int),
get_all_nodes(Int, Nodes),
filter(Thresh, Nodes, Filtered).

% filter(+Threshold, +Nodes, -Filtered)
% Filters the input list (Nodes) and returns all nodes above the
% threshold in the list Filtered (without time information)
%
% nothing left
filter(_, [], []) :-

!.

filter(Thresh, [Node1/N|Rest1], [Node1|Rest2]) :-
evidence(N, Ev),
prob(Node1/N, Ev, Prob),
Prob > Thresh,
!,
filter(Thresh, Rest1, Rest2).

filter(Thresh, [_|Rest1], Rest2) :-
filter(Thresh, Rest1, Rest2).

% lowest(-LowestProb/Node)
% Returns the node with the lowest probability in the current time slice
lowest(Lowest) :-

interaction(Int),
get_know_nodes(Int, Nodes),
lowest(1, Nodes, Lowest).
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% lowest(+Number, +AllNodes, -LowestNodes)
% Returns the node with the Number lowest probabilities
%
lowest(1, AllNodes, Lowest) :-

interaction(Int),
evidence(Int, Ev),
get_probs(AllNodes, Ev, List),
sort(List, [Lowest|Sorted]),
write([Lowest|Sorted]),nl.

lowest(Number, AllNodes, Lowest) :-
interaction(Int),
evidence(Int, Ev),
get_probs(AllNodes, Ev, List),
sort(List, Sorted),
write(Sorted),nl,
LP1 is Number-1,
length(Part1, LP1),
append(Part1, [Lowest|_], Sorted).

% shows all the probabilities for the current time slice
show :-
% profile(x).

%x :-
interaction(Int),
write(’Interaction: ’),
write(Int), nl,
show(Int).

% shows the probabilities for a given time slice
show(Int) :-

evidence(Int, Evidence),
write(’Evidence: ’),
write(Evidence), nl,
get_all_nodes(Int, Nodes),
print_probs(Nodes, Evidence).

% get_all_nodes(+Interaction, -Nodes)
% creates a list with all the nodes for the relevant time slice
% (interaction)
get_all_nodes(Int, Nodes) :-
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setof(Node,
get_node(Int, Node),
Nodes).

% get_node(+Interaction, -Node)
% gets a node in the net for the current time slice
%
% gets a parent node
get_node(Int, A/Int):-

parent(A/Int, _/Int).

% gets a child node
get_node(Int, B/Int):-

parent(_/Int, B/Int).

% shows all the probabilities for the current time slice
show_know :-

interaction(Int),
write(’Interaction: ’),
write(Int), nl,
show_know(Int).

% shows the probabilities for a given time slice
show_know(Int) :-

evidence(Int, Evidence),
write(’Evidence: ’),
write(Evidence), nl,
get_know_nodes(Int, Nodes),
print_probs(Nodes, Evidence).

% get_know_nodes(+Interaction, -Nodes)
% creates a list with the knowledge nodes for the relevant time slice
% (interaction)
get_know_nodes(Int, Nodes) :-

findall(Node/Int,
observation(_, Node/Int),
Nodes).

% get_probs(+Nodes, +Evidence -Probabilities)
% creates a list of probabilities (format: Prob/Node) for a list of
% nodes
get_probs([], _, []) :-

!.

get_probs([Node1|Rest], Evidence, [Prob/Node1|RestProbs]) :-
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prob(Node1, Evidence, Prob),
get_probs(Rest, Evidence, RestProbs).

print_probs([], _) :-
!.

print_probs([Node1|Rest], Evidence) :-
prob(Node1, Evidence, Prob),
write(Node1/Prob), nl,
print_probs(Rest, Evidence).

% curr_prob(+Node, -Probability)
% returns the probability for one node with given evidence
% in the current time slice
curr_prob(Node, Prob) :-

interaction(Int),
evidence(Int, Ev),
prob(Node/Int, Ev, Prob).

% returns all the current child nodes of Node together with their
probabilities

% in the list Probs
child_nodes(Node, Probs) :-

interaction(Int),
evidence(Int, Ev),
setof(N/Int/P, (predecessor(Node/Int, N), prob(N, Ev, P)), Probs).

% initialize_net(-Knodes)
% calculate probabilities for the knowledge nodes in state 0,
% i.e. without any evidence given,
% based on the prior probability of the root node
% (for that, the probabilities of the parent nodes are also calculated
% and asserted)
initialize_net(Knodes) :-

%make sure no interaction or has been counted yet
retractall(interaction(_)),
retractall(evidence(_, _)),
assert(interaction(0)),
assert(evidence(0, [])),
% find probabilities for all observed nodes for time slice 0
findall(Know/0/Prob,

(
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observation(_, Know/0),
prob(Know/0, [], Prob)
),
Knodes
).

% input(+Evidence, -Knodes, -Int)
% enters a series (list) of evidence
%
% only one piece left
input([Ev], Knodes, Int) :-

!,
update(Ev, _, _),
extend(Knodes, Int).

input([Ev1|RestEv], Knodes, Int) :-
update(Ev1, _, _),
extend(_, _),
input(RestEv, Knodes, Int).

% update(+Evidence, -Knodes, -Int)
% add evidence to list of evidence and return the updated list of
% knowledge nodes and the number of the current interaction
%
% for a list of evidence:
% empty list = finished
update([], _, _) :-

!.

update([Ev1|Rest], _, _) :-
interaction(Int),
add_evidence(Ev1, Int, _),
update(Rest, _, _),
!.

update(Evidence, Knodes, Int) :-
interaction(Int),
add_evidence(Evidence, Int, NewEv),
findall(Know/Int/Prob,

(
observation(_, Know/Int),
prob(Know/Int, NewEv, Prob)
),
Knodes

).
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% add_evidence(+NewEvidence, +State, -EvidenceList)
% adds a new piece of evidence (NewEvidence) to the internal list of
% evidence and returns this list (EvidenceList)
add_evidence([], State, PrevEv) :-

!,
evidence(State, PrevEv).

% Fail if the negation of the evidence is contained in the list
add_evidence(\+NewEvidence, N, PrevEv) :-

evidence(N, PrevEv),
member(NewEvidence/N, PrevEv),
!,
write(’Evidence could not be added because the negation is part of the

list.’), nl,
fail.

% Check: Should not be necessary!
% If the evidence is not known yet, add it to the list
add_evidence(\+NewEvidence, N, EvidenceList) :-

evidence(N, PrevEv),
\+member(\+NewEvidence/N, PrevEv),
!,
append([\+NewEvidence/N], PrevEv, EvidenceList),
retract(evidence(N, _)),
asserta(evidence(N, EvidenceList)).

% Fail if the negation of the evidence is contained in the list
add_evidence(NewEvidence, N, PrevEv) :-

evidence(N, PrevEv),
member(\+NewEvidence/N, PrevEv),
!,
write(’Evidence could not be added because the negation is part of the

list.’), nl,
fail.

% If the evidence is not known yet, add it to the list
add_evidence(NewEvidence, N, EvidenceList) :-

evidence(N, PrevEv),
\+member(NewEvidence/N, PrevEv),
!,
append([NewEvidence/N], PrevEv, EvidenceList),
retract(evidence(N, _)),
asserta(evidence(N, EvidenceList)).
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% Otherwise return the same list
add_evidence(_, N, PrevEv) :-

evidence(N, PrevEv).

% Calls extend/2, ignores results
extend :-

extend(_, _).

% extend(-Knodes, -NextInt)
% extends the net with one time slice, i.e. prepares the input for the
% next interaction, returns the observed nodes with their probabilities
% and the number of the next interaction
extend(Knodes, NextInt) :-

interaction(CurInt),
NextInt is CurInt + 1,
evidence(CurInt, Evidence),
findall(Know/NextInt/Prob,

(
% the root nodes for the current time slice
p(Know/CurInt, _),

% connect the node in the new slice with the old one
assert(parent(Know/CurInt, Know/NextInt)),
prob(Know/NextInt, Evidence, Prob),
% save the prior probability of the node
assert(p(Know/NextInt, Prob)),
% in the next time slice we are not interested in
% the previous anymore, so remove the connection
retract(parent(Know/CurInt, Know/NextInt))

),
Knodes),

retractall(probT(_, _, _)),
retract(interaction(_)),
assert(interaction(NextInt)),
assert(evidence(NextInt, [])).
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A.4 User Interface

% Miriam Brielmann, 19.03.2009
% test interaction Bayes - Quags
:- [usermodel/tree_and_shade].

test :-
initialize_net(_),
% generate all questions
wizigarp:question_generator(_, criteria(_, _, _, _, _), _, _, _, _),
%writef(’Questions: %w\n’, Q),
read(A),
do(A).

do(stop) :-
!.

% do([+Number, +Correct])
% Updates the model with the input for the node of the given number
% and the correctness (r=right, w=wrong)
% and generates the next set of questions
do([Number, Correct]) :-

!,
in(Number, Correct, Int),
out(Int, 1),
read(A),
do(A).

do(_) :-
writef(’Please repeat input:\n’),
read(A),
do(A).

% in(+Number, +Correct, -Int)
in(Number, r, Int) :-

!,
number(Number, InNode),
input([InNode], _, Int).

in(Number, w, Int) :-
number(Number, InNode),
input([\+InNode], _, Int).

% out(+Int, +Number)
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% Generates a list of questions for interaction Int and Number of
% probabilities. If no questions can be generated, the number of
% probabilities taken into consideration is increased and the generation
% repeated.
out(Int, Number) :-

% get the probabilities for all nodes
get_know_nodes(Int, Nodes),
% get the node with the lowest probability
% print_probs(Nodes, Ev),
lowest(Number, Nodes, Prob/(Lowest/_)),
process_node(Lowest, Prob, Int, Number).

process_node(_, Prob, _, _) :-
Prob > 0.99,
!,
writef(’Congratulations, you have mastered the entire model!\n’).

process_node(Lowest, _, Int, Number) :-
% find the information type for the node
findall(Type, type(Lowest, Type), Types),
% get the (direct) children (= relevant quantities for the node)
findall(Child, (parent(Lowest/Int, Child/Int),\+observation(Child/Int,

Lowest/Int)), Quantities),
% generate the relevant questions
wizigarp:question_generator(_, criteria(_, _, _, _, Types), _,

Quantities, _, Q),
%writef(’Questions: %w\n’, Q).

again(Q, Int, Number).

again(Q, Int, Number) :-
var(Q),
writef(’no questions generated’),
Next is Number+1,
out(Int, Next),
!.

again(_, _, _).
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