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Abstract 
 
Qualitative Reasoning captures human common sense understanding of the 
behavior of real world physical systems. Qualitative models use a rich explicit 
conceptual vocabulary and therefore a qualitative simulation provides an 
explanation as well as a description of the system’s behavior. These properties 
make Qualitative Reasoning suitable for use in several application fields like 
education and ecology. The design of an elaborate, detailed Qualitative Reasoning 
engine is a complex task. Existing simulators lack reasoning capacities which are 
required by present day applications, such are extensive use of inequality 
reasoning and efficient computation of state transitions. This thesis describes an 
effort to develop fundamental solutions for several problems in such reasoning 
engines, particularly focussing on the GARP reasoning engine.  
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1. Introduction 

 
Qualitative Reasoning is a field of AI that is concerned with knowledge-based computer 
models of the behavior of physical systems (Weld & De Kleer, 1990). Qualitative Reasoning 
offers a rich vocabulary for describing behavior of systems at a conceptual level which is akin 
to the kind of information humans use in tasks involving common sense reasoning about 
system’s behavior (Forbus, 1988). Fundamental aspects and distinctions of a system and its 
behavior are modeled, while extra (numerical) detail is left out. Qualitative Reasoning 
approaches typically use explicit ontologies with descriptive concepts, incorporate the notion 
of causality, and infer behavior from the structure of a system. This way a simulation using a 
qualitative model provides an explicit explanation for the behavior of the system. Often a 
compositional modeling approach is taken (Falkenhainer & Forbus, 1991), using small 
reusable building blocks to form a complete model. Today several application fields exist for 
Qualitative Reasoning, including: the space industry (Williams et al., 2003), education 
(Bredeweg & Forbus, 2003), ecology (Salles & Bredeweg, 2003), and the automotive industry 
(Struss & Price, 2003).  
 
The GARP reasoning engine (Bredeweg, 1992) is a domain independent qualitative simulator 
that follows the compositional modeling approach and has its roots in the component- and 
process centered qualitative reasoning approaches (De Kleer & Brown, 1984; Forbus, 1984). 
The core GARP engine uses a command line interface and originally a text-editor was used 
for model construction, which required some programming skills. A graphical interface: 
VisiGarp (Bouwer & Bredeweg, 2001) has been constructed for running simulations, as well 
as a graphical model building tool: HOMER (Bessa Machado & Bredeweg, 2003). This more 
accessible ‘workbench’ has enabled the user community to grow and the GARP environment 
is now used in several research programs  (e.g. Salles & Bredeweg, 2003; Goddijn et al., 
2003; QRSER, 2003; MONET, 2003; QR04, 2004). Consequently larger and more diverse 
models are being constructed. These growing demands have revealed several shortcomings in 
the current implementation of GARP, version 1.7.2. It does not always make maximal use of 
available knowledge to derive specific behavior and to focus the reasoning process. In some 
situations it does not generate the full spectrum of possible behaviors of the system. Also it 
cannot generate behavior in case of missing knowledge. Lastly it has no facility for generating 
the behavior of exogenous variables (Rickel & Porter, 1997).  Goal of the project described in 
this thesis is to analyse these reasoning capabilities missing in GARP 1.7.2, to develop 
fundamental solutions to these problems, and to implement these solutions in an upgraded 
version: GARP 2.0. 
 
The next section will introduce the GARP engine and the qualitative reasoning process in 
more detail. Section 3 provides an overview of the required new reasoning capabilities and the 
associated problems. Solutions implementing these reasoning capabilities are described in 
section 4. Several models were used to evaluate GARP 2.0. These models and results are 
presented in section 5. The last section contains a conclusion and discussion. 
 
 

 5



2. Qualitative Reasoning in GARP 

2.1 Overview 

GARP (Bredeweg, 1992) is a domain independent qualitative reasoning engine implemented 
in SWI-Prolog. A simulation of a system’s behavior in GARP starts with a scenario, which 
contains a structural description of the system. A library of model fragments (Forbus, 1984) 
captures domain knowledge. The scenario is augmented with knowledge from applicable 
model fragments resulting in one or more possible states of behavior. A state represents a 
segment of time in which the qualitative description of the system remains steady.  Each state 
is analysed with respect to changing aspects; these ‘behaviors’ form transitions that lead to 
new states of behavior. A complete simulation consists of a graph with states as nodes and 
transitions as vertices. Figure 2.1 illustrates the simulation process.  

 
Figure 2.1:  Main Inferences In GARP 

 
Section 2.2 gives a description of the constructs used in GARP. These building blocks are 
referred to throughout this thesis. Section 2.3 describes the inferences from figure 2.1 in more 
detail. Section 2.4 then further describes the inequality reasoning capacities of GARP. These 
play an important role throughout the GARP reasoning engine. 
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2.2 Descriptive concepts 
In GARP, scenarios, state descriptions, model fragments and transition rules all use the same 
descriptive concepts. A scenario or state description consists of a single set of these 
constructs. Both model fragments and transition rules use an if-then format and consist of a 
conditional and a consequential set of these constructs1. An introduction to each concept is 
given below: 
  

• Entities:  
Entities represent the physical, real world parts of a system. Every entity is an instance of a 
generic entity defined in an isa hierarchy. The structural configuration between entities can be 
declared and static properties of entities can be captured using attributes. Consider for 
example a leaking bucket being filled at a water tap. Figure 2.2 illustrates this situation. In a 
simple model of this situation there are two entities involved: a tap and a bucket. A 
configuration will say that the bucket is placed under the tap. An attribute of the bucket is that 
it has a few holes in the bottom. 
 

 
Figure 2.2: Filling A Leaking Bucket 

 
 

• Assumptions2: 
In modeling one may need to make assumptions. Examples of types of assumptions are: 
simplifying assumptions (e.g. zero friction) and operating assumptions (e.g. leakage is smaller 
than inflow from the tap) (Falkenhainer & Forbus, 1991). Assumptions are used in GARP as 
conditions for model fragments. Several model fragments can describe the same phenomenon 
but on different levels of abstraction or different levels of detail etc. These different model 
fragments will trigger on the presence of different assumptions. In this way assumptions 
facilitate a flexible library capable of modeling a phenomenon in varying ways.  
 

                                                 
1 Besides the constructs listed in this section model fragments can also have the activity of other model 
fragments as a condition. Some transition rules also use other special purpose constructs.  Section 2.3 provides 
more information on transition rules. 
2 In the core GARP engine assumptions have the same status as entities. They are treated equally, yet in HOMER 
no configurations or attributes can be associated with assumptions. A third class: agents, is also distinguished in 
HOMER. Agents are not relevant to the work presented in this thesis and are therefore not discussed here. 
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• Quantities3: 

Quantities are dynamic properties of entities, they represent changing aspects of a system. In 
our running example the amount of water in the bucket, the water level and the pressure at the 
bottom are quantities associated with the bucket. As water flows into the bucket the amount of 
water may increase, and the water level may rise as well as the bottom pressure. A discrete set 
of qualitative values is used to capture this continuous behavior.  
 

• Quantity values: 
For each quantity a quantity space defines the qualitative values it can take and their partial 
ordering. In GARP this is an ordered list of alternating points and intervals. From here on we 
will refer to points on a quantity space as landmarks4. A carefully chosen quantity space 
retains exactly those distinctions that are relevant. In different values of the quantity space 
different behavior should occur. The sign quantity space: {min, point(zero), plus}, typically 
satisfies this idea and is used very often. However it is also a very rigorous abstraction and 
more detail may be needed. In GARP all quantity spaces associated with the quantities are in 
principle unrelated. The exception being the landmark zero, this is the same for every quantity 
space using it. Other relations between quantity spaces must be stated explicitly in a model 
through inequalities between landmarks. The two quantity spaces for the temperatures of two 
substances pictured in figure 2.3 illustrate the concept of the quantity space. Note that melting 
points and boiling points can be unequal. The actual value of a quantity is defined in a value 
statement. This value must be in the quantity space specified for the quantity. Besides a 
current value a quantity also has a derivative indicating how the quantity is changing. 
Derivatives always use the sign quantity space: {min, point(zero), plus}. A zero derivative 
indicates a steady quantity: no change. A derivative that is min or plus indicates the quantity is 
moving up or down its quantity space respectively. In the bucket example the quantity amount 
of water may have the quantity space {point(zero), plus, point(maximum)}. When empty and 
first placed under the tap, it will have the value zero and it’s derivative will be plus5. 

                                                 
3 In both VisiGarp and HOMER the term quantity is used, but originally the term parameter was used. In GARP 
this is still the case. The term quantity will be used in this thesis. 
4 See (Forbus, 1988) for an elaborate discussion of limit points and landmarks. 
5 Causal dependencies determine this derivative to be plus as explained below. 
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Figure 2.3: Quantity Spaces And Landmark Relations6 
 

• Mathematical Dependencies: 
Mathematical dependencies are inequalities {>, ≥, =, ≤, <} including additions and 
subtractions. Inequalities can be defined between quantities, between derivatives of quantities, 
and between landmarks. But also inequalities between quantities and landmarks and between 
derivatives and landmarks are allowed. Inequalities between quantities and derivatives cannot 
be defined. Note that inequalities provide a second way of defining a quantity’s current value 
or derivative besides using a value statement. Given for example the situation in figure 2.3, 
the inequalities: TA < boiling point(TA) and TA > melting point(TA), together state that TA has 
the value liquid. The inequality TA > melting point(TA) alone will only constrain the current 
value of TA to liquid, boil point(TA) and gas. 
 

• Causal Dependencies: 
These are Influences, Proportionalities and Correspondences, similar to the concepts used by 
(Forbus, 1984). Influences represent direct effects of a process; a causal chain always starts 
with an Influence. One quantity has an effect on the other, making it change. These changes 
are then propagated through Proportionalities. If a quantity is changing, then another quantity 
will also want to change if it is proportional to the first. More then one influence or 
proportionality may be affecting a quantity, but a quantity may not be both affected by an 
influence and proportionality at once (Forbus, 1984). Both Influences and Proportionalities 
can be a positive relation where a positive value has a positive effect and vice versa or a 
reversed relation where a positive value has a negative effect and vice versa. Figure 2.4 shows 
a causal model for the leaking bucket situation. The water flow from the tap has a positive 
effect on the amount of water in the bucket; the water flow from the bucket has a negative 
effect. The increase or decrease of the amount of water will propagate to the water level and 

                                                 
6 The quantity spaces in this example commit to the Kelvin temperature scale where absolute zero is equal to 0 
degrees K.  
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the bottom pressure. The water flow from the bucket is in turn proportional to the bottom 
pressure in the bucket. The last7 type of dependency is the correspondence. If two values 
correspond for two quantities it means that when one quantity has that value, the other 
quantity will have the other value and vice versa. An example of a correspondence is that the 
water level in the leaking bucket must be zero when the amount of water is zero. GARP8 
recognizes four types of correspondences: a correspondence can be defined for two values, 
but also for all values in the quantity spaces of two quantities if they have the same number of 
points and intervals. Effectively the latter is like defining value correspondences for each 
value pair in the quantity spaces. Of both value and quantity space correspondences a directed 
form exists. This means its activity depends only on one of the quantities. If the other quantity 
is in the corresponding value this has no consequence.  
 

 
Figure 2.4: Dependencies Of The Leaking Bucket Situation 

2.3 Inference Structure 
In the top-level inference structure of GARP, as depicted in figure 2.1, two inferences can be 
seen: Determine States and Find Transitions. These inferences are similar to the concepts of 
intrastate analysis and interstate analysis as introduced by (De Kleer & Brown, 1984), 
although the approach is different. De Kleer & Brown use a breadth first approach; firstly all 
states of the system are generated. Intrastate analysis then determines which states are 
internally consistent and interstate analysis determines which valid states may change into 
other valid states. These two steps result in a total envisionment of all possible behaviors of a 
system. GARP adopts a depth first approach; firstly all valid states following from the 
scenario are computed. Then their changing aspects are analysed which leads to ‘transition 
scenario’s’ that are in turn processed leading to new states. This two-step process continues 
until all states and transitions have been found that are attainable from the original scenario. 
The resulting state-graph is called an attainable envisionment. 

                                                 
7 (Bredeweg, 1992) also defines the if and iff relation. These predicates have conjunctive sets of dependencies as 
arguments and have the normal semantics of the directed and undirected implication. However they are not 
incorporated in the HOMER and VisiGarp environments and are therefore in general not used.  
8 (Forbus, 1984) only introduced the undirected value correspondence. 
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Figure 2.5: Determine States Inference 

 
A more detailed view of the Determine States inference is shown in figure 2.5. It takes as 
input a scenario and a library of model fragments, and outputs transitions to new or existing 
states and the new states themselves. There are two possible routes in this inference. Firstly 
the Subsume step tries to match the scenario with existing states, if one ore more matching 
states is found, transitions to these states are created and the inference is finished. If no 
existing states match the scenario it must lead to one or more new states. These states are fully 
computed by the Specify procedure. It applies the model fragments, and is described in depth 
in (Bredeweg, 1992). An important aspect of the Specify procedure is that when a conditional 
quantity value or inequality is not known it tries to assume this condition. After all model 
fragments are found the causal model is complete and its effects can be computed by the 
Influence Resolution procedure. Once a state description is complete it is saved and 
transitions from the predecessor state to the new state are made. Note that both Specify and 
Influence Resolution are procedures with possibilities for branching, in other words: 
generating more then one solution. There can be mutually exclusive model fragments and 
ambiguous causal results. After all these branches are generated the inference ends.  
 
The second inference step from figure 2.1, Find Transitions, analyses which aspects of a state 
are changing and outputs transition scenario’s for all possible courses of behavior. As can be 
seen in figure 2.6, this is a three-step process. In the first step termination rules are applied, 
these detect single aspects of behavior that may cause a state of behavior to terminate and turn 
into a different one. Forbus  (1984) calls this process Limit Analysis. 
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Figure 2.6: Find Transitions Inference. 

 
An example is that when our bucket is being filled it may become full. Technically speaking: 
Amount of water is plus and increasing (its derivative is plus), thus amount of water may 
reach the next point on its quantity space: maximum. Such a change ends the current state of 
behavior and is called a ‘termination’. In the next step ordering rules are applied to determine 
which terminations will actually occur or take precedence over others and in what 
combinations these terminations will take place. For example the epsilon ordering rule (De 
Kleer & Brown, 1984) states that terminations from a point to an interval happen immediately 
whereas terminations from an interval to a point always take some finite amount of time. 
Therefore the first type takes precedence over the second type. An example of a necessary 
combination of terminations in the bucket system is the case where amount of water and 
water level both have a value termination to zero. Because there is a value correspondence9 
between these quantity values the terminations are only valid together. The Close procedure 
completes these compound terminations into ‘transition scenarios’ by applying continuity 
rules. These rules ensure that values and derivatives will not show discontinuous behavior. 
For derivatives there are no indications whether they will change or not, therefore these are 
given one step of freedom, allowing them to change in the next state. For example, a 
derivative which is plus may be zero or plus in the next state. Quantity values that are not 
changing through a termination will have to keep their current value in the next state. A 
complete transition scenario consists of the scenario of the original state augmented with all 
the results of the compound termination and all results of the continuity rules.  
 
 
 
 
 

                                                 
9 See section 2.2 on descriptive concepts. 
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2.4 Inequality Reasoning: The Mathematical Model 
The Mathematical Model and the Inequality Reasoning procedure in GARP have a 
specialized form to suit the needs of a qualitative reasoning engine (Reinders, 1989). They 
play an important role in GARP and therefore also in this thesis. There is a distinction 
between the mathematical model at user level and the mathematical model that is used in 
computations. In this section a description of this internal representation is given as well as a 
description of the inference capacities of GARP on sets of inequalities. 
 
The mathematical model at user level consists of all value statements and inequalities present 
in the scenario and applied model fragments. If the separation between user level- and internal 
mathematical model would not be made the user would be confronted also with all relations 
derivable from the former set. These derived relations are needed in reasoning, but they do not 
help to make the simulation insightful. Furthermore a representation that is computationally 
efficient is generally not a user-friendly representation. The internal mathematical model of 
GARP is built up entirely of inequalities. As described in section 2.2 each quantity value can 
be expressed using one or two inequalities. The same is true for derivatives. The partial 
ordering between landmarks implicit in each quantity space definition (a list of points and 
intervals) can of course also be expressed using inequalities. These inequalities are of the 
following form: 

 relation([pointer-set left], rel, [pointer-set right]),  with: rel Є {≥, >, =} 

Quantities10 in the inequality are represented by a unique integer working as a pointer. An 
index keeps track of the quantity/integer mapping. Only the ‘>’, ‘≥’ and ‘=’, relations are 
used, the ‘≤’and ‘<’ relations are inverted. The sets of pointers represent positive sums of 
quantities. Summations may contain the same quantity twice, which is not expressible using a 
set; substituting one of the double quantities with a new but equivalent pointer solves this. 
Subtractions are expressible as additions by transferring quantities from one side to the other. 
Zero maps to the empty list [ ]. For example, the relation:   

 A + B + B < C – D,  

translates to the internal relation: 

 relation( [ 3 ],  >,  [ 1, 2, 4 , 5] ), with: A / 1,   B / 2,   C / 3,   D / 4,   B / 5 

The inference rules used in GARP are similar to those in the Quantity Lattice proposed by 
(Simmons, 1986). Table 2.1 shows all possible inferences, these can be computed using set 
operations.  
 

 A = B A ≥ B A > B 
C = D A + C = B + D A + C ≥ B + D A + C > B + D 
C ≥ D A + C ≥ B + D A + C ≥ B + D A + C > B + D 
C > B A + C > B + D A + C > B + D A + C > B + D 

 
Table 2.1: Transitivity Rules 

 
 
 
An example may illustrate the inference process. Take two relations: 

                                                 
10 In this section on inequality reasoning the word quantity refers to current values, derivatives and landmarks in 
general. When performing internal inequality computations the distinction is irrelevant. 
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 X > Y  and Y ≥ Z 

Using table 2.1 and the set union operation11 for both left and right sides the following 
intermediate result is obtained: 

 X + Y > Y + Z 

Algebraic simplification by subtracting equal elements from left and right sides yields: 

 X > Z 

In the inequality reasoning procedure, contradiction is concluded when a relation of the form  
X > X  is derived. The full closure under these inference rules is computed every time a 
relation is added to the input set of inequalities. Having the full closure always at hand means 
that checking if a relation is derivable in the mathematical model only involves a simple 
presence check. Computing the full closure is a large operation as the mathematical model 
grows and constraints are placed on the inferences to avoid combinatorial explosion. 
Examples are the following:  
 

• Derived relations involving sums are only kept for intermediate use in deriving simple 
relations not involving sums.  

• No transitivity inferences are made with zero as intermediate variable. Many relations 
concerning values, derivatives and quantity spaces include zero and these results are 
not very informative. For the derivation of relevant results this is not a problem, in 
general relations can be derived in many ways.  

• Parents of a derived relation may not be combined with the derived relation again. 
 

Correspondences12 also play an important role in the construction a coherent mathematical 
model for they supply information on valid value combinations. Correspondences are 
translated to directed and undirected implications on conjunctive sets of inequalities13. This is 
quite a natural translation, as said before, there are directed and undirected correspondences 
and values can be expressed using one or two inequalities. Every time an inequality is added 
to the model and the new full closure is computed, this set of implications is checked. If an 
implication is found to hold the resulting set of inequalities is added to the mathematical 
model in the normal way. This mechanism that checks these implications also accommodates 
a subtle kind of information present in quantity spaces where an extreme value is a landmark. 
The idea is that in the highest point a value cannot increase anymore and in the lowest point it 
cannot decrease anymore. In our bucket example this means that when amount of water has 
the value zero, its derivative must be greater or equal to zero.  
 
This concludes the description of qualitative reasoning in GARP 1.7.2. The next section 
introduces the reasoning capabilities missing in this reasoning engine.  

                                                 
11 As said before GARP is built using SWI-Prolog.  In prolog, set operations on lists are quite slow. For faster set 
manipulation the pointer lists are transformed into bitmaps. Calculation takes place at machine level with 
routines using the C programming language. 
12 See section 2.2 on descriptive concepts. 
13 Note that this form also accomodates the if and iff relations mentioned in section 2.2. 
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3. Required Reasoning Capabilities 

A Qualitative Reasoning environment should provide the user with all modeling primitives 
needed to capture the behavior of a system and it should produce a correct simulation given a 
system model by making the strongest inferences possible. This section describes areas in 
GARP 1.7.2 that do not meet these requirements.  

3.1 Influence Resolution Calculus 
The method used in GARP 1.7.2 for determining the effect of multiple influences or 
proportionalities on a quantity is based on sign calculus. This means that in cases where two 
opposing influences are active the result is ambiguous (NB. plus + min = ?). Consider for 
example again filling a leaking bucket with water as pictured in figure 2.2. The water flow 
from the tap has a positive affect on the amount of water and the water flow from the bucket 
has a negative effect, therefore it cannot be said if the water level will be decreasing, steady or 
increasing. GARP generates a separate state for every one of these options in such a case. 
Human reasoners often resolve such ambiguity by comparing the magnitudes of the two 
flows. This is done with the working assumption that the impact of an influencing flow is 
equal to its magnitude. If it is known, for example, that the leakage is smaller than the inflow 
from the water tap, then it is obvious that the water level will rise in our bucket. Such 
inferences cannot be made by GARP 1.7.2. Therefore a new method for determining the 
effects of influences is needed that makes use of such extra information about the magnitudes 
of influences. This will prevent spurious behavior and unnecessary branching of the 
simulation.  

3.2 Transition Inferences 
Reasoning about how states change into other states of behavior is important in behavior 
prediction. The procedure used in GARP 1.7.2, is not completely adequate. Several problems 
and questions are still open and need to be solved. As described in section 2.3 a rule 
interpreter is used, but the rule format and semantics are problematic:  
 

• Rules do not have access to the inequality reasoning procedure and the internal 
mathematical model14. Instead the user level representation is used, which is less 
powerful and complete. As a result, the strongest possible inferences are not always 
made.  

• The rule format does not distinguish between purely conditional statements and 
conditional statements that need to be replaced with the results of the implication. This 
is awkward in writing down rules, because every non-changing statement in the 
conditions has to be repeated in the results15.  

• The rules have the form of an implication, but negation is not expressible. As a result 
it is for example impossible to say that a certain change is only possible if a specific 
other change is not in the set of possible changes.  

• Ordering rules used to determine valid combinations of changes have only two 
possible results, either two changes are merged into a compound change or a change is 

                                                 
14 See section 2.4 on inequality reasoning. 
15 In the past this has even led to problems where instances of entities in the isa hierarchy were replaced by isa-
subtypes in the next state. This problem was solved already in GARP 1.7.2. 
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completely removed from the set of possible changes. More subtle ordering concepts 
cannot be expressed. For example: change A can take place only together with change 
B, but change B can also happen alone.  

• Ordering rules can only process two changes at a time, making rule construction 
involving three or more changes hard. If for example a certain ordering concept 
suggests that 3 changes should be merged into one, then two rules are needed to do 
this.  

• As noted in section 2.2 both a value statement and an inequality can define a 
quantity’s value. Sometimes only one is present, sometimes both. Therefore separate 
rules are needed to find the changes for both statements. Because they concern the 
same event, the quantity taking on a different value, these twin-changes need to be 
located and merged  into one whenever present together. Since a merged transition 
name is more complex then a single one this makes transitions less insightful for the 
user.  

 
The set of transition rules has been updated many times during the existence of GARP. 
During this process many concepts involved in transitions have become clear, yet a 
comprehensive effort to “get things right” has not been made. It is therefore likely that the set 
of concepts is quite mature, but still incomplete. For example, in a large model like the 
Cerrado Succession Hypothesis (Salles & Bredeweg, 1997; Salles & Bredeweg, 2003), 
domain specific ordering rules are needed to reduce the number of possible combinations of 
changes. In this model, the quantities, Number_of_individuals, Born, Dead and Emigrated 
correspond in the value zero. The domain specific rules remove changes to zero for Born, 
Dead and Emigrated if Number_of_individuals is still at least 2 values above zero, because 
obviously it cannot reach zero from such a point. Without these extra ordering rules 
combinatorial explosion takes place. It seems there are domain-independent ordering concepts 
present in these domain-specific rules. It is important to study the concepts involved in state 
transitions and make an effort to come to a complete implementation of these concepts. Given 
that not many users actually design rules it seems worthwhile to give up the flexibility of the 
rule interpreter for the speed and power of dedicated procedures for each transition step.  
 
The last problem lies in the application of changes. In many cases such a ‘transition-scenario’ 
theoretically leads to multiple successor states because of ambiguity and continuity16. It is 
possible that these states have already been generated in the simulation and the transition 
leads to these existing states. But if for some reason only a subset of the possible successor 
states is already present, then the subsumption procedure described in section 2.3 will find the 
transitions to these states after which further search for successor states is abandoned. The 
result is an incomplete simulation. A procedure is required that always finds all possible 
successor states. 

3.3 Exogenous Quantities 
The sole mechanism assumption (Forbus, 1984: p.109) states that ‘all changes in a physical 
system are caused directly or indirectly by processes’. In some modeled systems however, not 
all processes affecting the system are within the modeling scope. The sun for example has an 
effect on the earth climate, but many models of the earth climate will not model the processes 
that cause the sun’s varying radiation. In such a model the solar radiation is right at the system 
boundary, it affects the system but is not affected by any quantity within the system. Such a 
variable is called an exogenous variable (Rickel & Porter, 1997). In GARP 1.7.2 there is no 
                                                 
16 See section 3.1 on influence resolution calculus and section 4.3.1 on continuity over transitions. 
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facility for generating the behavior of ‘exogenous quantities’. In existing models this is done 
using domain specific transition rules and model fragments. A generic way of dealing with 
exogenous quantities is required. Different regular and irregular, simple and complex 
behavior patterns have to be defined for exogenous quantities. Of course a mechanism to 
implement these behavior patterns in the transition procedure is needed as well.  

3.4 Correspondence Primitives 

As explained in section 2.2 quantities can correspond in some or all values of their quantity 
space. Correspondences can be directed or undirected. When two values correspond it means 
they always occur simultaneously, it does not mean these values are equal. Take for example 
the length of an elastic band as a function of the exerted force. Although we may not know the 
exact form of this function, when the elastic band is at rest length the exerted force is zero and 
vice versa. This can be modeled by an undirected value correspondence.  An example of a 
directed correspondence is that between the flow through a valve and the valve opening. 
When the opening is zero (the valve is closed), there is zero flow. But when there is zero flow 
this does not always mean the valve is closed.  When a correspondence mapping exists for 
every point on both quantity spaces, a quantity correspondence can be used. Note that this 
notion is also expressible using multiple value correspondences. In practice this method is 
used to define inverted quantity correspondences: a mapping of the highest point of one 
quantity space to the lowest point of the other and so on. Incorporating this correspondence 
type in GARP will ease the modeling effort and it is interesting to see if other types are useful 
to the user, or if new types are needed because they are inexpressible given the current 
correspondence types. 
 

3.5 Modeling Assumptions Theory 

Every real world phenomenon can be modeled in varying ways. Different aspects of behavior 
can be considered at varying levels of detail. In essence every model is an abstraction of the 
complex real world phenomenon. It is valuable to explicitly state which abstractions, 
simplifications, assumptions etc are used in a certain model. Not only to be clear about the 
explanatory scope of a model, but also to know which model fragments can be used to 
construct the model. The generic knowledge present in each model fragment is always  
intended for use with a certain view of a situation.  
 
In GARP 1.7.2 only a simple mechanism is available to implement assumptions. Assumptions 
defined in a model are unrelated to other assumptions or other elements in the system and are 
valid for the system as a whole. They serve as conditions for model fragments. However, 
more distinctions between types of assumptions can be made and relations between 
assumptions constraining valid combinations can be identified. Simplifying and operating 
assumptions can be distinguished (Forbus & Falkenhainer, 1991). Ontology-, grain size- and 
approximation assumptions are examples of the first type,  Operating mode-, steady state- and 
behavior restriction assumptions are examples of the second type. Different time perspectives 
can be distinguished (Rickel & Porter, 1997). These lead to use of the quasi- static 
approximation in case a phenomenon occurs on a time scale significantly smaller than the 
time scale of interest. And if a phenomenon occurs on a time scale significantly larger than 
the time scale of interest it can be left out of consideration. Assumptions are also often 
interdependent and a formalism is needed to capture these relations. Assumption classes 
(Forbus & Falkenhainer, 1991) can be used for this purpose. Constraints define activity of an 
assumption class and once active, one of the mutual exclusive assumptions in the class must 
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be used. Besides relevance and mutual exclusion, other important issues include: default 
assumptions, assumptions requiring certain other assumptions, and associating different 
assumptions with different parts of the modeled system. Lastly, given these constraints, the 
question of generating a coherent set of assumptions and model fragments capable of 
modeling the system in question is not trivial. It can be seen as a dynamic constraint 
satisfaction problem. 

3.6 Order of Magnitude Reasoning 
Order of Magnitude Reasoning is a very natural form of Qualitative Reasoning. Several 
frameworks have been proposed to implement this kind of reasoning. (Raiman, 1991; 
Mavrovouniotis & Stephanopoulos, 1988; Travé-Massuyès, 2003). Since rough order of 
magnitude information is more often available then precise inequality information this 
capacity is very useful in a qualitative reasoning engine. However, the integration of such a 
formalism in a complex system such as GARP is not trivial A suitable formalism has to be 
found and the relation to other inference capacities such as influence resolution and model 
fragment application has to be determined.  
 
The next section of this thesis describes the developed solutions to the problems outlined in 
the previous sections. The subjects of Modelling Assumptions and Order of Magnitude 
reasoning however, have not been treated and are therefore not further discussed. 

 18



4. Implementing New Reasoning Capabilities 

4.1 Flexibility 

In GARP 1.7.2 the rule interpreter provides flexibility when reasoning about transitions. Users 
can add and remove rules to influence how the reasoning engine behaves. For example, rules 
implementing epsilon ordering17 can be removed when all values in the quantity spaces are 
interpreted as intervals. The Cerrado Succession Hypothesis (Salles & Bredeweg, 1997; Salles 
& Bredeweg, 2003) is an example of such a model that does not use the normal alternating 
point-interval interpretation for quantity spaces.  Adapting the rule set is not easy though and 
requires some programming skills. GARP 2.0 features algorithm option switches for 
compatibility with different modeling styles. These switches determine reasoning engine 
behavior by (de)activating certain functionalities and by choosing between alternative 
algorithms with different properties. Examples of these options are the application of epsilon 
ordering, assuming behavior in undetermined situations, and making a closed world 
assumption during influence resolution18. All algorithm option switches are described in their 
relevant context in this thesis. Default settings favorable for most models have been carefully 
chosen. Settings can be manipulated through an interface menu. As models can be built 
depending on specific settings, the possibility of associating specific settings with a model is 
included. 

4.2 Influence Resolution Calculus 
A desired property of a qualitative reasoning theory is that it allows graceful extension 
(Forbus, 1984), which means that more precise data should at least yield equivalent results 
and that, if possible, ambiguities following from weak data should be resolved by the stronger 
data. This means that in case of imprecise model behavior we can distinguish two cases. 
Either there is a lack of information or there is a lack of inference capacity. In GARP 1.7.2 the 
effects of the causal dependencies (Influences and Proportionalities) are determined using 
sign calculus (De Kleer & Brown, 1984; Travé-Massuyès et al., 2003). Opposing effects will 
therefore always result in ambiguous behavior. Consider again the leaking bucket situation. 
As can be seen in figure 4.1 the amount of water in the bucket is influenced both by the water 
flow from the tap and by the water flow from the bucket (the leakage). 

 
Figure 4.1: Dependencies In The Leaking Bucket Situation 

 
                                                 
17 See section 4.5.3 on epsilon ordering. 
18 See section 4.4 on determining change and section 4.2.2 on the closed world assumption. 
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This situation is ambiguous, the amount of water can be rising, steady or decreasing because 
of the opposing effects of the two influences. However, in reality this situation is sometimes 
not ambiguous. Turn the faucet wide open on a bucket with a small hole and it will be full in 
no time. The extra knowledge in this case is that the water flow from the tap is greater then 
the water flow from the bucket. If this inequality is added to this model GARP 1.7.2 will still 
infer ambiguity. This lack of inference capacity needs to be dealt with. 
  
4.2.1 Balancing Influences & Proportionalities: 

To solve the problem of resolving opposing influences, positive and negative forces are 
summed and inequality information is used to determine which composite force is bigger. It is 
assumed in GARP 2.0 that the effect of each influence is equal to its magnitude. This 
assumption holds when the functions represented by the influences are of a similar nature. In 
most models it is the case that multiple influences are instances of the same phenomenon or 
generic process. For example the influences on the amount of water in the bucket are both 
water flows. (Forbus, 1984: p.112) similarly defines the derivative of a directly influenced 
quantity to be equal to the sum of its influences. The summation of influences can be seen as 
placing the influences on a balance scale. In GARP 2.0 an equation is constructed 
implementing this balance scale. Given multiple influencing quantities; I+ and I–, on quantity 
X, the equation looks like: 
 
 BalanceResult = ∑ value(I+)  –  ∑ value(I–)   
 
This equation is evaluated in the mathematical model19 using the inequality reasoning 
procedure. The result is recorded and the derivative of X is given this value. It is important to 
use an intermediate result instead of simply asserting that the derivative of the influenced 
quantity is equal to the right hand side of the balance equation. Adding such a relation to the 
mathematical model would change the semantics of the directed asymmetrical influence 
operator to that of a non-directed symmetrical constraint20. Besides using an intermediate 
result the balance equation is not even added permanently to the mathematical model. Hereby 
the number of relations being evaluated throughout the reasoning process is minimized. A 
similar solution is used to solve the problem of resolving opposing proportionalities. Again  a 
balance equation is constructed which is used in the same way as the equation used in 
influence resolution. Given multiple quantities; P+ and P–, to which quantity X is 
proportional, the equation looks like: 
 
 BalanceResult = ∑ derivative(P+)  –  ∑ derivative(P–)  
 
This means that it is also assumed in GARP 2.0 that the effect of proportionalities is equal to 
the magnitude of their derivatives. This assumption is not as easily justified as the one made 
earlier. In a model of population ecology for example, the rate at which individuals are born 
may be proportional to the size of the population but also to the resources available. The 
population size seems to have a linear sort of effect: more individuals means more mating and 
consequently a higher birth level. But resources seem to have more of a limiting effect: If they 
are abundant a change will not matter much, if they are at a normal level a change will have a 
moderate effect and if resources are very low a change will have a more dramatic effect. 
Likewise,  Forbus (1984: p.112) states that opposing proportionalities cannot be resolved for 

                                                 
19 See section 2.4 on inequality reasoning 
20 Construction of causal accounts from symmetrical constraints has been a subject of discussion (De Kleer & 
Brown, 1984; Iwasaki & Simon, 1986). 
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we lack detailed information about the form of the function described by these 
proportionalities. Still, GARP 2.0 does make this working assumption, if not only to provide 
the user with the tools needed when assuming a dominant effect. This is useful in constraining 
large simulations.  
 
The following issue is not solved in GARP 2.0, but an approach is outlined that can be 
implemented in the future: If a situation is still ambiguous because there is insufficient 
inequality information between influences on a quantity X, then simulation branches for all 
three21 alternative values of δX22 are generated. In ambiguous cases one can argue that each 
different state represents a situation with a different ratio between positive and negative 
effects. An inequality can be constructed that captures this relation: 

 3)  ∑ Positive  rel  ∑ Negative   

with: rel is  > when δX is plus,  
rel is = when δX is zero, 
rel is < when δX is min. 

Such a relation can be added to the internal mathematical model23 of that particular state or it 
can be added to the user level mathematical model. In the first case it provides an extra 
constraint on that state, but is invisible to the user. This is undesirable because its effects 
cannot be explained by the user. In the second case the constraint will be visible to the user 
and will even remain active after a transition to a next state unless it explicitly changes. 
Although this regime is theoretically correct and desirable GARP 2.0 does not construct and 
add such a relation because it can involve three or more quantities and there is no facility in 
GARP 2.0 for changing such inequalities24. The inequality would remain in effect throughout 
the simulation branch and this is clearly incorrect and undesirable. 
 
A minor issue is that to make use of the above-described inference capabilities the proportion 
between the magnitudes of the influencing quantities is required. In case of quantity spaces 
with values both in the negative and the positive range, a simple inequality is not always 
enough. Consider for example the situation shown in figure 4.2. In this case the statement:   A 
> B, is trivially known in GARP because positive values are always higher in the ‘>’ partial 
ordering than negative values. To resolve ambiguity in this case, information about the 
magnitudes or absolute value of A and B is required. No primitive is available for expressing 
absolute values: |A| > |B|. The required information is expressible however with a little more 
effort: A – B > 0.  
 

 
Figure 4.2: Two Influencing Quantities 

 

                                                 
21 In case the balance result is ambiguous, but a weak constraint (BalanceResult ≥ or ≤ zero) is obtained the two 
corresponding states are generated. 
22 The symbol ‘δ’ prefixed before a quantity indicates the derivative of the quantity is considered. 
23 See section 2.4 on inequality reasoning. 
24 See section 4.5.3 constants and section 4.6.2 on inequality changes. 
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4.2.2 The Closed World Assumption: 

Resolution of influences and Proportionalities is impossible if one of the driving variables25  
(Rickel & Porter, 1997) is unknown. This situation can arise because of two reasons:  

1) The quantity with unknown derivative is in the middle of a causal chain and the 
preceding influences and/or proportionalities have not been resolved. 

2) The quantity is at the start of the causal chain but the model is under specified and its 
value or derivative is simply unknown. 

In situation 1 the preceding influences and/or proportionalities have to be resolved first. In 
situation 2 a closed world assumption can be made: “All that is known in the model is all 
there is in the world.” The meaning in this context is that an unknown effect equals no effect 
and the unknown driving variable is set to zero. The model presented in section 5.2 will 
illustrate the need for this assumption in the process-centered approach to qualitative 
reasoning (Forbus, 1984). This assumption is reasonable at this point in the specification of a 
state because all model fragments have been applied and apart from influence resolution the 
state description is complete, so no new information is likely to become available. However, 
in some cases it turns out to be problematic: A partial causal model is shown in figure 4.3 that 
serves as an example. In this situation quantity Y is the begin- and endpoint of two causal 
chains. There is a proportionality from quantity X and an influence to quantity Z. Note that the 
driving variable of the influence, the value of Y, is unknown. If this value is assumed to be 
zero a problem occurs: Its quantity space requires the derivative to be greater then zero 
because a quantity cannot be decreasing in the lowest point of its quantity space, but this is in 
contradiction to the result of resolving the proportionality. Quantity X is increasing and 
through a negative proportionality Y should be decreasing. 
 

 
Figure 4.3: Partial Causal Model 

 
In this example quantity space constraints interfered with the closed world assumption. Both 
correspondences and equalities can also supply new conflicting information when influence 
resolution is being performed. 
 
GARP 1.7.2  deals with this problem by only making closed world assumptions one by one as 
the resolution process makes no more progress. These assumptions are retracted upon 
encountering contradiction. In such a case driving variables remain unknown and the 
resolution result is: ‘undetermined’.  
 
The following counter-example shows that this solution is not favorable. Firstly, a technical 
argument explaining a crucial property of the algorithm: The Determine States inference 
(figure 2.5) implements a depth first search for new states. After a closed world assumption 

                                                 
25For the influence pictured in figure 4.3 the value of Y is the driving variable, for the proportionality  the 
derivative of X is the driving variable. Note that loops of proportionalities are not allowed (Forbus, 1984) so 
causal chains always have a starting point. GARP has no explicit mechanism detecting loops, but will not 
produce resolution results in case of a loop. 
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has been made and it has proven not to be contradictive it has to be fixed26 in place. This is to 
prevent the search from generating almost the same state again (without the assumption, as if 
it had proven contradictive). However, a closed world assumption has only proven it does not 
lead to contradiction if a complete valid state description is found. And furthermore, fixing 
the assumption in place cuts-of all other alternative branches in the search for states between 
the moment of the assumption and the moment of fixation. Now consider the situation where 
first a closed world assumption is made and later on an ambiguous resolution result is 
obtained: In this case only the first ambiguous alternative is found by the search algorithm! 
After this first alternative succeeds the assumption is fixed and the other alternatives cannot 
be found. In figure 4.4 a causal model is shown that produces such a situation. In this model 
δA cannot be determined without the δC, which in turn depends on the value of quantity D. If 
this value is assumed to be zero, then δC is found to be plus and the resulting effect on δA is 
ambiguous. 
 

 
Figure 4.4: A Hypothetical Causal Model 

 
To deal with the problems outlined above GARP 2.0 features a simple version of the closed 
world assumption. Before starting the influence resolution procedure it can assume all 
unknown driving variables at the start of a causal chain to be zero. This has the drawback of 
possibly generating conflicting situations but not the drawback of sometimes generating only 
partial ambiguity. To solve the first problem, application of the closed world assumption is 
optional27 and the default setting is off.  This setting is chosen because it is easy for users to 
understand that influence resolution does not work because of an unknown variable. And in 
general it is not hard to adjust a model so that all its initial driving variables are known. It is 
hard work however, to find out what contradiction caused a particular expected state not to be 
generated. 

4.3 Transitions: General 
The Find Transitions inference (figure 2.6) consists of three steps: Terminate, Order and 
Close, that find single changes, determine valid compound changes and apply these ‘transition 
scenario’s’ respectively. The implementation of these steps in GARP 2.0 is described in 
sections 4.4, 4.5 and 4.6. Section 4.3 deals with general issues that are important throughout 
the transition procedure.  
 
4.3.1 Constants: 

In the transition procedure an important distinction between two types of inequalities needs to 
be made. Some inequalities between quantities describe a particular state of the system and 
                                                 
26 For prolog users: The depth first search is implemented through a findall call and a succesfull closed world 
assumption is followed by a ‘!’ (cut). 
27 See section 4.1 on flexibility. 
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should be allowed to change as their derivatives indicate this. Other inequalities between 
quantities have the function of a modeling constraint, or boundary condition for the 
simulation. Take for example the classic U-Tube system (Forbus, 1984) of which models are 
discussed in sections 5.2 and 5.3.  The inequality saying the water level is higher in the left 
than in the right tube changes during the course of the simulation into equality in the final 
equilibrium state.  However, the flow in the connection pipe is defined to be equal to the 
pressure in the left tube minus the pressure in the right tube. This inequality represents a 
modeling constraint and does not change during the course of the simulation.  
 
Inequalities of the last category that remain valid throughout a simulation can be called 
constants. They can be used as constraints in the ordering procedure providing a valuable 
heuristic in determining which combinations of changes will produce a consistent state.  For 
example take the following situation in the pipe of the U-Tube: flow is plus and decreasing, 
pressure-L > pressure-R and flow = pressure-L – pressure-R is constant. Then flow can only 
become zero if pressure-L becomes equal to pressure-R In GARP 2.0 constant inequalities 
can be explicitly defined using a keyword mechanism that is described in section 4.8. 
Furthermore GARP 2.0 assumes inequalities between three or more quantities (involving 
addition and/or subtraction) to be constant as well. No changes are generated for constants 
and they are used in the ordering procedure as constraints.  
 
4.3.2 Landmark relations:  

A simulation can sometimes incorporate multiple possible worlds. Relations between 
landmarks can be said to describe the specific possible world subject of the simulation.  For 
example, in a simple U-tube system three possible worlds are possible, one where the right  
tube is higher, one where the left tube is higher and one where the tubes are of equal height. 
This is shown in figure 4.5. A model of such a system incorporates all three possible worlds if 
the landmark relation between the maximum heights of the tubes is not specified. This means 
that the simulation models different possible worlds at once. It is possible that different 
branches of the simulation model different possible worlds. Since possible worlds cannot 
change, the simulation should not be allowed to move from one such a branch to another one. 
But, as noted, the relations specifying the possible world are often unknown. However, 
landmark relations can be derived from time to time from the mathematical model. Consider 
again the three u-tubes shown in figure 4.5. In the situation on the left it is derivable that the 
right tube is higher than the left tube because the water in the left tube is at the top of the tube, 
the water levels are equal and the water in the right tube is still under the top. Often the 
relation between both maximums is not derivable as illustrated by the situations in the middle 
and right of the picture. 

 Figure 4.5: Three Different U-Tubes With Different Levels. 

 24



 
In GARP 2.0 landmark relations that are derived after specification of a state are extracted 
from the internal mathematical model and are passed on in possible transitions to prevent 
interacting possible worlds. Section 4.6 further elaborates this subject. A drawback of this 
approach is that the amount of newly derivable landmark relations can become quite large. To 
the user these newly derived relations can be confusing.  Therefore an algorithm option switch 
is provided to disable deriving new landmark relations.  
 
Landmark relations also provide valuable information in the ordering procedure. This is 
another reason to derive and store landmark relations. An illustrative example is the heating of 
two liquids with unequal boil points as is done in distillation. A schematic view of such a 
situation is shown in figure 4.6.  

 
Figure 4.6: Two Liquid Substances Being Heated. 

 
Because the substances are mixed their temperatures are equal. The landmark relation 
between the boil points of both substances indicates that liquid A must reach it’s boil point 
before liquid B. And as long as their temperature remains equal and substance A has not 
turned completely into gas, liquid B will not reach its boil point. The use of this principle in 
the ordering procedure is discussed in detail in section 4.5. 
 
4.3.3 Continuity over transitions: 

An important intuition about change in the world is that it happens gradually, in a continuous 
way. Discontinuous jumps in values, derivatives or inequality relations do not represent valid 
behavior. GARP is an explicit mechanism theory (Forbus, 1988) and the central principle for 
changes is that the causal primitives determine the derivatives of quantities. Changes in values 
and inequalities follow from these indications of movement. When a value or inequality is not 
explicitly altered by a transition it must remain unchanged.  Derivatives themselves can also 
change of course, but no explicit mechanism is present to determine these changes. No second 
order derivatives are present in GARP so changes of derivatives cannot be predicted. 
Therefore derivatives are given one degree of freedom over each transition. For example, a 
derivative that is plus in one state must be greater or equal to zero in the next. Note that this 
means derivatives can change whenever some other change causes a transition to another 
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state, but they cannot cause a state transition themselves while they are one of the variables 
upon which different states are distinguished. In GARP 2.0 a strict implementation of the 
continuity principle is applied and also inequalities concerning derivatives are subject to this 
regime. For example: an inequality δX > δY changes into δX ≥ δY in the next state unless it is 
explicitly labeled as a constant28.  

4.4 Transitions: Determining Change 
The first step in the Find Transitions inference (figure 2.6) is the termination procedure. The 
task of this procedure is to identify elements in the state description that are changing and can 
cause that particular state of behavior to terminate and turn into another state. For each 
changing element a so-called ‘termination’ is generated. These terminations form the building 
blocks of actual transitions. Important elements of each termination are its name, conditions, 
and results. The conditions are replaced by the results when applying the transition. 
Three types of terminations can be distinguished: 

• Values change and cause a termination when they are moving towards the next value 
on their quantity space. 

• Inequalities change and cause a termination when involved quantities are moving in a 
different direction and/or at a different speed.  

• The rule interpreter in GARP 1.7.2 provides the user the possibility of  designing 
termination rules for capturing domain specific behavior. An example is that in a 
model of a boiler assembly, water and steam may be modeled as separate entities. A 
termination could remove one of these entities as it turns into the other.  

As mentioned in section 3.2 the termination procedure in GARP 1.7.2 has it’s shortcomings. 
Firstly the user level representation is used as a reference instead of the internal mathematical 
model29. Secondly the rule format does not distinguish between purely conditional statements 
and conditional statements that need to be replaced with results. And thirdly value changes 
and inequality changes  describing the same event are generated separately. To solve these 
problems GARP 2.0 uses a dedicated termination procedure instead of a rule interpreter. The 
internal mathematical model is used to check derivative conditions. Equivalent value and 
inequality terminations are detected together. In the next two sections a more detailed 
description of all possible value- and inequality terminations is given. Some extra 
terminations are provided in GARP 2.0, as well as a mechanism for assuming change in 
undetermined cases. Constant30 values and inequalities cannot terminate and are therefore 
kept out of the termination procedure. The possibility of interpreting domain specific 
termination rules is retained in GARP 2.0. Using this extra interpreter is optional31 and by 
default it is not active. This setting is chosen not to mistake rules in older models for domain 
specific rules. The format of terminations is identical in GARP 2.0 to that of GARP 1.7.2 but 
the conditions field is only used for descriptive elements that need to be replaced by results. 
Purely conditional statements are present in the algorithm itself. To provide the user with 
information on the reasoning steps made the tracer is updated to show these conditions in 
action. An example trace for the value change of a quantity X and the change of an inequality 
X < Y is given below: 
 

                                                 
28 See section 4.3.1 on constants. 
29 See section 2.4 on inequality reasoning. 
30 See section 4.3.1 on constants. 
31 See section 4.1 on flexibility. 
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determining terminations for state 1 
value termination found for: value(x1, unk, plus, min) 
-- quantity space conditions: meets(x1, [point(zero), interval(plus)]) 
-- equivalent inequality found, terminating: greater(x1, zero), to: 
equal(x1, zero) 
 
termination found for: smaller(x1, y1), to: equal(x1, y1), 
-- derivative conditions: d_greater(x1, y1) is known or derivable. 
 
4.4.1 Value terminations: 

The termination procedure in GARP 2.0 finds all value changes defined in the rules used with 
GARP 1.7.2. Table 4.1 shows an overview of these standard value terminations.  
 
Name: Value  

conditions: 
Derivative 
conditions:

Quantity space  
conditions: 

Value 
Results: 

Derivative 
Results: 

to_point_above(Q) Q is at  
interval(I) 

δQ > zero point(P) is 
directly  
above interval(I) 

Q is at     
point (P) 

δQ ≥ zero 

to_point_below(Q) Q is at  
interval(I) 

δQ < zero point(P) is 
directly  
below interval(I) 

Q is at     
point (P) 

δQ ≤ zero 

to_interval_above(Q) Q is at      
point (P) 

δQ > zero interval (I) is 
directly  
above point (P) 

Q is at  
interval(I) 

δQ ≥ zero 

to_interval_below(Q) Q is at      
point (P) 

δQ < zero interval (I) is 
directly  
below point (P) 

Q is at  
interval(I) 

δQ ≤ zero 

 
Table 4.1: Value Terminations 

 
When a value termination is found, an equivalent inequality for that value is searched. If such 
an inequality is found it will terminate as well. This extra termination is integrated in the 
original value termination. The extra conditions and results for these augmented value 
terminations are shown in table 4.2. For example: quantity X has the landmark value V, and 
the termination to_interval_above(X) is found. If the relation X = V is present in the user level 
mathematical model it will terminate to X > V. As said before, in the rule-based procedure of 
GARP 1.7.2 this produces two terminations that need to be merged in the ordering procedure.  
 

Name: Relation 
conditions: 

Relation 
Results: 

to_point_above(Q) Q < point(P) Q = point(P) 
to_point_below(Q) Q > point(P) Q = point(P) 
to_interval_above(Q) Q = point(P) Q > point(P) 
to_interval_below(Q) Q =  point(P) Q <  point(P) 

 
Table 4.2: Augmented Value Terminations 
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4.4.2 Inequality terminations: 

To determine if a binary inequality is changing it is crucial to know if the two quantities 
involved are moving relatively to each other. In GARP 1.7.2 the user level mathematical 
model was used to determine if these derivative conditions hold. This requires an enumeration 
of all possible combinations of derivatives. For example, the inequality P = Q, changes to P > 
Q in the following situations:  

• δP = plus and δQ = min,  
• δP = plus and δQ = zero,  
• δP = zero and δQ = min,  
• δP = plus and δQ = plus, δP > δQ,  
• δP = min and δQ = min, δP > δQ,  

Note that the inequality on the derivatives in the last two situations needs to be explicitly 
present in the user level mathematical model. If it is derivable from other constraints, but not 
explicitly provided by the input scenario or a model fragment the termination will not be 
generated.  And consider the following situation: δP = plus and it is derivable that δQ ≤ zero. 
Again the termination would not be generated. In GARP 2.0 this problem is solved because 
the internal mathematical model is referenced. In our example the only condition is that δP > 
δQ is derivable. This condition includes all situations outlined above. Table 4.3 shows 
conditions and results for the regular inequality terminations.  
 

Name: Relation 
conditions: 

Derivative  
conditions: 

Relation 
Results: 

Derivative 
Results: 

from_equal_to_greater(P,Q) P = Q δP > δQ P > Q δP ≥ δQ 
from_equal_to_smaller(P,Q) P = Q δP < δQ P < Q δP ≤ δQ 
from_greater_to_equal(P,Q) P > Q δP > δQ P = Q δP ≥ δQ 
from_smaller_to_equal(P,Q) P < Q δP < δQ P = Q δP ≤ δQ 

  
Table 4.3: Regular Inequality Terminations 

 
As noted in section 4.3.1 all inequalities concerning three quantities or more are assumed to 
be constants. In GARP 1.7.2  the same assumption is made for the weaker constraining 
inequalities {≥, ≤}. GARP 2.0 has the possibility to generate terminations for binary weak 
inequalities. This feature is optional and by default it is not active because most models use 
these inequalities as constraints. The terminations are shown in table 4.4. Note that in one 
direction of change two terminations are possible. And as can be seen the terminations 
defined here move from a weak to a specific relation. Another approach could have been only 
to have terminations from ≥ to ≤ and vice versa. This approach was not chosen for it adds 
little extra reasoning capability and stronger inferences can be made. If, for example,  P ≥ Q is 
known, then either  P > Q or P = Q holds. If δP > δQ is also known, the latter relation 
immediately32 terminates into P > Q and in the former case P > Q already holds.  

                                                 
32 See section 4.5.3 on epsilon ordering. 
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Name: Relation 

conditions:
Derivative 
conditions:

Relation 
Results: 

Derivative 
Results: 

from_greater_or_equal_to_greater(P,Q) P ≥ Q δP > δQ  P > Q δP ≥ δQ 
from_greater_or_equal_to_equal(P,Q) P ≥ Q δP < δQ P = Q δP ≤ δQ 
from_greater_or_equal_to_smaller(P,Q) P ≥ Q δP < δQ P < Q δP ≤ δQ 
from_smaller_or_equal_to_greater (P,Q) P ≤ Q δP > δQ  P > Q δP ≥ δQ 
from_smaller_or_equal_to_equal(P,Q) P ≤ Q δP > δQ P = Q δP ≥ δQ 
from_smaller_or_equal_to_smaller(P,Q) P ≤ Q δP < δQ P < Q δP ≤ δQ 
  

Table 4.4: Weak Inequality Terminations 

 
4.4.3 Generating behavior in undetermined situations: 

One can wonder what should happen in a simulation when derivative conditions do not hold, 
but neither are they contradicted. For example the inequality P = Q, changes to P > Q if δP > 
δQ is derivable and it does not change if δP = δQ. In case the relation between both 
derivatives is unknown, change is possible but it cannot be inferred.  An example of a 
situation where a termination is required in such a case comes from population ecology. This 
simple model describes a dying population with three quantities: the number of individuals, 
the born rate and the death rate. The situation is shown in figure 4.7, note that the quantities 
are decreasing because born is smaller than dead33. Intuitively, a possible transition from this 
state is that all quantities become zero. This transition is impossible however, because it is 
inconsistent with the inequality between born and dead. In this case a termination 
(from_smaller_to_equal) of this inequality is welcome. Note that the relevant derivative 
condition (δBorn > δDead) is not in contradiction with the state.  

 
Figure 4.7: A Dying Population 

 
GARP 2.0 features a mechanism for assuming behavior  in such undetermined situations. In 
case the derivative conditions for a specific value or inequality termination are not met but 
neither are they contradicted, then they are assumed and the termination is generated. This 
means that for an arbitrary quantity X that is not in an extreme value, two value terminations 
will be generated when no information on the derivative is present. If on the other hand a 
weak relation: δX ≥ zero or  δX < zero is derivable, only the consistent termination is 
generated. And of course if strong derivative information is present no assumptions are made. 
The mechanism works in a similar way when generating inequality terminations. The 
behavior assumption mechanism is optional34. Separate algorithm option switches are 
provided for value and inequality terminations. The default setting for both switches is off. 
                                                 
33 See section 4.2 on influence resolution. 
34 See section 4.1 on flexibility. 
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4.5 Transitions: Ordering Changes 
The second step in the Find Transitions inference (figure 2.6) is the ordering procedure. The 
input for this step is the set of terminations (independent elementary changes) generated by 
the termination procedure described in section 4.4. All different combinations of these 
terminations form all possible transitions. If all these branches in the search space are 
generated and successively checked there is a great danger of combinatorial explosion35. On 
top of that  some types of behavior take precedence over other types of behavior due to the 
point-interval nature of quantity spaces36. Subsequently the goals of the ordering process are 
the following:  

• To narrow down the search space by cutting off prospectless branches. 
• To give precedence to behavior happening immediately over other behavior. 
• To generate all remaining branches in the search space. 

 
The problems associated with the rule-based procedure used in GARP 1.7.2 have been 
discussed in section 3.2. A short summary: The semantics of the rule format are limiting, 
because they only allow fully merging two terminations or removing a termination. The 
inequality reasoning capacities of GARP cannot be used. Negation cannot be expressed. And 
ordering rules can only consider two terminations at a time. Further considerations are that 
domain specific ordering rules are used in large simulations and a comprehensive 
implementation of all possible ordering concepts is needed to remove the need for such extra 
rules. To solve these problems GARP 2.0 makes use of special format to record constraints on 
combinations of terminations. Dedicated procedures implement each ordering concept and 
generate these constraints. In this approach ordering knowledge is no longer declaratively 
captured in ordering rules. Therefore a tracer can illustrate the reasoning process in GARP 
2.0. Examples of such reasoning traces can be found in section 5.1. 
  
4.5.1 Storing constraints on termination combinations: 
 
As mentioned, a more expressive way of recording constraints on valid combinations of 
terminations is needed then simply merging two terminations or removing one. Consider for 
example the situation in figure 4.8, where two quantities are equal and at equal points, and 
moving in opposite directions.   

                                                 
35 The search space associated with the search for valid successor states is meant here. Note that in the 
component centered approach (De Kleer & Brown, 1984) first all possible valid states are computed and 
therefore the search for valid transitions is somewhat bounded. However, combinatorial explosion is an issue in 
this approach as it can arise  when combining all components in their different behavior modes to compute all 
possible valid states in the first place.  
36 See section 4.5.3 on epsilon ordering. 
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Figure 4.8:  Terminations For Two Quantities 

 
These two quantities cannot become unequal unless at least one of them moves away from its 
point. And if any one of the two quantities leaves its point then they must become unequal as 
well. Note that these constraints cannot be captured using full merges of terminations and / or 
removing terminations. All three terminations produce an inconsistency when applied alone 
but several different combinations produce a consistent situation. For clarity, table 4.5 shows 
all consistent and inconsistent combinations. 
 

Valid Combinations: Invalid Combinations: 
T1 & T3, 
T2 & T3, 
T1 & T2 & T3 

T1, 
T2, 
T3, 
T1 & T2 

 
Table 4.5: Validity Of Different Termination Combinations 

 
To use this knowledge a representation is needed for storing such information. Multiple 
inferences are made supplying information using different ordering concepts, so also a 
method is needed to update the information. And finally a method is required that, given all 
this information, generates all possible combinations of terminations.  
 
The following representation is used in GARP 2.0:  All terminations are indexed at the 
beginning of the ordering procedure, and every inference applying an ordering concept 
produces a set of valid and invalid combinations of indexes. Table 4.5 could be such a set. All 
these distinct sets are kept intact, and are stored in a large table. Updating the information 
with a new set of constraints is nothing more then storing this set in the table. Since each 
inference in this process considers a different aspect of the situation, one can imagine that 
contradictory entries are present in different sets. For example, the situation sketched above 
considers simple algebraic consistency.  But another inference might evaluate terminations T1 
and T2 in the context of a value correspondence between A and B. In this situation, T1 and T2 
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cannot happen separately. The following constraints are inferred: valid ({T1, T2}), 
invalid({T1}, {T2}). As can be seen, the combination; {T1, T2}, is valid in one set and invalid 
in the other. Which constraint is true? Closer inspection answers this question. This 
combination corresponds to the event that both quantities change value. As can be seen in 
figure 4.8 this event leads to an inconsistent situation if not combined with T3. 
Correspondences cannot change these algebraic facts. The inference on correspondences only 
shows us T1 and T2 cannot occur separately. In general, this approach requires that all 
inferences supply definite knowledge on inconsistent combinations. That means that if a set of 
constraints indicates a combination to be inconsistent, then no other set of constraints can 
change this verdict. On the other hand, if a set of constraints considers a combination to be 
consistent, any other set of constraints can prove otherwise. So the constraint of inferences 
being certain on invalid combinations makes their results independent information sources on 
ruling out combinations. But not until all information has been considered is a combination 
surely consistent37.   
 
After finishing all ordering inferences the set of all possible transitions is generated. To do 
this the crossproduct of the set of terminations is taken. For every element in this crossproduct 
the corresponding index combination is evaluated using the table containing all sets of 
constraints. The algorithm for this basic validity check is given below:  

Basic validity check: 

Given:  
• A table T containing sets S of index-combinations labeled consistent and inconsistent. 

each labeled index-combination is called an item: I. 
• An index-combination C that needs to be evaluated. 

 
1)  If no more S in T, then C is valid. 
 
2)  Take the next set S from T.  Create an empty set of active relevant items: R 
 
3)  For every item Ij in S: 
 - If Ij is a subset of C then place Ij in R  

and remove all other items Ix that are a subset of Ij  from R 
 - If Ij is a not subset of C then ignore Ij.  
 
4)  If R contains an item I labeled inconsistent then C  is invalid 

Else: Return to 1) 
 
This validity check needs to be fast for the cross product obviously can be large, and for every 
combination, potentially the whole table has to be checked. Speed is achieved in two ways. 
Firstly because table consists of independent sets a final decision can be reached before 
processing the whole table in most cases of invalid combinations. A second technique is 
applied to gain even more time. Any inconsistent item that has no consistent superset item in 
its set of constraints is considered a fatal constraint. No superset item can ever push it out of 
the set of relevant items. Fatal constraints are selected from the table before evaluating the 
crossproduct and the basic validity check is preceded by a check of the set of fatal constraints. 
If any item in this set is a subset of the combination to be evaluated then it is  invalid. This 
method of checking constraints has proven in practice to be computationally tractable.  
                                                 
37 Altough a transition can still prove inconsistent during state specification, because ordering principles have 
only a local view of the situation. 
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4.5.2 Application of ordering principles: 

Different ordering principles can be applied to reason about valid combinations of changes. 
These information sources have to be reliable. Inferring over restrictive constraints will 
prevent the transition procedure from discovering all possible state transitions. Reliability in 
this context comes down to two criteria: 

• The information source must be stable. 
• The information source must supply definite information on invalid combinations.  

The state description supplies all information, but many elements of the state description can 
change over a transition. Therefore the criterion of stability requires that the information 
source can be assumed to remain present in any successor states. For example, an inequality 
between quantities can change and is therefore in general not a stable information source. An 
inequality between landmarks on the other hand cannot change and is therefore a stable 
information source. The second criterion follows from the representation for storing the 
information that is defined in the previous section. An information source may only classify a 
combination as invalid if no other added knowledge can change this verdict. 
 
Different information sources can be used, each will be discussed in turn. 

• Correspondences supply information on valid value combinations 
• Landmark relations supply information on valid value and inequality combinations. 
• Constant inequalities38 supply information on valid value and inequality combinations. 

A minor information source is a table on mutual exclusive terminations. The behavior 
assumption mechanism described in section 4.4.3 can generate changes in two directions for a 
quantity or inequality and these terminations cannot be combined. Likewise, the weak 
inequality terminations described in section 4.4.2 also comprise mutual exclusive alternatives.  
 
Correspondences: 

Value39 correspondences are causal primitives like influences and proportionalities. Together 
they form the causal model of the system being described. Causal mechanisms in a system 
normally40 do not change because the system shows a different behavior. Therefore it is safe 
to assume that correspondences satisfy the stability criterion. Directed and undirected 
correspondences are distinguished in GARP, but undirected correspondences can be seen as 
two directed ones (in opposite directions). When a directed correspondence is active; the 
quantity has the conditional value, then it must be satisfied for a state to be consistent; the 
other quantity must have the consequential value. This means that if a combination of value 
changes “activates” a correspondence but it does not satisfy the correspondence then the 
combination is definitely invalid. Therefore, the second criterion for information sources is 
satisfied as well.  
 
To extract all information from this source, GARP 2.0 determines all corresponding value 
pairs (NB. directed) defined in the state. Each pair is evaluated separately resulting in a set of 

                                                 
38 See section 4.3.1 on constants. 
39 Note that quantity correspondences can be seen as defining a value correspondence for every value pair in two 
quantity spaces. Both value- and quantity correspondences are referred to in this subsection by the term 
correspondence. 
40 Technically it is possible to construct models in wich correspondences dissapear or change over transitions but 
this is not a common practice.  
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constraints.  Five relevant situations are possible for a corresponding value pair, these are 
pictured in figure 4.9. In each situation, different combination constraints are derived. 
Sometimes, a termination is completely invalid, in that case it is removed permanently from 
the set of terminations. In all situations different from these five situations no information can 
be inferred because either the correspondence cannot be activated, or the correspondence is 
already satisfied and no termination is present to change this. 

 

 
Figure 4.9: Corresponding Values And Terminations 

 
Note that in this picture no distinction between points and intervals is made, because this does 
not supply extra knowledge in this context. Value terminations are indicated with a triangle 
and although these are all pointing upwards this does not mean they represent only changes to 
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higher values. The important distinction is if the quantities are leaving or arriving at the value 
in question. The following interpretation for the five situations is used: 

• Situation 1)  Quantity P is at value A and no termination is present for P. This means 
that the correspondence is active and will remain active. Note that quantity Q must be 
in value B in this state. Results: All value terminations for Q, such as T1, are removed. 
No further constraints are derived. 

• Situation 2) The value correspondence is active, but now quantity P may leave value 
A. Any value termination T3 for Q may only happen together with a termination T2 for 
P, deactivating the correspondence. Results: consistent( {T2}, {T2, T3} ),   
inconsistent ( {T3} ). 

• Situation 3) The value correspondence will become active if termination T4 towards 
the conditional value A is applied. Quantity Q is already at the consequent value and 
may leave B trough some termination T5. These terminations may not happen 
together. Results: consistent( {T4}, {T5} ), inconsistent ( {T4, T5} ).  

• Situation 4) The value correspondence will become active if termination T6 towards 
the conditional value A is applied. Quantity Q is not at value B and has no termination 
towards value B. Results: Remove termination T6, no further constraints derived.   

• Situation 5) The value correspondence will become active if termination T6 towards 
the conditional value A is applied. Quantity Q is not at value B but has termination T7 
towards value B.  Termination T6 may only happen together with T7. Results: 
consistent( {T7}, {T6, T7} ), inconsistent ( {T6} ).  

Note that situation 4 is an example of a ‘rule’ requiring negation as mentioned in sections 3.2 
and 4.5 on the problems of the rule format in GARP 1.7.2. Negation is needed here to express 
there is no termination towards value B in the set of terminations. Only this fact can justify the 
immediate removal of T6. In GARP 1.7.2 undirected value correspondences were used to 
derive full merges between terminations. Figure 4.10 illustrates such a situation. Both 
terminations T1 and T2 will have to happen together. So merging these terminations is 
justified here. Merging terminations is beneficial because it reduces the size of the 
terminations set and therefore shortens the time needed to compute the final crossproduct of 
terminations41. By considering only one directed corresponding value pair at a time GARP 2.0 
cannot derive full merges. The constraints derived from evaluating both value pairs separately 
implement the same principle though. In the final crossproduct of terminations both 
terminations will only appear together. Furthermore, because of the behavior assumption 
mechanism described in section 4.4.3, it is possible that two value terminations are  present 
for a quantity. In this case no merging of terminations is justified and constraints are needed 
again. Therefore GARP 2.0 does not check more then one corresponding value pair  at a time. 
 

 
 

Figure 4.10: Undirected Value Correspondence 

                                                 
41 See section 4.5.1 on storing constraints on termination combinations. 
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Landmark relations: 

As described in section 4.3.2 inequalities between landmarks are constant throughout a 
simulation and algebraic reasoning can be used to determine inconsistent situations and 
consequently inconsistent combinations of terminations. This means both criteria for an 
ordering information source are satisfied42.  
 
Binary landmark relations provide a context of two quantities. In such a context many 
different situations can occur. Each quantity has a current value and maybe an inequality 
between the quantity values is present. One or more inequality terminations can be generated 
as well as on or more value terminations. An enumeration of generic situations in which 
combination constraints can be derived is not feasible. GARP 2.0 uses a procedural approach 
instead and its inequality reasoning capabilities provide the generic knowledge on consistent 
and inconsistent situations. To provide the user with insight in the reasoning process a tracer 
is provided. The user can be expected to understand the simple algebraic inferences made, but 
if needed a trace of the inequality reasoning process can be generated as well. Another 
example of the kind of reasoning performed by this procedure was given in the previous 
section (fig 4.8). A sample reasoning trace for this situation is given below: 
 

                                                 
42 See section 4.5.1 on storing constraints on termination combinations. 

determining combination constraints 
for context:  
    a1, b1 
    current values:  
    [point(a1), point(b1)] 
    terminations:  
   [[from_equal_to_greater(a1, b1)],  
    [to_interval_above(a1)],   
    [to_interval_below(b1)]] 
    constant:  
    [equal(point(a1), point(b1))] 
testing combination:  
    from_equal_to_greater(a1, b1) 
    - inconsistent combination. 
testing combination:  
    from_equal_to_greater(a1, b1) 
    to_interval_above(a1) 
    - consistent combination. 
 

testing combination:  
    from_equal_to_greater(a1, b1) 
    to_interval_above(a1) 
    to_interval_below(b1) 
    - consistent combination. 
testing combination:  
    from_equal_to_greater(a1, b1) 
    to_interval_below(b1) 
    - consistent combination. 
testing combination:  
    to_interval_above(a1) 
    - inconsistent combination. 
testing combination:  
    to_interval_above(a1) 
    to_interval_below(b1) 
    - inconsistent combination. 
testing combination:  
    to_interval_below(b1) 
    - inconsistent combination.  

 

The following procedure is used to determinate constraints on termination combinations for a 
binary quantity context: 

Given: 
• Two quantities with their current values 
• The indexed set of relevant value- and inequality terminations,  T 
• The set of relevant landmark relations, R 

An inequality termination is relevant if the inequality is between both quantities in the 
context. A landmark relation is relevant if it concerns either current values or values resulting 
from value terminations. 
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1)  Determine the crossproduct of T, resulting in a set C, of all possible combinations of 
terminations. Label all combinations with their index-combination.  

2) Take a compound termination I from C, supply the inequality reasoning procedure with: 
 - All results of I, 
 - R, 
 - If no inequality termination is part of I: the original inequality. 
 - If no value termination for a quantity is part of I: the current value of the quantity. 

3) Record the result of the inequality reasoning procedure: 
 If contradiction is derived, record the index combination of I with the label inconsistent. 
 If no contradiction is derived, record the index combination of I with the label consistent.  

4)  Return to 2) until C is empty.  

5)  Return the set of constraints. 
 
Note that in this procedure the original inequality is asserted in all combinations that do not 
contain an inequality termination. In case an inequality termination is present it will either be 
applied or the original inequality may be assumed to remain present. In fact, the set of active 
model fragments could change over a transition and this could lead to the change of this 
inequality also. To depend on such a transition is poor modeling though. In GARP an 
inequality should change through a termination. This provides an explicit mechanism and 
explanation for the change.  
 
Because the sets of terminations are limited in size for a two-quantity context the complexity 
of determining consistency for every possible combination is not problematic. For extra 
efficiency, the knowledge present in the combinations table at this point is used. The possible 
combinations are generated by taking a crossproduct whilst checking fatal combination 
constraints43. Note that complete sets of constraints cannot be used at this point. They are 
generated using a particular subset of terminations and their information is only valid for the 
same set or supersets. Consider for example the set of constraints in table 4.6 corresponding to 
the situation shown in figure 4.8 in the previous section.  
 

Valid Combinations: Invalid Combinations: 
T1 & T3, 
T2 & T3, 
T1 & T2 & T3 

T1, 
T2, 
T3, 
T1 & T2 

 
Table 4.6: Validity Of Different Termination Combinations 

 
Now, if another quantity context would consider for example the terminations T1, T5 and T6, 
then all combinations that include T1 would not be tested. As can be seen T1 is an invalid 
combination in this set of constraints and superseding valid combinations all require 
termination T3, which is not associated with the context in question. Things can go wrong in 
this case: In the final crossproduct, the combination {T1, T3, T5} may be generated and may 
later prove inconsistent because of a reason that could have been detected at this point. This 
scenario is not favorable and therefore only fatal combinations are used at this point. They 
have information value exactly for those combinations to which they apply. 
 
                                                 
43 See section 4.5.1 on storing constraints on termination constraints. 
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Another gain in efficiency is made by only considering those quantity contexts that are likely 
to produce results. Two requirements have to be satisfied before a context is subjected to the 
routine described above. Firstly at least one relevant landmark relation has to be present for 
the quantity context44. Secondly at least one relevant inequality termination has to be present. 
These requirements make sure that at least two relations link both quantities. With only one 
link between quantities, contradiction can never be derived.  
 
Constant inequalities: 

As mentioned in section 4.3.1 inequalities can be labeled as constants and inequalities 
involving more than two quantities are assumed to be constants in GARP 2.0. These 
inequalities are used in a similar way as landmark relations to determine invalid combinations 
of terminations using inequality reasoning. An example is the following situation involving 
three quantities, all with the quantity space {min, point(zero), plus}: 

Given: 

 1)  A = B – C (assumed constant) 
 2) B = C 

3)  A = zero, δA = plus 
4) B = plus, δB = zero 
5) C = plus, δC = min 

Terminations: 

T1 to_interval_above(A) 
T2 from_equal_to_greater(B, C) 
T3 to_point_below(C) 
 

Simple algebra tells us that T1 and T2 cannot occur separately and T3 cannot occur without 
T1 and T2 occurring. The set of constraints shown in table 4.7 is derived, the reader is invited 
to check these inferences: 
 

Consistent: Inconsistent: 
T1 & T2, 
T1 & T2 & T3 

T1, 
T2, 
T3, 
T2 & T3 
T1 & T3 

 
Table 4.7: Combination Constraints 

  
 
 
 
 
 
 
 
 
 

                                                 
44 The zero = zero relation which is implicit in GARP  also counts ahere. 
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The following trace of the reasoning process is given in this case: 
 
determining combination constraints 
for context:  
    [a1, b1, c1] 
    current values:  
    [zero, plus, plus] 
    terminations:  
   [[from_equal_to_greater(b1, c1)], 
    [to_interval_above(a1)],      
    [to_point_below(c1)]] 
    constant:  
    [equal(a1, min(b1, c1))] 

testing combination:  
    from_equal_to_greater(b1, c1) 
    - inconsistent combination. 
testing combination:  
    from_equal_to_greater(b1, c1) 
    to_interval_above(a1) 
    - consistent combination. 
testing combination:  

    from_equal_to_greater(b1, c1) 
    to_interval_above(a1) 
    to_point_below(c1) 
    - consistent combination. 
testing combination:  
    from_equal_to_greater(b1, c1) 
    to_point_below(c1) 
    - inconsistent combination. 
testing combination:  
    to_interval_above(a1) 
    - inconsistent combination. 
testing combination:  
    to_interval_above(a1) 
    to_point_below(c1) 
    - inconsistent combination. 
testing combination:  
    to_point_below(c1) 
    - inconsistent combination. 

 
Similar to the procedure considering landmark relations, this procedure generates a quantity 
context with relevant terminations and relevant landmark relations for every constant 
inequality. And to evaluate these quantity contexts the same algorithm is used. Requirements 
for a quantity context to be evaluated are that it has not been evaluated by the previous 
procedure and that at least one termination is present. The application of this procedure is 
optional because the assumption of ‘larger’ inequalities being constant may be invalid in some 
models. The default setting is that the procedure is active. 
 
4.5.3 Epsilon ordering: 

The epsilon-ordering rule (De Kleer & Brown, 1984) can be used to determine if some 
terminations take precedence over others. The principle behind this rule is that if a quantity Q 
is changing from a point P to an interval I this will happen immediately. This is because it is 
moving and therefore it can only be at a point for an instant. When quantity Q is changing 
from  interval I to point P, this change will not be immediate. It will always take some amount 
of time because we are dealing with continuous functions and therefore there is always some ε 
between Q and P ( Q > ε > P). The same argument can be given for changes from equality to 
inequality versus changes in the other direction45. All immediate terminations take precedence 
over non-immediate terminations.  
 
In GARP 1.7.2 epsilon ordering is done after applying other ordering concepts, but before 
determining all possible terminations combinations. The rule based procedure compares 2 
terminations at a time, removing non-immediate terminations one by one if an immediate 
termination is present. In GARP 2.0 epsilon ordering is done after determining all possible 
combinations because in this procedure all combination constraints46 are applied. If epsilon 
ordering is done before the application of these constraints a problematic situation can occur. 
It is possible that all immediate terminations that take precedence over others are later 

                                                 
45 For the equality A =  B define a quantity Q with the sign quantity space {min, point(zero), plus}. Define Q as 
Q = A – B,  and therefore  Q = zero when A = B. If a change occurs to to A > B or A< B then the value of Q 
changes to Q = plus and Q = min respectively. This a change from a point to an interval, thus it is an immediate 
change. A change in the opposite direction is not immediate for it is a change from an interval to a point.  
46 See section 4.5.1 on storing constraints on termination combinations. 
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removed because they are found to be inconsistent with the combination constraints. In this 
case an empty set of possible transitions is generated, while there are valid non-immediate 
terminations to form possible transitions. The following procedure is used to apply epsilon 
ordering: A possible transition (combination of terminations) is immediate if it contains only 
immediate terminations. If the set of possible transitions contains at least one immediate 
possible transition then all non-immediate possible transitions are removed.  
 
In GARP 2.0 some new inequality terminations47 are introduced. Their epsilon types are given 
in table 4.8. The only termination that is known to be immediate is when a ‘≥’ relation is 
changing to ‘>’. Either it already is ‘>’ or it must have been ‘=’ in which case it is a change 
from equality. Therefore the termination is immediate. The same argument is valid for the ‘≤’ 
relation changing to ’<’. Terminations in the other direction are non-immediate. The change 
to equality is non-immediate for the normal reasons and the change to inequality must also be 
non-immediate because otherwise it would always take precedence over the former type. 
 

Name: Epsilon Type: 
from_greater_or_equal_to_greater(P,Q) immediate 
from_greater_or_equal_to_equal(P,Q) non-immediate 
from_greater_or_equal_to_smaller(P,Q) non-immediate 
from_smaller_or_equal_to_smaller(P,Q) immediate 
from_smaller_or_equal_to_equal(P,Q) non-immediate 
from_smaller_or_equal_to_greater (P,Q) non-immediate 

 
Table 4.8: Epsilon Types For ‘≥’ Transitions 

4.6 Transitions: Applying Changes 

The third step in the Find Transitions inference (figure 2.6) is the Close procedure. This 
procedure has two tasks. Firstly it finishes the compound terminations assembled by the 
ordering procedure into transition-scenarios by applying continuity rules48. Secondly it 
determines successor states for these transition scenarios. The principles of the continuity 
regime are/have been described in section 4.3.3 and this regime is applied to all quantities not 
appearing in the transition results. For these quantities the continuity regime is applied upon 
generating the terminations that form the transitions.  
 
As mentioned in section 3.2, in some situations the application of transition scenarios is 
problematic in GARP 1.7.2. This is done by the Determine States inference (figure 2.5). In a 
transition scenario all quantity values are determined, but derivatives have some degree of 
freedom and this can lead to branching: multiple successor states are found. Another 
theoretical possibility for branching is that a new active process causes a new quantity to be 
introduced and this quantity can take on different values. Thus, one transition scenario can 
have multiple successor states. The Subsumption procedure, part of the Determine States 
inference, compares the transition scenario with existing states and determines if these are 
valid successors. If existing states are found, these are returned as successor states. The 
transition scenario is never fully specified in this case. Doing so would lead to the generation 
of states already existing in the simulation. The indicated problem occurs when only a subset 
of all possible successor states is previously generated in the simulation. These existing states 
are found as successors and the other possible successor states are not generated in this step 
                                                 
47 See section 4.4.2 on inequality terminations. 
48 See section 4.3.3 on continuity. 
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and therefore not found as successors. This means some valid behavior is not captured in the 
simulation. Making the transition scenario’s deterministic with respect to their successor 
states cannot solve this problem. Firstly generating scenario’s for all possible derivative 
combinations is undesirable because it enlarges the branching factor in state graphs. 
Normally, the specification of an input-scenario can lead to undetermined derivatives and 
these ‘summarize’ multiple underlying possibilities. Secondly this would not be sufficient 
because the introduction of new model fragments and quantities cannot be foreseen and this 
process can also cause branching. 
 
GARP 2.0 features a new Determine States inference to solve this problem. Every transition 
scenario is always fully specified and the resulting states are matched to the existing states 
before being saved. If a match is found, this existing state is a successor state. If no match is 
found the specified state is saved as the successor state. The inference is shown in figure 4.11. 
A drawback of this solution seems to be that it spends time on specifying already existing 
states. But, as is shown in section 5.4, in practice this proves not to be problematic. Matching 
two states is a lighter inference then comparing an input scenario to a state and in case a 
scenario leads to an inconsistent state, time is wasted by the subsumption procedure to look 
for existing states, whereas the Specify-Match procedure derives the inconsistency straight 
away.  An algorithm option switch is present in Garp 2.0 to choose between the procedure 
involving subsumption and the procedure involving complete specification and state 
matching.  

 
Figure 4.11: Altered Determine States Inference With State Matching 

 
The matching process has the following characteristics: 
 

• the set of system elements must be equal 
• the set of active model fragments must be equal 
• the set of quantities must be equal 
• all values must be equal 
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• all derivatives must be equal 
• the dependencies must match 
 

These requirements are tested in this order going from straightforward checks to a more 
complicated matching procedure for relations. An unspecified value, indicated by a ‘?’ can 
only match with another unspecified value. The same is true for derivatives. If this kind of 
matching would be allowed, problems can occur. For example, a newly generated state with a 
certain specified derivative could match on a state with an unspecified derivative for this 
quantity. In this case no behavior for this quantity can be inferred in this state, while in the 
newly generated version of this state inferring behavior was possible. Note that in the 
subsumption procedure these kinds of matches are allowed. As mentioned, the matching of 
dependencies is the most complicated process. Firstly, most dependencies come from model 
fragments and because the sets of model fragments are known to be equal at this point, all 
these relations must be equal as well. Other dependencies either come from the input scenario 
or they are derived landmark relations49. Landmark relations are a special case and will be 
discussed in the next paragraph. Relations in the input scenario will always re-appear in 
transition scenario’s to new states unless they are either explicitly changing through a 
termination or they are inequalities between derivatives. These can also change because of the 
continuity regime. This leaves us two categories of relations that can differ between states, 
given an equal set of active model fragments: binary inequalities and inequalities on 
derivatives. Relations from the first category are extracted from both state descriptions. The 
resulting sets are compared: Every relation must be present in the other set or derivable in the 
internal mathematical model50 of the other state. Derivative relations are the second category 
to be compared. They are also extracted from both state descriptions. Included in these sets 
are the continuity constraints, which are filtered from both internal mathematical models. The 
resulting sets are required to be mathematically consistent. The inequality reasoning 
procedure is used for this purpose.  
 
The landmark relations of both states have to make an exact match. The reason for this is that 
they specify the possible world being modeled as explained in section 4.3.2 on landmark 
relations. The only change in the description of the possible world may come from deriving 
new constraints in the course of a simulation branch. When the matching process only 
requires landmark relations from two states to be consistent the specification of the possible 
world can be weakened or strengthened in the course of a behavior path without justification. 
This problematic situation is illustrated in figure 4.12. The input scenario leads to state 1 that 
is indefinite about modeling possible world 1 or 2. The transitions to state 2 and 3 represent 
behavior occurring in possible world 1 and possible world 2 respectively and in these states a 
landmark relation is correctly derived specifying the modeled possible world. Now states 4 
and 5 are incorrectly allowed to make a transition to the lesser-specified state 1. As a result 
the state graph no longer represents valid behavior occurring in the real world. A possible 
behavior path is (1, 3, 5, 1, 2, 4, etc). which involves a jump to a different possible world. 
Consider for example the u-tube system. State 1 may model a u-tube with tubes of equal 
height or a u-tube where the left tube is lower (figure 4.5 left and middle). In states 2 and 3 
the relations maximum(left) = maximum(right) and maximum(left) < maximum(right), may be 
derived respectively. Now each state description is clear about which u-tube is modelled. 
These relations are kept in the transitions to the states 4 and 5. Normally the u-tube system 
does not show circular behavior, but we can imagine that the transitions from states 4 and 5 

                                                 
49 See section 4.3.2 on landmark relations. 
50 See section 2.4 on inequality reasoning 
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back to state 1 represent the event of removing an amount of water from one tube and adding 
it to the other. This transition brings us back to the starting state. This next state however, 
should also conservate the knowledge of the relation between both maximum heights. In this 
problematic example, the transitions to the existing state 1 do not conservate this knowledge. 
And now, when following a behavior path a u-tube with equal tubes can change into one with 
unequal tubes and vice versa. 

 
Figure 4.12: State Graph With Overlapping Possible Worlds 

 
The correct state graph for this hypothetical simulation is shown in figure 4.13. States 4 and 5 
do not match to the lesser-specified state 1. Instead new states 6 and 7 are generated and the 
possible behavior paths do not cross possible world boundaries. States 1, 6 and 7 will share 
the same values, derivatives and model fragments but will have different sets of landmark 
relations in their state description. 

 
Figure 4.13: State Graph With Separate Possible Worlds 
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4.7 Exogenous Quantities 
As explained in section 3.3 a way to deal with exogenous quantities is needed. A set of 
different types of behavior an exogenous quantity can exhibit is required as well as a 
mechanism implementing these behaviors. GARP 2.0 recognizes five behavior types ranging 
from simple to complex behavior: 

• Steady: The quantity remains in its initial value. 
• Increasing: The quantity moves up from its initial value to the maximum value of the 

quantity space. In case this value is a point and quantity space constraints51 are active 
it will stop there. 

• Decreasing: The quantity moves down from its initial value to the minimum value of 
the quantity space. In case this value is a point and quantity space constraints are 
active it will stop there. 

• Sinus: The quantity moves up or down it’s quantity space until it reaches the 
maximum or minimum value. There it stops and starts it’s way down or up 
respectively. This behavior continues in an infinite loop.  

• Free: The quantity may move up and down freely across its quantity space. It may stop 
and reverse direction in any value. It may also stop and continue in the same direction.  

These patterns cover a large range of behavior, and a quantity behaving in a more complex 
way probably deserves a model of its own. In general, simplicity is required in this area not to 
generate enormous intractable and incomprehensible state graphs (Travé-Massuyès et al., 
2003). Therefore the Free and Sinus types should be used with care and only in smaller 
simulations. Exogenous quantities can be defined in a dedicated model fragment. Keyword 
labels are used to indicate such a model fragment. This mechanism is described in section 4.8.  

The initial value of an exogenous quantity has to be specified using the regular modeling 
techniques. The implementation of the behavior patterns is done by controlling the derivatives 
of the exogenous quantities. The derivative of an exogenous quantity is initially set in the 
Determine States inference (figure 2.5 & 4.11). This is done just before influence resolution 
takes place. The rules for determining exogenous derivatives are shown in table 4.9. Note that 
the rules for the Sinus and Free patterns are not deterministic and will therefore produce 
branching: Multiple states are possible. 

Type: Value: Result derivative: 
Steady - zero 
Increasing < maximum value plus 
Increasing maximum interval plus 
Increasing maximum point zero 
Decreasing > minimum value min 
Decreasing minimum interval min 
Decreasing minimum point zero 
Sinus maximum value plus,  zero or min 
Sinus > minimum value & 

< maximum value 
min or plus 

Sinus minimum value plus,  zero or min 
Free - plus,  zero or min 

Table 4.9: Rules For Setting Exogenous Derivatives 
                                                 
51 See section 4.11 on quantity space constraints. 
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After the derivative is set the exogenous quantity joins in the regular transition regime. Thus 
its value can change by means of normal transitions. In the next state the derivatives of the 
steady, increasing and decreasing exogenous quantities are again set using the rules in table 
4.9. The sinus and free exogenous quantities however have a mechanism to control their 
movement. Unlike the derivatives of other quantities, which are given freedom to move by the 
continuity regime, these exogenous derivatives are kept stable by default. Special exogenous 
terminations are generated for these quantities to explicitly change their derivatives. These are 
shown in table 4.10. Since the behavior of exogenous quantities is independent these 
terminations have no conditions concerning the state of the system. There are only conditions 
that ensure the correct behavior pattern is followed.  
 

Name: Value conditions for 
Sinus type52: 

Derivative 
conditions: 

Derivative 
Results: 

exogenous_up_to_stable(Q) Q in maximum value δQ > zero δQ = zero 
exogenous_stable_to_down(Q) Q in maximum value δQ = zero δQ < zero 
exogenous_down_to_stable(Q) Q in minimum value δQ < zero δQ = zero 
exogenous_stable_to_up(Q) Q in minimum  value δQ = zero δQ > zero 

 
Table 4.10: Exogenous Terminations 

 
By using the derivatives for implementing exogenous behavior these quantities can be treated 
as normal quantities when changing value and they can be treated normally in the complete 
reasoning process. This an advantage over a dedicated mechanism controlling all exogenous 
behavior including value changes.  The ordering process described in section 4.5 distinguishes 
the special exogenous terminations and these are not considered the regular inferences 
determining combination constraints. A specific ordering procedure is present for these 
terminations. Firstly combination constraints are generated for mutually exclusive 
terminations: A free exogenous quantity cannot start to move up and down simultaneously.  
Secondly, as described in section 4.9,  GARP 2.0 features derivative correspondences. These 
are used in determining combination constraints on exogenous terminations of different 
exogenous quantities. This inference is equal to the one using value correspondences to order 
value terminations described in section 4.5.2. The epsilon type of the terminations that 
determine the derivatives of exogenous quantities is decided to be non-immediate. These 
terminations do not have a specific reason for happening and therefore they should not take 
precedence over others. 

4.8 Keyword Labels 
To implement the notions of constants and exogenous variables, described in sections 4.3.1 
and 4.7 respectively, a labeling system is needed. The assumption-functionality in GARP is 
used for this purpose. Upon encountering a model fragment with one of these keyword 
assumptions in its conditions, GARP 2.0 applies the associated procedure implementing the 
correct functionality. An isa tree of the all keyword assumptions is shown in figure 4.14. As 
can be seen, a third function is incorporated in GARP 2.0:  The keyword assumption 
generate_all_values can be used to make a quantity take on all values in its quantity space.  

                                                 
52 The sinus pattern only changes direction in its extreme values, the free pattern can change direction in any 
value. 
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Figure 4.14: Keyword Assumptions In GARP 2.0 

 
A modelfragment should only use one keyword assumption. Correct functionality when 
placing more then one keyword assumption in a model fragment is not guaranteed. If the 
constant keyword assumption is found in the conditions of the model fragment, then all value- 
and inequality information present in the consequences is considered constant. These values 
will not change, neither will the inequalities change, even if their derivatives indicate this. 
Correct use of the exogenous keywords is as follows: A model fragment should have the 
exogenous or a subtype of the exogenous keyword assumption present in the conditions. In the 
former case the input-scenario should supply a specific subtype. The consequences of the 
model fragment should introduce exactly one quantity. This quantity will  take on the 
specified exogenous behavior pattern. The situation is a bit different with the 
generate_all_values function. Again the keyword assumption should be present in the 
conditions, but the quantity in question (again; exactly one) should also be present in the 
conditions. The quantity should therefore be introduced earlier on by the input-scenario or 
another model fragment. The engine generates specific model fragments for every value in the 
quantity space and these model fragments make use of the mechanism present in GARP that 
can assume different value and inequality conditions, thus generating all values for the 
quantity. 

4.9 Correspondence Primitives 
Section 3.4 indicates that extra correspondence types are needed in GARP. As shown below, 
there are 2 basic correspondence primitives in GARP 1.7.2. To aid model building, 
correspondence types are present that define mappings for whole quantity spaces at once.  
 
Primitives: 

• Value correspondence 
• Directed value correspondence 

 
 
 

All types: 
• Value correspondence 
• Directed value correspondence 
• Quantity correspondence 
• Directed quantity correspondence
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The set of basic correspondence primitives is extended in GARP 2.0 by adding the notion of 
derivative correspondence. This derivative correspondence provides extra possibilities for 
abstract function description. The semantics of the derivative correspondences are analogous 
to those of the value correspondences: If two quantities have a pair of corresponding 
derivative-values53 and one quantity has this particular derivative-value, then the other 
quantity must also have the corresponding derivative-value. And vice versa in the undirected 
case. This results in the  four basic primitives shown below. 
 

• Value correspondence 
• Directed value correspondence 
• Derivative correspondence 
• Directed derivative correspondence 

 
To aid model building some extra types are defined besides the quantity space mapping 
already present in GARP 1.7.2. A mirrored quantity space mapping and a full correspondence 
where both values and derivatives correspond for their full quantity spaces. Mirrored quantity 
spaces need an equal amount of points and intervals and a point-point and interval-interval 
mapping should be obtained. Figure 4.15 shows valid and invalid mappings. 

 
Figure 4.15: Value Mappings 

 
The following set of correspondence types is operational in GARP 2.0: 

Values: 
• Value correspondence 
• Directed value correspondence 
• Quantity correspondence 
• Directed quantity correspondence 
• Mirrored quantity correspondence 
• Directed mirrored quantity correspondence 

                                                 
53 Note that the derivative of a quantity can have a value on the derivative quantity space {min, point(zero), 
plus}. 
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Derivatives: 

• Derivative correspondence 
• Directed derivative correspondence 
• Derivative-quantity correspondence 
• Directed derivative-quantity correspondence 
• Mirrored derivative-quantity correspondence 
• Directed mirrored derivative-quantity correspondence 

Values and Derivatives: 
• Full correspondence 
• Directed full correspondence 

4.10 Improving Inequality Reasoning 
 
4.10.1 Performance: 

The inequality reasoning procedure in GARP 1.7.2 incorporates a technique for reducing 
complexity named Analyse Simple Equality. Recall that pointers are used in the relations in 
the internal mathematical model54. When encountering a simple binary equality A = B the 
pointer for B is replaced everywhere in the set of relations by the pointer associated with A. 
Now a number of relations will become redundant. For example, if A > C and B > C were 
known then after the substitution one relation suffices. Relations of the form X =X are also 
discarded. This way the amount of relations in the set is reduced and this results in a lesser 
computational complexity in computing the closure of the mathematical model. 
 
This idea a stretched a little further in GARP 2.0 by adding a technique named Analyse Zero 
Equality. Recall that constraints are placed on the inferences made by the inequality reasoning 
procedure and that one of those constraints is that no transitivity rules are applied with zero as 
the intermediate quantity. However, many simple equalities of the form A = B, can be derived 
using zero. Consider the following example: 

X = zero,  Y = zero,   X = Y 

And these simple equalities can be used in an Analyse Simple Equality  procedure, reducing 
the number of relations even more. This main idea is used in the analyse zero equality 
technique which is given below: 

Given: 
• A set S of relations using a pointer representation, with pointers from [ 1, ∞ ). 
• A mapping M from quantity values, derivatives and landmarks to pointers. 

 
1) Construct the set Z of pointers P that are used in relations in S and are equal to zero.  

2) For every relation R in S: 
a)  Replace the pointers in R that are present in Z by the special purpose pointer 0.  
b)  If  R involves an addition, remove any redundant 0 pointers in these additions: 
  X = Y + 0   X = Y.  
c)  If R has the form X = X then remove R from S. 
 d) If R has the form X > X then stop and return contradiction. 

                                                 
54 See section 2.4 on inequality reasoning. 



3)  Add the relation zero = 0 to S. 

4)  Remove any double elements in S 

5)  Replace all pointers in M  that are present in Z  by 0.  

6)  Return M and S. 

 
Figure 4.16 illustrates how a set of relations is reduced in size by the Analyse Zero Equality 
technique. The intermediate result after step 2a in the algorithm is shown. Next, the algorithm 
will remove double relations*. The relation marked ** involves an addition and will be 
processed. The relation marked *** will be removed after processing because it is a tautology. 
Note that if this relation would have had the '>' operator instead of the '=' operator then 
contradiction would have been derived in step 2d. 

 
Figure 4.16: Analyse Zero Equality 

 
The Analyse Zero Equality technique is applied on the internal mathematical model after 
computing the full closure of the model. For efficiency reasons it is only applied in those 
cases where at least one relation of the type X = zero is added or newly derived.  
 
One problem arises because of the Analyse Simple Equality- and the Analyse Zero Equality 
technique. By substituting the pointers used to represent quantities55 in relations, the unique 
quantity / pointer relation is lost. Therefore translation from internal-  to normal 
representation is no longer unambiguous. This translation is needed when providing a trace of 
the reasoning process. This problem is solved in GARP 2.0 by using variables in the 
displayed relations and offering a list of possible substitutions open to interpretation by the 
user. Translation from normal- to internal representation is still deterministic and questions of 
derivability needed in the reasoning process are not affected. 
                                                 
55 As in section 2.4 on inequality reasoning the word quantity refers to values, derivatives and landmarks in 
general in this context. When performing internal inequality computations the distinction is irrelevant. 

 49



 50

 
4.10.2 Inference capacity: 

The inequality reasoning procedure in GARP 1.7.2 has two lacks in inference capacity.  
Firstly the relations: A ≤ B and A ≥ B can be combined to yield A = B. This inference is  
missing because it is not a transitive inference. Simmons (1986) uses graph search to find the 
most constrained relation between two quantities. Relations used in the quantity lattice of 
Simmons are {≥, ≤, ≠} and {>, =, <}, the former set being less constrained. These less 
constrained relations can be combined in pairs to find the more constrained relation implied. 
In GARP the less constrained relations are only {≥, ≤}, which means there is only one 
combination of less constrained relations possible. GARP 2.0 has a rule to make this 
inference. Secondly, algebraic simplification of relations is performed on newly derived 
relations but not on  relations added to the internal mathematical model in GARP 1.7.2. The 
principle of algebraic simplification is given below: 
  

 A + C rel B + C   A rel B  rel Є {≥, ≤, >, =, <} 
 
This can be problematic because sometimes this causes derivable relations not to be found. 
For example the following relations56: 

 P + Q + R = X + Y,   
Q = X, 
R = Y, 

GARP applies the analyse simple equality technique57 to this set of equations, yielding: 

 P + Q + R = Q + R, 

Using algebraic simplification, the following result is obtained: 

 P = zero, 

Without algebraic simplification this result is not found. Therefore GARP 2.0 does apply 
algebraic simplification on relations when they are added to the internal mathematical model.  

4.11 Quantity Space Constraints 
If the quantity space of a quantity has a landmark as its extreme value the quantity should not 
be allowed to keep on moving upon reaching this landmark. Take for example the leaking 
bucket system mentioned in sections 2.2, 3.1 and 4.2. The top extreme value of the quantity 
water level is the landmark max in this model. Now if it reaches this maximum value the 
water level cannot increase anymore so its derivative must be zero or min. Given the 
discussion of epsilon ordering in section 4.5.3 this is all the more true: If a quantity is in a 
point and moving it should immediately change its value to the next interval, yet there is no 
next interval in this case so this transition can never occur. Consequently this situation is 
illegal. 
 
In GARP 1.7.2 this functionality was already implemented, but due to a bug the generated 
constraints did not work but for the value zero. In GARP 2.0 this bug is fixed and quantity 
space constraints are active in quantity spaces with landmarks at extreme values. An example 

                                                 
56 This example is drawn from the ‘balance equation’ used in  influence resolution calculus described in section 
4.2. It corresponds to the case where a quantity has four influences, two negative, two positive, which are in 
balance. 
57 See previous section. 
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of how this influences model construction is the construction of a model of an overflowing U-
tube. A model is presented in section 5.2 and this issue is discussed further in that section. For 
compatibility and modeling flexibility an algorithm option switch58 is present to disable the 
quantity space constraints. 
 
The next section of this thesis presents an evaluation of GARP 2.0 and the solutions described 
in the previous sections.  

                                                 
58 See section 4.1 on flexibility. 



5. Evaluation 

To evaluate GARP 2.0 two ecological models and some different models of the U-tube 
system were used. Simulations were judged on completeness and soundness of the simulated 
behavior given the model used. Main goal has been to test GARP 2.0 and illustrate its 
functionality therefore these models do not intend to be perfect representations of the 
described phenomena. Performance tests were conducted measuring the total time spent on 
computation and the number of dead-end transitions generated.  

5.1 Ecology: Single Population Dynamics: 
 
The behavior of a single population plays an important role in the Cerrado Succession 
Hypothesis model (Salles & Bredeweg, 1997; Salles & Bredeweg, 2003). A very simple 
model of a single population is presented first to introduce the subject and outline some of the 
problems in this domain. Figure 5.1 shows the quantities and basic dependencies in the model. 
The number of individuals in the population represents the population size and has the 
quantity space {point(zero), low, point(normal), high, point(max)}. The number of individuals 
is influenced by four quantities: the born, dead, emigrated and immigrated individuals. These 
quantities have the simple quantity space {point(zero), plus}. Immigrated is modeled as an 
increasing exogenous quantity and has the value plus. In this model the following relation 
between Number_of and the other quantities is assumed: When it is higher than zero, Born, 
Dead and Emigrated all have the value plus. When Number_of is zero, all are zero as well. 
Changes in Number_of propagate to these three quantities.  
 

 
Figure 5.1: Single Population Dependencies 
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A state diagram59 and value diagram of this simulation are shown in figures 5.2 and 5.3 
respectively. 
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Increasing 
 
 
 

Steady 
 
 
 

Decreasing 
 
 
 Zero Low Medium High Max 

 
Figure 5.2: State Diagram Single Population 

 
First observation is that all possible states are found: With Immigration fixed at value plus, 
the ‘increasing’ state 1 is the only possibility when Number_of and all other quantities are 
zero. In the value max a state with increasing Number_of is impossible because this is the 
uppermost point in its quantity space60. All other value and derivative combinations are 
present for Number_of. Because other quantity values and derivatives are deterministically 
defined in this model by those of Number_of all possibilities are covered. 

 
Figure 5.3: Value Diagram Single Population 

 
59 In all following state diagrams on single population dynamics states are ordered in two dimensions: 
Horizontally from left to right the value of Number_of starting with zero and ending with max. Vertically from 
below to above the derivative of Number_of starting with min/decreasing and ending with plus/increasing. 
Given the assumptions described above Number_of determines all other values. For example, in state 3 
Number_of is low and steady. This means Born, Dead and Emigrated are plus and steady. Exception is 
Immigrated which is exogenous and defined to be plus and increasing always. This ordering of states allows an 
easy interpretation of the diagram without much need to refer to the value diagram. 
60 See section 4.11 on quantity space constraints. 



 
The second observation is that the transitions follow a very regular pattern. They are based on 
very simple behaviors: Number_of changes its value because it is increasing or decreasing. It 
can either continue to move or stop in the next state. All transitions are shown in figure 5.4. 
Note that the transitions from state 1 also include a value change for the other quantities and 
that the transition from state 2 from low to zero does not succeed. The only valid state with 
Number_of at zero is state 1 and continuity does not allow this jump from ‘decreasing to 
‘increasing’. 
 

 
Figure 5.4: Transitions Single Population 

 
Note that no ‘vertical’ transitions (only a change in derivatives) are found. This is correct, in 
GARP a change of a derivative always coincides with some other behavior. Inferring 
derivative behavior separately is impossible for second order derivative information is not 
present. Also no transitions exist from the ‘equilibrium’ states 3, 6, 9 and 12. Again this is 
technically correct, all quantities are steady except for Immigration, which is plus but has no 
higher value to go to. However, these states are intuitively and semantically inconsistent. How 
can the situation be steady if one influencing flow is growing and none is decreasing to 
compensate?  The next extended model suggests a solution to this problem61. This model 
makes use of the more elaborate reasoning capabilities of GARP 2.0.  
 
In this extended model, summations of the positive and negative influences, Inflow and 
Outflow respectively, are defined. An inequality between Inflow and Outflow describes the 
relation between all influencing quantities. The problematic situation described above is now 
interpreted as follows: It describes the momentary situation where Inflow becomes equal to 
Outflow while increasing. Because it keeps increasing, this situation should immediately 
transform to the situation where Inflow is larger than Outflow. This behavior is captured in 
                                                 
61 Note that this situation where immigration is fixed at plus and increasing is quite artificial. However, the same 
problematic pattern of an impossible equilibrium state occurs when combining more populations that influence 
each others born and death rate. (E.g. a predator-prey situation)  
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this model because the equality between Inflow and Outflow changes to inequality. And this 
change to inequality is immediate and takes precedence over other changes62. Figure 5.5 
shows the dependencies, the values and derivatives in state 6 of the resulting simulation. Note 
how the value and derivative of Inflow and Outflow are defined. 
 

 
Figure 5.5: Extended Single Population Dependencies For State 6 

 
A full state diagram of this extended model is shown in figure 5.6. As can be seen the states 
are the same as in the previous model (figure 5.2), yet the pattern of transitions is completely 
different. Intuitively, some transitions are missing in this simulation. However, transitions 
will be discussed below and shown to be correct. A value diagram for the most important 
quantities63 is shown in figure 5.7. The derivative of Inflow is undetermined in states 9 to 12. 
This is correct since it is the summation of immigration (derivative plus) and born (derivative 
min). 
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   Zero Low Medium High Max 
 

Figure 5.6:  State Diagram Extended Single Population 

                                                 
62 See section 4.5.3 on epsilon ordering. 
63 All other quantity values and derivatives can be inferred quite easily by the reader given the previous model. 



 
Figure 5.7: Value Diagram Extended Single Population 

 
As this extended model was made to deal with the problem of the ‘illegal’ equilibrium states  
(states 3, 6, 9 and 12 in figure 5.2), lets first examine transitions for these states in this 
extendended model (states 5, 6, 7 and 8 in figure 5.6). All these states generate the immediate 
transition where Inflow becomes greater than Outflow. As an example the transition for state 7 
is shown in figure 5.8. In state 8 this transition does not succeed because the target state, 
Number_of is max and increasing, is invalid. Note that the derivatives of Inflow and Outflow 
indicate all these transitions and that the derivative of Number_of is zero in these states, which 
means it cannot change value so no other transitions are possible.  
 

 
 

Figure 5.8: Some Transitions Extended Single Population 
 

Now for the transitions of the other states: vertical transitions correspond to a change in the 
inequality between Inflow and Outflow and horizontal transitions correspond to a change in 
the value of Number_of. Note that the inequality changes are not commanded by the 
derivatives of Inflow and Outflow, but they are generated using the behavior assumption 
mechanism described in section 4.4.3. The transitions for state 11 illustrate the possibilities all 
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these other states have: move vertically, horizontally or both. States 1, 3, 10 and 12 show no 
vertical transitions because the value transitions (to interval above/below) take precedence 
over the inequality transitions (from smaller/greater to equal)64. For states 1, 2, 3 and 4 the 
vertical transitions are illegal: To generate the change of the inequality between Inflow and 
Outflow it has to be assumed that δOutflow > δInflow, while in the target states it is known 
that δOutflow < δInflow. A transition here would represent discontinuous behavior. State 9 
cannot make a transition to a state where Number_of is zero, because only state 1 is valid in 
this category and a transition to this state requires a discontinuous jump for both the Inflow-
Outflow inequality and many derivatives.  Lastly state 4 cannot make the transition to the 
max-increasing state because this state is illegal and therefore not present.  
 
Why did the first model generate transitions illegal in the extended model? Most important is 
that the influences were ambiguous in this model, the underlying relation between positive 
and negative influences being unknown65 and therefore free to change discontinuously. This 
leaves us to conclude that the state diagram is theoretically correct. As noted in the discussion 
of the previous model, the modeled situation is quite artificial but it does succeed in 
illustrating important principles and should be judged accordingly. It shows that the 
problematic states of figure 5.2 represent valid behavior. They provide a path from decreasing 
to increasing states in the extended simulation (figure 5.6) and vice versa in less artificial 
simulations. In older models a constraint was placed on derivatives66, completely ruling out 
these states.  The approach taken in this extended model is only possible in GARP 2.0, 
because the inequality between Inflow and Outflow provides enough information to focus the 
influence resolution. To complete this new solution momentary states should be clearly 
discernable from states having temporal extent. A graphical rendition of this distinction could 
for example make use of circles and squares as done by (De Kleer & Brown, 1984).   
 
To show how the determination of valid behavior combinations was improved in GARP 2.0 
the transition process for state 11 is examined. Firstly the single changes or terminations are 
determined. They are shown in figure 5.9.  The first five terminations do not represent valid 
behavior as long as Number_of is greater then zero. In the Cerrado Succession Hypothesis 
model, using GARP1.7.2, domain specific ordering rules were needed to remove such 
terminations and avoid combinatorial explosion. 
 

 
Figure 5.9: Changes For State 11 

                                                 
64 See section 4.5.3 on epsilon ordering. 
65 As noted in section 4.2.1 an inequality discribing this relation could be generated automatically once a 
mechanism is present for determining behavior of non-binairy inequalities. 
66 dNumber_of = (dBorn + dImmigrated) – (dDead + dEmigrated)  
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GARP 2.0 uses domain independent concepts to achieve this goal. Firstly: Emigrated, Born 
and Dead correspond to Number_of in the value zero. Number_of is not in zero in this state, 
nor can it reach zero with any of the terminations present. Therefore changes 11t3, 11t4 and 
11t5 are removed. A partial trace of the reasoning process involved is given:  
 

to_point_below(emigrated1) may not occur because of activating 
correspondence, corresponding value not present and no 
corresponding termination.  
removing:  
    to_point_below(emigrated1) 

 
Secondly, Inflow and Outflow are summations of Born and Immigrated, Dead and Emigrated 
respectively. Since these all remain plus, Inflow and Outflow should also remain plus. Again a 
partial trace of the reasoning process is given: 
 

determining combination constraints for context:  
    [inflow1, born1, immigrated1] 
    current values:  
    [plus, plus, plus] 
    terminations:  
    [[to_point_below(inflow1)]] 
    constant:  
    [equal(inflow1, plus(born1, immigrated1))] 
testing combination:  
    to_point_below(inflow1) 
    - inconsistent combination. 

 
The complete process results in only the three transitions for state 11. These are shown in 
figure 5.8. 
 
Lastly figure 5.10 shows the simulation of the extended single population model with 
Immigration at the values zero and plus and again modeled as exogenous and increasing. The 
upper half of the diagram contains all states where Immigration is plus, the lower half 
contains all states where Immigration is zero. States in each half are again ordered on the 
value and derivative of Number_of. Since Immigration is increasing it can change from zero 
to plus at any point. Therefore transitions from the lower half to the upper half are 
omnipresent and often take precedence over other possible transitions. The upper half of the 
diagram contains the same structure as figure 5.6. Although a simple model is used as well as 
a simple exogenous behavior pattern, the resulting simulation is quite complex. This shows 
that the use of exogenous behavior patterns easily results in state graphs, which are correct, 
but very large and hard to interpret.  
 



 
 

 
Figure 5.10: Extended Single Population With Increasing Immigration. 

5.2 Physics: U-Tube modeled in Process Style: 
The U-tube, or two-tank system is often modeled in Qualitative Reasoning (Weld & De Kleer, 
1990). A process-centered approach (Forbus, 1984) is followed in the model presented here. 
Processes play the central role in a simulation of behavior by causing changes in the system. 
In the original Qualitative Process Theory quantities associated with processes are introduced 
when the process becomes active and are removed when the process stops.  In GARP 1.7.2 
quantities always remain in the simulation once introduced. In GARP 2.0, as an experiment, 
an option is built in that removes quantities associated with non-existing processes67. An 
overview of the u-tube simulation is as follows: Two containers are filled with a liquid and 

                                                 
67 Implementation of this mechanism is straightforward. Any quantities that are not present in an active model 
fragment at the end of the state specification are removed. Application of this mechanism is optional, by default 
it is switched off (See section 4.1 on flexibility).  
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connected at the bottom by a pipe. Unequal liquid levels in the containers will result in 
unequal pressures at the bottoms of the containers. These unequal pressures trigger a liquid 
flow (a process) that influences the amounts of liquid in both containers. When the levels and 
pressures become equal the flow-process stops and equilibrium is reached. If the heights of 
the containers are unequal it is possible that the water level reaches the maximum of the lower 
container and it overflows. 
 
The first question is how to model the overflow process. What situation triggers this process? 
Overflow should be modeled for a tank independently of the rest of the system it is connected 
to. This means the existence of the flow in the pipe cannot be a trigger for an overflow 
situation. A suitable quantity space for the level, amount and pressure in each container is 
{point(zero), plus, point(max)}. In GARP 1.7.2  the quantity space imposed no constraints on 
derivatives68., therefore overflow could be modeled in such a way that it occurred when the 
level in a container was max and rising.  In GARP 2.0 this situation is illegal and therefore 
this is approach impossible. Intuitively, overflow occurs when the water level is above the rim 
of the container. The model presented here follows this intuition. The quantity space used is: 
{point(zero), plus, point(rim), bubble}. The uppermost value in this quantity space represents 
the amount of water, which is just above the rim of the container. A situation that is possible 
because of the viscosity of liquids. The assumption is that overflow occurs whenever the 
water level is above the rim. Figure 5.11 illustrates the dependencies69 in the situation where 
the right container is overflowing. 
 

 
Figure 5.11: Dependencies Overflowing U-Tube. 

 
An inequality between the two flows can be present describing if the overflow is just starting 
(<), flowing steady (=), or ending (>). In the latter case the water level will go down to the rim 
when equilibrium is reached. These inequalities can change and provide the behavior from a 
starting overflow to an ending overflow. As a simplifying assumption, the case where the 
flow in the pipe is larger then the flow out of the container (overflow) is not included in this 

                                                 
68 See section 4.11 on quantity space constraints. 
69 Quantity correspondences are also present between amount and level and between level and pressure in both 
containers, but these are not shown here. 
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model. Note that without the influence resolution procedure70 present in GARP 2.0 this 
modeling approach could not have been taken. The simulation for two half-filled tanks, with 
unequal levels is shown in figure 5.12. Three behaviors are possible. Firstly, the equilibrium 
can be reached with both levels under the rim (path 1-4). Both levels move towards eachother 
and become equal. Secondly, the equilibrium can be reached with one level exactly at the rim 
(path 1-3). The levels become equal at the same time the right level reaches the rim of the 
container. Note that this means the right container is lower than the right container. Thirdly, 
the equilibrium can be reached after one container overflows (path 1-2-5-6-3). In this case the 
right level reaches the rim of the container before the levels become equal. Again the right 
container is lower than the right container. The levels keep moving and the right liquid forms 
a bubble above the rim of the container and overflows. First the overflow and the flow in the 
pipe are equal resulting in a steady overflow. Later, the overflow is greater than the the flow 
in the pipe for a moment when the right level drops back to the rim and equilibrium is 
reached. The active model fragments in each state are shown in table 5.1. 
 

 

 
Figure 5.12: State Diagram & Value Diagram U-Tube 

 
As can be seen, the quantities flow 1 and flow 2 representing the flow in the pipe and the 
overflow respectively are introduced when the processes are active and removed when the 
processes are inactive. Their quantity space is simply {plus} for this reason71. One advantage 
of this approach is that in the equilibrium situation the flow does not have to be modeled. In a 
model where quantities are not removed this has to be done because otherwise they can cause 
unwanted branching since they are unconstrained. For example, the liquid flow model 
fragment could define a flow with quantity space {point(zero), plus} and the constraint flow = 
pressure-L – pressure-R. If the pressures would become equal, the flow should become zero. 
But if the pressures would be equal there would be no more liquid flow process and therefore 
                                                 
70 See section 4.2 on influence resolution 
71 This quantity space has no landmarks so the sign of this flow is undetermined. The inequality Flow > Zero is 
present in this model to solve this problem. 
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this inequality wouldn’t be in the model anymore. Now two situations, one where flow is zero 
and one where flow is still plus, would be valid! Since in our model the flow quantity is 
removed in the equilibrium states there is no need to model inactive processes. The closed 
world assumption72 is applied in the equilibrium states to determine that the amounts are 
steady in case no process is influencing them.  
 

Model Fragment: Active in states: 
Contained Liquid all (2x) 
Liquid Flow 1, 2, 5, 6 
OverFlow 5, 6 
Two Flows 5, 6 
Two Flows: Equal 5 
Two Flows: Overflow Greater 6 

 
Table 5.1: Model Fragments U-Tube 

 
The transitions in this simulation are all correct, but as will be shown unnecessary dead end 
transitions are generated. Transitions for states 2 and 5 are shown in figure 5.13,  no other 
transitions are generated for these states. 
 

 
Figure 5.13: U-Tube Transitions For States 2 & 5  

 
For states 1 and 6 more transitions are generated. The transitions for state 1 will be discussed 
here and are shown in figure 5.14.  Transition 1t1 leads to state 2. Transitions 1t2 and 1t3 both 
lead to state 3. Clearly transition 1t3 is the correct one of these two. Transition 1t2 succeeds 
because the inequality between the pressures was only assumed in state 1 and this assumption 
was dropped over the transition. Note that this is a mechanism by which means an inequality 
can change without an explicit termination. The equivalent transition for the other inequality, 
1t4, does not succeed because this termination was given in the input scenario and therefore it 
can only change through a termination. The fact that transition 1t2 wrongly succeeds is not 
problematic because it leads to the same state as transition 1t3. Therefore it does not lead to a 
different or incorrect simulation. The same pattern holds for transitions 1t5, 1t6 and 1t7, of 
which the first two lead to state 4.  
 

                                                 
72 See section 4.2.2 on the closed world assumption. 
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Figure 5.14: U-Tube Transitions For State 1 

 
Apart from the fact that transitions 1t2 and 1t5 should not succeed, one can wonder why the 
ordering procedure73 does not filter these impossible changes. This is because it requires 
considering a quantity context of four quantities that are connected by two changing 
inequalities and constant inequalities. The dependencies of this quantity context are shown in 
figure 5.15. There is no dependency incorporating all four quantities and therefore this context 
can only be generated by combining contexts. Such a mechanism is not present in GARP 2.0.  
 

 
Figure 5.15:  Combined Quantity Context 

 
An interesting point can be made about the changing relation between the overflow and the 
flow in the pipe. As shown, this inequality changes from equal to greater from state 5 to 6. 
And in the next state (3) equilibrium is reached. Equilibrium suggests however that both flows 
are zero and therefore equal. The transition to state 3 should therefore include the change of 
                                                 
73 See section 4.5.2 on application of ordering principles. 
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this inequality from greater to equal. But continuity74 does not allow this transition: The first 
transition from greater to equal assumes δflow1 > δflow2 and therefore in the next state 
δflow1 < δflow2 cannot be assumed. This is sort of a limit problem and second order 
derivative information would be needed to solve it. An intermediate state and transition could 
model the change in the relation between the derivatives. By removing the flow quantities this 
problem is bypassed in this model. Problems such as these are common in Qualitative 
Reasoning and continuity is a debated subject (Forbus, 1988). 

5.3 Physics: U-Tube modeled in Component Style: 
This second model of the U-tube system is made using the component-centered approach (De 
Kleer & Brown, 1984). The components of the U-tube are modeled in all their possible states: 
A container is empty, half-full or full, emptying, steady or filling. A pipe has no flow, a left-
to-right flow or a right-to-left flow. Equalities between values, derivatives and landmarks of 
the bottom pressures in the containers and the left- and right side pressures in the pipe 
respectively represent the connections between the components. Constraints are given for the 
system as a whole. These specify the total amount of liquid in the system, which should 
remain constant for valid behavior. The model fragment describing a container is shown as an 
example in figure 5.16. The Container instance and Constant assumption are conditional in 
this model fragment. All other elements are consequences75. 
 

 
 

Figure 5.16: Homer Screenshot Of Container Model Fragment 
 
This model allows the simulator to follow the computational order used in the component-
centered approach. Firstly all valid states are computed directly from the input-scenario and 
secondly all transitions are sought. The resulting simulation is shown in figure 5.17. The 
input-scenario used here specifies that the containers are of equal height. 

                                                 
74 See section 4.3.3 on continuity ov er transitions. 
75 Correspondences are not native to the componenent-centered approach but are added for convenience. 

 64



 

 
Figure 5.17: Component-Centered U-Tube Simulation 

 
As can be seen all possible states of the specified system are found. In state 1 both containers 
are full and levels are therefore equal. In state 3 both containers are empty and of course again 
there is no flow.  The other states model a partially filled u-tube either with the left side 
higher, the right side higher or equal levels. Because a symmetrical u-tube is modeled no 
steady state is possible with only one side at the maximum or zero point, neither is an 
overflow situation possible. There is one problem in the state descriptions generated however: 
Figure 5.18 shows the values of the total amount of liquid present in the u-tube. This quantity 
is defined as the sum of the amounts in the left and right container. The max point is defined 
as the sum of  the max points of the containers. Note that no value is derived in states 1, 6 and 
9. However these should be max, plus and plus, respectively.  
 

 
Figure 5.18:  Total Amount Of Liquid In U-Tube 

 
The trace of the internal mathematical model of state 1 shows, amongst others, the following 
relations and mappings: 
 

-- substitutions:  Derivable relations: 
  value(amount2)/X1   X21 >= X22 
  value(max(amount2))/X1   X22 = X1 + X15 
  value(amount1)/X15   X1 + X15 = X21 
  value(max(amount1))/X15  
  value(max(amount_total1))/X21  
  value(amount_total1)/X22 
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Obviously the stronger relation X21 = X22 can be derived that would say the total amount is 
in its maximum. This relation is not found because of the strict regime placed on the 
inequality reasoning procedure. As mentioned in section 2.4 constraints are placed on the 
combination of derived and parent relations to avoid combinatorial explosion. In general these 
constraints allow all relevant relations to be derived. This example shows that in some cases 
these constraints are too strict. Simply lessening constraints is not a very suitable solution 
because this results in a very serious increase in time spent on inequality reasoning. 
  
Transitions found in this simulation are almost all correct, none are missing. States 1 and 3 are 
separate from the rest because they model a system with a different total amount of liquid. 
Some examples of the transitions occurring are  shown in figure 5.19: 
 

 

 

 
 

Figure 5.19: Transitions In Component Centered U-Tube 
 
These patterns of transition are equal in the other half of the simulation. Note that the 
transition from state 10 to state 9 is the compound transition of those to states 8 and 11. These 
last two transitions are impossible in reality, they imply an in- and decrease of the total 
amount respectively. At the moment the full container leaves its maximum, the other must not  
be empty anymore. Therefore the transition to state 9 is the only valid one. The reason GARP 
2.0 allows these is that the total amount of liquid is in the interval plus in all four states and 
therefore it does not seem to move illegally. Two possible solutions come to mind. Firstly it is 
derivable in state 10 that the total amount of liquid is equal to the maximum point of the left 
container. In state 8 and 11 it is greater and smaller than this point respectively. These 
relations are not used now in the transition procedure. Another possible observation lies in the 
observation that all three transitions of the small epsilon class76 and one is the compound 
version of the other two. Mathematically speaking these two transitions take place 
immediately, state 10 has no temporal extent. Therefore: How can one happen before the 
other? They should all happen together, the compound transition is the only possibility. Both 
these possible solutions will have to be researched in future work. 
 
                                                 
76 See section 4.5.3 on epsilon ordering. 
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Some issues that came up during model construction are noteworthy. The constraints 
representing the connections between components include some inequalities on derivatives. In 
an earlier version of this model these connections were specified in the input scenario. But 
these inequalities fall under the continuity regime77 in GARP 2.0. To keep these inequalities 
active in the simulation they were placed in a model fragment in this version of the model. 
Also specified in a model fragment was the derivative of the total amount of liquid. This is 
defined zero in the input-scenario, but is subject to the continuity regime as well. If not 
defined zero in a model fragment, new states would have an unknown derivative of the total 
amount of liquid. These states would not match the original states with a zero derivative for 
this quantity78. Constant labels79 were used for the Container, Pipe, Constraints and 
Connection model fragments and proved very useful in determining valid transitions 
combinations as will be shown in section 5.4. In the earlier version of this model 
correspondences were added for this purpose (fig 5.16) , yet they are not native to the 
component-centered approach. Last but not least a repair was needed in the reasoning engine. 
This model uses the mechanism present in GARP to assume conditional inequalities in model 
fragments. In states 6 and 9 (and others) it has assumed the derivatives of the amount of liquid 
present in the Filling and Emptying model fragments. In the transition procedure active model 
fragments are reassessed on the validity of their conditions. Any assumptions made in the 
original state are made again if they are not contradictory with known transition results. In 
this case the Filling and Emptying model fragments are applied again in the transitions to state 
2. This is clearly wrong, but not contradictory because these model fragments concern 
derivatives and the transition results specify no specific constraints on derivatives. Only 
continuity rules are applied. The repair consist of not allowing any assumptions on derivatives 
at this point, for these can never be contradicted by transition results. 

5.4 Performance Measurements: 
While the previous sections have emphasized semantic validity of the simulations this section 
addresses computational efficiency and performance of the transition algorithms and the 
analyse zero equality technique80. All models described in the previous section were measured 
for the time it took to compute a full simulation81.  A second indicator for the efficiency of the 
new transition algorithms is the amount of dead-end transitions generated. The time spent on 
the ordering procedure was also measured. Three test conditions were used to evaluate the 
transition algorithms: Firstly the normal configuration of GARP 2.0 was used (condition A). 
Secondly the Subsumption82 procedure was used in the transition procedure (condition B). 
Thirdly the complete transition procedure of GARP 1.7.2 was used in combination with 
further GARP 2.0 functionality (condition C). Models were not tested with the full GARP 
1.7.2 simulator because these models all depend on new inference capacities present in GARP 
2.0. Four versions of the component oriented u-tube model have been tested to illustrate how 
GARP 2.0 utilizes certain modeling constructs. The container-, constraints- and connections 
model fragments in this model can be labeled constant or not. Correspondences can be used 

                                                 
77 See section 4.3.3 on continuity 
78 Note that in GARP 1.7.2 this matching would succeed for the Subsumption procedure is less strict then the 
Specify-Match procedure. See section 4.6 on applying changes. 
79 See section 4.3.1 on constants. 
80 See section 4.10.1 on performance. 
81 All measurements in this section were done using the SWI-Prolog execution profiler running on a Pentium 266 
working under windows 98. Since windows offers no possibility  to record the  CPU-time used  by a  thread or 
process, these profiling results do not count CPU-time,  but elapsed  time. A method that is less precise, but 
which suffices for the application in this thesis. 
82 See section 4.6 on applying changes. 
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within the container representation or not. The results of all tests are shown in table 5.2, time 
is measured in seconds. 
 

Model Condition Total Time Ordering 
Time 

Valid 
Transitions 

Dead-end 
Transitions

A 27,9 7,6 12 4 
B 27,9 7,6 12 4 

1) U-tube with: 
Constants, 
Correspondences C 40,4 1,7 12 68 

A 26,1 6,3 12 4 
B 25,5 6,4 12 4 2) U-tube with: 

Constants 
C 522,0 4,7 12 1196 
A 25,7 6,4 12 4 
B 25,8 6,4 12 4 3) U-tube with: 

Correspondences 
C 41,7 1,6 12 68 
A 100,6 6,3 12 268 
B 100,6 6,4 12 268 4) U-tube with:    

none 
C 457,8 4,8 12 1196 
A 4,8 1,1 9 7 
B 4,7 1,0 9 7 5) U-tube:     

Process Centered 
C - - - - 
A 7,5 0,8 12 6 
B 4,9 0,8 16 2 6) Single Population 

C - - - - 
 

Table 5.2: Performance Test Results 
 
Two main results can be observed. Firstly the amount of dead-end transitions generated is 
dramatically reduced in GARP 2.0 and this results in significantly faster simulations.  
Correspondences and constant constraints provide a lot of information in this context.  Note 
that correspondences are not native to the component style of modeling. The notion of 
constant constraints, which is new in GARP 2.0  is more natural in this approach and can be 
used to quite some extent as can be seen in the U-tube with constants where the algorithms 
from GARP 1.7.2 produce 27 times as many dead-end transitions. The second result is that 
the new Specify-Match procedure is comparable in speed to the subsumption procedure. One 
would expect the latter to be faster for it does not have to compute a full state in case of a 
transition to an existing state. Two factors can explain this. Firstly subsuming a partial state 
description in a complete state description is more expensive then matching two full state 
descriptions because it involves some inequality reasoning. Secondly in case of a dead-end 
transition the Specify-Match approach does not first waste time checking existing states like 
the subsumption approach does, but immediately starts specification of the state and deriving 
it is contradictive.  A minor result is that the ordering procedure used in GARP 2.0 is slower 
than the ordering procedure used in GARP 1.7.2. The previous results show that this extra 
time is well spent however. 
 
No results are shown in condition C for the process centered U-tube model and the single 
population model. The former requires the behavior assumption mechanism present in GARP 
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2.0, thus a very different simulation is generated. The latter model also produces quite a 
different simulation in the C condition. This model depends on the procedure for 
implementing exogenous behavior. The exogenous derivative should be kept stable but is 
released in the Garp 1.7.2 transition rules. In the B condition this model also produces slightly 
different behavior. Four transitions succeed that are dead-end transitions in the A condition. 
This different behavior is found because the Subsumption procedure is not as strict in 
checking continuity constraints as it should be. The measurements in time should still be 
representative however.  
  
The analyse zero equality technique aims to lower the computational complexity of the 
inequality reasoning procedure. It is described in section 4.10.1 on performance. To evaluate 
this technique measurements were made on all models using the normal GARP 2.0 settings 
with and without the analyse zero equality technique. Both total time computing a simulation 
and time spent on inequality reasoning were recorded. As can be seen in table 5.3, larger 
models show a significant reduction of inequality reasoning time in the positive condition. In 
smaller models the analyse zero equality technique slows down the process by a small amount 
of time. This difference can be explained by the fact that the extra time spent on applying the 
analyse zero equality technique is never won back in small models. This is because small 
models do less inequality reasoning on smaller sets of equations that offer a low 
computational complexity anyhow. 
 

Model Analyse Zero 
Equality Total Time Inequality 

Reasoning Time 

yes 27,9 27,2 
1) 

no 54,9 55,1 
yes 26,1 26,4 

2) 
no 53,9 55,1 

yes 25,7 25,6 
3) 

no 74,3 75,4 
yes 100,6 86,8 

4) 
no 144,4 132,2 

yes 4,8 2,8 
5) 

no 4,3 2,2 
yes 7,5 3,8 

6) 
no 7,1 3,4 

 
Table 5.3: Analyse Zero Equality Performance 

 
This concludes the evaluation of GARP 2.0. The next section features a conclusion, a 
discussion of the work, and suggestions for further research. 
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6. Conclusion and Discussion 

6.1 Conclusion: 

Goal of this thesis has been to improve existing Qualitative Reasoning techniques by dealing 
with issues in the GARP reasoning engine.  Two main subject areas were explored as well as 
a number of smaller issues. 
 
The first issue concerns resolving ambiguous influences on quantities. It is shown that by 
assuming the effects of influences to be equal to their magnitude, inequality reasoning can be 
used to determine the net effect. This extra reasoning capacity provides a useful modeling 
tool. It also facilitates more precise and ‘in depth’ modeling which reduces the amount of 
spurious behavior in the simulation. Using transitive inequality reasoning instead of sign 
calculus inherently puts an extra computational load on the reasoning engine. The inequality 
reasoning procedure in GARP was made more efficient on larger sets of equations by adding 
an extra data reduction step. The inequality reasoning procedure was further improved by 
adding two missing inference capacities: algebraic simplification and derivation of the most 
constraining equality A = B from two less constraining relations A ≤ B and A ≥ B.   
 
Secondly a new procedure for inferring successors of a behavioral state was constructed. The 
dedicated algorithms in GARP 2.0 have access to the elaborate internal mathematical model 
of a state instead of the user level representation. Therefore they can infer occurring changes 
far more precisely. Behavior can be assumed in undetermined situations. This provides a 
valuable modeling tool. In determining valid combinations of changes two concepts play an 
important role. Firstly a distinction can be made between constant and dynamic expressions. 
Types of expressions always playing one of these roles were identified. Inequalities can either 
play the role of a constant constraint or a dynamic description. A labeling mechanism solves 
this problem. Constant expressions remain in effect throughout the simulation and these 
constraints provide information on valid combinations of changes. Using this information, the 
‘search space’ for successor states is narrowed down and combinatorial explosion is 
prevented. A declarative procedure is used to evaluate correspondences in this context, while 
the flexible inequality reasoning capacities are used to evaluate the effect of constant 
inequalities. Secondly an expressive and flexible method for recording derived constraints on 
valid combinations of changes is used. This allows the algorithm to make exhaustive use of 
information sources and apply relatively expensive inferences on small enough, yet crucial 
subsets of changes. A detailed tracer is present in GARP 2.0 to illustrate all these reasoning 
steps made. In qualitative reasoning, behavior of derivatives is undetermined, therefore 
continuity rules allow these to change a little over each state transition. In GARP 2.0  
inequalities on derivatives are also given this freedom to move unless they are specifically 
labeled as a constant. A new algorithm is constructed to finish transitions. Successor states are 
now always fully computed before being matched with existing states. This guarantees 
finding the full spectrum of behavior for a system. This procedure has proven to be 
computationally as efficient as its predecessor. 
 
Smaller issues dealt with, include the following: Five behavioral patterns ranging from steady 
to free movement were implemented for exogenous variables in GARP 2.0. These patterns 
should cover the needs of modelers. The complex behavioral patterns seem only useful in 
small-scale simulations as state graphs can grow too large to be interpreted. Algorithm option 
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switches were added to provide the user with a choice between various reasoning strategies. 
These range from a strict approach resulting in minimal inferences to a full branching, full 
assumptive approach. A default setting is present and specific settings can be associated with 
models. In GARP 2.0 correspondence types for derivatives have been added as well as 
shortcut types for often used combinations of correspondences. These new types provide extra 
descriptive concepts to make abstractions of functional relations. During simulation, 
inequalities between landmarks can be derived specifying the possible world described in that 
branch of simulation. These are recorded in GARP 2.0 to keep different simulation branches, 
describing different possible worlds, from interacting. GARP 2.0 offers the possibility of 
removing quantities associated with inactive processes. This is a useful option when modeling 
using a process-centered approach (Forbus, 1984).  

6.2 Discussion and Suggestions for Further Research: 
The distinction made in GARP 2.0 between constant and dynamic inequalities using labels 
may be considered a first step in this area. A drawback of this solution is that inequalities 
cannot be labeled as constants in the input scenario and a single model fragment can only 
model constant or dynamic inequalities and not both. In a future implementation of GARP 
constant and dynamic dependencies could be consistently kept apart by defining separate 
fields (text based interface) or classes (graphical interface) in the model fragments, scenario’s 
and state descriptions. A more strict approach could be taken considering dynamic 
inequalities. These should not be allowed to change or disappear without an explicit 
termination of behavior. Furthermore, the assumption made in GARP 2.0 that inequalities 
with more then two quantities are constant is not necessarily justified. An example is that in 
case of an ambiguous influence resolution result such an inequality can describe the 
underlying relation between influences.  If this relation can change as its (summed) 
derivatives indicate, it can be added to the simulation and provide a useful constraint and 
mechanism for behavior. A future version of GARP can let go of this assumption and feature 
behavior for such equations. The explicit notion of constants can take the place of this 
assumption and the above-mentioned relation can be used. 
 
Results in this thesis show that determining valid combinations of changes is improved 
significantly in GARP 2.0, but there is still room for improvement if larger subsets of the 
possible changes are considered. A good heuristic is needed to select these subsets as costs 
grow with the size of the subset. More use can be made of the intermediate ordering result if 
sets of constraints are labeled with the minimal context of changes to which they apply.  
 
States with no temporal extent (instants) also form an interesting subject. These states can be 
distinguished by the fact that a quantity is at a landmark and moving or an equality is 
changing into an inequality. Generated transitions for these states are immediate, but it is 
possible in GARP 2.0 that these transitions do not succeed in producing a valid successor 
state. It can be argued that such a state is illegal. Because the transitions fail, the ‘instant’ state 
becomes and endpoint in the stategraph. Endpoints intuitively have longer time duration. A 
similar argument can be given for quantities and inequalities that are indicated to be constant. 
These should not have derivatives indicating change. Thus the derivative of a constant 
quantity should be zero and the (summed) left- and right hand side derivatives of a constant 
inequality should be equal. For example, if the inequality A + B  = C – D  is constant, then δA 
+ δB = δC – δD should hold. A related point is that since immediate changes happen 
instantly, it can be argued that they should all happen at once and form one transition. Mutual 
exclusive changes can occur when assuming behavior however and of course these should not 
be combined.  
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The derivation of landmark relations in GARP 2.0 has not shown to constrain illegal behavior 
yet, because no systems with circular behavior have been considered. Future models will have 
to prove the practical worth of this mechanism. A side effect is that more landmark relations 
are present in the user level state representation. In VisiGarp this may lead to overcrowded 
dependency diagrams. A distinction between landmark relations and other inequalities can be 
made allowing the user the option not to inspect landmark relations. 
 
Transitive inequality reasoning remains a difficult subject as it involves a tradeoff between 
inference capacities and computational tractability. Presently inequality reasoning in GARP is 
reasonably fast, but when equalities involving addition and subtraction are involved 
sometimes a derivable relation is not found. This does not occur often however. 
 
One of the goals of Qualitative Reasoning is to provide explanations through explicit 
knowledge encoding and reasoning. From the user’s perspective some generic declarative 
knowledge was lost by discarding the rule based transition procedure present in GARP 1.7.2. 
The tracer present in GARP 2.0 copes with this problem, but more work needs to be done on 
the communication of reasoning steps to the user in a compact form. Another approach could 
be to design a new explicit declarative rule format now that principles and requirements for 
the transition step have become clearer. 
 
Finally, as noted in section 3 assumptions are implemented in a limited fashion in GARP and 
a more profound treatment is still welcome. Order of Magnitude reasoning is also still missing 
in GARP. Several proposals for dealing with this kind of reasoning have been made in the 
field and possibilities for integration in GARP can be studied. 
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