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Abstract

Knowledge articulation software enables learners to create models and by doing so acquire insights
into the behavior of systems. Tools that bridge the gap between sophisticated knowledge
representation languages and modern application development techniques are needed in order to
facilitate the creation of such model-building software. This document describes the design and
implementation of such a tool, the GKOM module, which serves as a basis for knowledge articulation
applications. GKOM offers application developers a knowledge representation language based on
qualitative reasoning, and it provides modeling support. Additionally, GKOM-based applications
operate in a network for collaborative modeling and learning, in which communication among
modeling applications facilitates collaborative learning, and communication with remote services
allows for advanced features such as simulation, and central storage of models.
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1 Introduction

A modern approach to education is learning by doing. This approach to learning has its roots in
constructivism (Vygotsky, 1978), which holds that learners actively construct their knowledge rather
than passively receive it from the environment. One form of learning by doing is learning by building
models, in which learners formalize their understanding of a domain in a model (e.g. Forbus, 2001).
The idea is that in this manner learners develop more fundamental insights. Moreover, the models they
create facilitate knowledge communication between learners.

Researchers developing software tools to support this type of learning, build modeling
applications that offer a graphical knowledge representation language. Such a language consists of a
vocabulary of graphical symbols representing abstract concepts and a grammar that states how these
symbols can be used to represent knowledge. A simple example of a graphical knowledge
representation language is the concept map (Novak, 1977), a map of concepts related by relationships.
But concept maps are very general: both the concepts and the relationships can be of any nature. More
elaborate languages have a richer vocabulary.

One line of Artificial Intelligence (Al) research that has produced languages with a rich
vocabulary is research on qualitative reasoning (De Kleer & Brown, 1984; Forbus, 1988; Bredeweg,
1992). Qualitative reasoning (QR) is particularly apt for modeling tools used in education because of
its foundation in commonsense knowledge formalisms (Hayes, 1978) and its focus on causality. These
features facilitate automatic generation of feedback and explanation (Falkenhainer & Forbus, 1991;
Vadillo et al, 1998). Additionally, languages based on qualitative reasoning offer qualitative prediction
of behavior, enabling the use of model simulations as a feedback mechanism (Sime & Leitch, 1992;
Sime, 1998). But to apply these languages in educational modeling tools, two problems must be
solved. First, the complex nature of these languages forces application builders to provide modeling
support to learners that use these languages. Second, these languages are in the wrong form: they are
not very compatible with modern application-development techniques. They are text-based rather than
graphical, requiring that a graphical interface be built to operate on them. And they are often based on
declarative programming languages rather than the procedural languages used to develop end-user
applications. These two factors make application development a time-consuming task. Tools are
required to overcome these problems and apply qualitative reasoning techniques in educational
modeling applications.

This document describes the design and implementation of such a tool: GKOM. GKOM is a module
that serves as a basis for a knowledge modeling application. It offers a knowledge representation
language based on qualitative reasoning, a system for modeling support, and network capabilities for
remote simulation. GKOM is written in Java, a modern, object-oriented programming language that is
often used to build end-user applications. The objectives for building this module are twofold: it
should facilitate the creation of modeling applications that use qualitative reasoning as a formalism for
knowledge modeling, and it should place these applications in a framework for distributed modeling
and learning.

This document is organized as follows. Chapter 2 explores the field of knowledge modeling tools used
in education and proposes an architecture for collaborative modeling and learning. It introduces
qualitative reasoning as a suitable knowledge representation language and looks at some of the current
educational software based on qualitative reasoning. The last section of chapter 2 suggest the creation
of a module to facilitate the creation of knowledge modeling software. This module, as a component in
the architecture for collaborative modeling and learning, will handle knowledge capturing, modeling
support and networking capabilities.

Chapter 3 introduces GARP as a tool for qualitative reasoning. It describes the GARP vocabulary
and the concept of qualitative simulation. The final section presents a simple qualitative model that is
used as an example throughout this document.
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In chapter 4, the overall design of the module is described. It offers a detailed view of GKOM’s
place in the modeling process, and introduces the sub-modules that make up the GKOM module and
handle knowledge capturing and support, interfacing with the modeling application and
communication with remote applications. Chapter 4 also introduces the design of the GKOM
knowledge representation.

Modeling is an error-prone process and modelers need guidance in their use of a knowledge
representation language. Chapter 5 describes the nature of the modeling support built into the GKOM
module.

Chapters 6, 7, and 8 are entirely devoted to the implementation of the GKOM knowledge
representation. Chapter 6 describes the basics of the knowledge representation in terms of the first two
levels of the class-hierarchy. Chapter 7 describes ‘building blocks’; the model ingredients used to
create the entity hierarchy and the model fragments and scenarios of a model. Chapter 8 describes the
model fragments and scenarios themselves.

The concluding chapter, chapter 9, describes our experience with building the GKOM module.
The conclusions reflect on the goals with which the module was built and to what extent they have
been reached. The discussion looks at possible criticism of the module in terms of goals that have not
been reached and in terms of side effects of the implementation. The final section suggests directions
for further research.
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2 Qualitative reasoning in education

This chapter explores the current status of modeling applications used for educational purposes and
describes how the creation of these applications can be facilitated. The first section introduces
knowledge articulation software. It describes some of the current modeling applications used in
education and underscores the importance of a proper knowledge articulation language. Section 2.1.1
suggests qualitative reasoning for this purpose, and section 2.1.2 describes how qualitative reasoning
has been used in educational software.

In section 2.2 we present our ideas on how to facilitate the creation of knowledge articulation
software. We suggest building an application-independent module that implements functionality
required by modeling applications and look at it from two angles: as a stand-alone modeling
application and as a component in a framework for collaborative modeling.

2.1 Knowledge articulation software

Much of the recent research on educational software focuses on modeling (Quorum, Cafias, 1995;
CyclePad, Forbus et al, 1999; STAR-light, De Koning et al, 2000; Betty’s Brain, Leelawong, 2001).
Applications created in this field typically require learners to formulate their understanding of a
domain in a graphical knowledge representation language. We will use the term kinowledge
articulation software to describe these applications. This approach to learning has its roots in
constructivism (Vygotsky, 1978), which holds that learners actively construct their knowledge rather
than passively receive it from the environment. Modeling applications allow learners to literally
construct their own representation of the world in the form of a model. Modelers articulate
relationships between concepts and dependencies between their beliefs, and develop a more profound
understanding of the domain in the modeling process. At the same time, models provide a means to
externalize thought, allowing learners to work through more complex problems. Graphical knowledge
representations make knowledge insightful, and increase knowledge communicability. This helps
learners present their ideas to others for discussion and collaboration (Forbus et al, 2001).

A knowledge representation language is a set of abstractions and conceptualizations about how to
formulate knowledge; it is a language for capturing knowledge. Knowledge representation languages
typically offer a vocabulary of abstract terms such as class, object, relation, and attribute; terms that
are general enough to describe a broad range of domains. The grammar of a knowledge representation
language prescribes how the language is to be used and could specify such things as that objects are
instances of classes or a relation relates two objects. A model is knowledge represented in a
knowledge representation language. Modeling applications for education offer a graphical knowledge
representation language, knowledge representation languages for which graphical representations
exist for the language vocabulary. It is the graphic nature of these languages that makes them suitable
for education: graphical representations make the knowledge more insightful (Kulpa, 1994).

Modeling applications differ in the richness of their knowledge representation language. An
example of an application that uses a relatively limited vocabulary is Quorum (Caiias, 1995), which
allows modelers to create concept maps (Novak, 1977). A concept map is a set of concepts (objects,
ideas, processes, etc) with relationships of any nature between them. Other applications have more
elaborate vocabularies that require learners to differentiate between objects, attributes and variables,
for example. Some applications feature what Forbus (2001) refers to as a ‘construction kit’: a set of
generic objects, attributes and variables that learners use as building blocks for their models.

Modeling has some clear benefits to the learner, as explained above, but what makes modeling
specifically suited for educational sofiware is that formal representations of knowledge allow
computers to reason with what learners articulate. In fact, a lot of the knowledge representation
languages found in modeling applications have their origins in artificial intelligence research on
problem solving (e.g. Russel & Norvig, 1995). The modeling applications are graphical user interfaces
to languages that were once entirely text-based. The reasoning abilities of these languages are used to
simulate the models that learners create, providing feedback about the correctness of the model.
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Exactly how to represent knowledge is an important question. Knowledge representation has been
an area of research in artificial intelligence for as long as the field exists, but those used in educational
settings have different requirements than many of the traditional representation languages, which
focuses on problem solving. A language used in educational modeling software must be both intuitive
and expressive. A knowledge representation language that is often used in knowledge articulation
software is qualitative reasoning.

211 Qualitative Reasoning

Qualitative reasoning (De Kleer & Brown, 1984; Forbus, 1988; De Kleer, 1990; Bredeweg, 1992) is
concerned with reasoning about the behavior of systems in qualitative terms. The systems under
scrutiny are usually physical systems, although models of systems in different domains have also been
created (see Salles & Bredeweg (1997) for an example in ecology). The behavioral aspect studied
most is qualitative prediction of behavior: the analysis of how the behavior of a system changes over
time, based on a qualitative description of the system.

One of the early sources of inspiration for the field of qualitative reasoning is the work of Patrick
Hayes (1978). Hayes introduced the term ‘naive physics’ to describe commonsense knowledge that
people have of the everyday physical world: about objects, shape, space, movement, substances, time,
etc. While it is this sort of knowledge that allows people to function in the physical world, no
formalization of this type of knowledge exists. In fact, physics laws are all based on the presupposition
of a shared unstated commonsense prephysics knowledge. With the advent of Artificial Intelligence
and its focus on autonomous agents that must function in the physical world, it became necessary to
formalize commonsense knowledge in a way that was understandable for computers. Hayes felt that in
doing so, Al overemphasized on toy worlds: overly simple models of the physical world that would
only work in toy domains. He held that focusing on such small domains would never lead to an
adequate formalization of commonsense knowledge and that without such a large-scale formalization,
Al would never find out what the real problems of knowledge representation are.

An interesting note about Hayes’ work is that he very explicitly did not propose to create a
computer program that would be able to use the naive physics theory in some way. In fact, he felt that
this would divert the attention from the main goal (building the naive physics theory) and can be
dangerous. It too is easy conclude that, because one has a program that works, its representation of
knowledge must therefore be correct. Sometimes, representational devices turn out to be traps as
people try to overcome difficulties generated by the representation itself. According to Hayes, the
focus should be on content, not form.

The field of qualitative reasoning grew out of individuals who were inspired by the idea of a
formalization of commonsense knowledge, but did not take Hayes’ advice about staying away from
implementation or representation. An important idea behind qualitative reasoning is that it offers a
more natural way of representing knowledge. Humans solve physics problems by first making a
qualitative analysis of the situation. They use qualitative terms like hot and cold, or high and low, or
increasing and decreasing and their qualitative analysis includes concepts such as one quantity having
a positive influence on another quantity, or a particular value of one quantity leading to an increase in
another quantity. Equations to calculate the exact answer are used affer the qualitative analyses, but
only if the question requires a quantitative answer. Many physics problems can be solved in all-
qualitative terms. A qualitative analysis is crucial for comprehending the problem and writing down
the appropriate equations. People do not believe the answers predicted by equations unless these
answers can be supported by an intuitive understanding (De Kleer & Brown, 1984).

The basic concepts of qualitative knowledge representations are:

e Classes, objects and structure. Structure is described in terms of objects, relationships
between objects and attributes of objects. Structures make it possible to reason about
behavior emerging from structure. Objects belong to classes and classes are embedded in a
hierarchy.

e Quantities and quantity spaces. Behavior is described in terms of values and derivatives of
quantities. Quantities have a small set of possible values, captured in a quantity space.
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e Quantity relations. Causality is described using relations between quantities, values and
derivatives, which make it possible to express such things as that one quantity having a
particular value causes another quantity’s value to increase.

Many of the existing tools for qualitative analysis also support qualitative simulation. Qualitative
simulation is the prediction of behavior of a system, based on a qualitative analysis of that system. The
result of a qualitative simulation typically consists of a set of states and state transitions. Qualitative
simulation is discussed in chapter 3.

2.1.2 Qualitative Reasoning in education

Qualitative reasoning focuses on causal accounts of physical mechanisms that are easy to understand,
and allows reasoning in the absence of specific numerical data. Its focus on concepts and causality
makes it particularly apt for communication and explanation in educational settings (Bredeweg en
Winkels, 1998). Forbus (2001) identifies two reasons why qualitative reasoning' is particularly
appropriate for application to science and engineering education. The first is that qualitative reasoning
represents the right kind of knowledge. Much of what is taught in science in elementary, middle, and
high school consists of causal theories of physical phenomena. Traditional mathematical and computer
modeling languages do not attempt to formalize such knowledge. In qualitative reasoning, uncovering
how people think about physical entities and processes is one of the central issues, and progress in
qualitative reasoning has led to new modeling languages that describe entities and processes in
conceptual terms, embody natural notions of causality, and express knowledge of the modeling
process itself.

The second reason that qualitative reasoning is particularly apt for science and engineering
applications is that qualitative reasoning represents the right level of knowledge. Principles governing
a domain need to be mastered at the qualitative level to provide the kind of deep, robust understanding
that engineering education seeks to impart.

Qualitative reasoning has been used in educational software in a variety of ways:

e To generate explanations (Falkenhainer & Forbus, 1991; Vadillo et al, 1998). Qualitative
reasoning focuses on causal accounts and concepts, and these provide a solid foundation for
generating explanations in natural language. One of he primary reasons for using qualitative
reasoning in education is the belief that it resembles human reasoning, and it should thus be
relatively easy to generate ‘natural’ explanations of phenomena.

e To generate questions and assignments. An analysis of the qualitative description of a system
and the simulations based on that description can identify causal paths in a system’s behavior.
The processes and quantities involved in these paths can be made the subject of automatic
generation of questions and assignment. Recent research in this area is described in Goddijn
(2003).

e To analyze a situation in order to create a quantitative model. In CyclePad (Forbus et al,
1999), an articulate virtual laboratory for creating thermodynamics cycles, a qualitative
analysis of the cycle created by the student is used to generate a quantitative model of the
cycle. This model is subsequently used to solve mathematical questions concerning the cycle.

e To create interactive and articulate modeling and simulation environments. Qualitative
reasoning terminology is intuitive enough for use in an educational setting, and simulations
based on the models that learners create can be used as feedback (Sime & Leitch, 1992; Sime,
1998; Bouwer & Bredeweg, 2001).

This document focuses on the last of these uses: creating interactive and articulate modeling
environments. Forbus et al (2001) note that many of the current modeling environments used in
education neglect three key issues in understanding the art of modeling:
e The importance of broadly applicable principles and processes. Existing educational
modeling systems treat each modeling task as a new problem, with no connections to other

! Forbus uses the term qualitative physics rather than qualitative reasoning.
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situations. This misses opportunities to help students see that the same principles and
processes operate across a broad range of situations.

e Understanding when a model is relevant. Existing educational modeling systems do not
address the issue of when a model is applicable and thus do not help students connect their
models to real-world concerns.

e Qualitative understanding of behavior. Traditional modeling systems tend to be numerical,
but providing all the data needed to run a numerical model can distract students from
understanding the causal phenomena in the situation. In addition, a student may not be able to
easily interpret outcomes in mathematical terms.

Qualitative reasoning provides many of the pieces needed to address these problems. Enabling and
encouraging students to create their own domain theories should help them understand the broad
applicability of scientific principles and processes. Qualitative reasoning provides the expressive
power needed to state modeling assumptions and reason about relevance. Qualitative reasoning allows
students to formulate intuitive, causal models of a domain.

2.2 Facilitating the use of QR in educational
software

The goal of this project is to facilitate the creation of knowledge articulation software. Most of the
features discussed in this chapter (graphical representations of knowledge, modeling support,
automatic generation of questions, assignments and explanation) require a substantial amount of work
to implement. Our goal is to create a module in an architecture for collaborative modeling and
learning. This module should offer:

e Reusability. Application builders must be able to use it as a basis for their application,
adding specific features to the core functionality implemented by the module.

e A knowledge representation language. Creating the knowledge representation itself is one
of the more time-consuming tasks in building knowledge articulation software, and thus one
of the most valuable features to offer.

e  Modeling support. Modeling is an error prone process and modelers need guidance in their
use of the knowledge representation language.

e Communication with remote services. The architecture for collaborative modeling and
learning will contain other components, such as simulation services or model repositories.
The component should be able to communicate with those.

e Communication with other modeling applications. True collaborative modeling requires
direct communication between modeling applications, allowing modelers to share fragments
of models with each other.

We have two objectives in building this module:

o Facilitate the creation of knowledge articulation software for use in education. The first
three points above are related to this objective. Application developers must be able to built
their software on top of the functionality offered by our component, allowing them to spend
more time on features such as user interface and user interaction or higher-level modeling
support.

o Facilitate the creation of software to support communities of practice in education. The
last two points above are related to this objective. The component should implement a
protocol for communication with remote services and other modeling applications.

The next two sections describe the module, which we have called GKOM (GARP Knowledge Object
Model), in terms of its place in the architecture for collaborative learning and modeling and in terms of
its features.
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2.21 Facilitating a knowledge articulation application

Figure 2-1 shows a knowledge articulation application based on GKOM. From a high-level
perspective such an application consists of two modules: the GKOM module and a module built by the
application developer. The developers’ module is a graphical user interface to the functionality offered
by the GKOM module and adds application-specific features.

Application GKOM module
developers’ module
The user interface : Knowledge The support
module forwards User | capturing module monitors
user action to the interface : module changes to the
controller. The module The application developer’s captured
controller module module operatesonthe | [  pFo------ r~| knowledge and
controls the user i captured knowledge and provides feedback
interface and the handles feedback from the Modeling when errors are
GKOM module. Controller support system. support made.
module module V

Figure 2-1: A knowledge articulation application based on GKOM.

The application developer’s module

Although GKOM makes as little assumptions as possible about the inner workings of the application
developers’ module, such a module can be expected to at least consist of a user interface module and a
program control module. The user interface module is the front-end to the application. The controller
module controls the user interface and handles the commands that the user issues and the feedback it
receives from the GKOM module. The user interface handles interaction and representation. It allows
the user to interact with the application by offering a set of controls (buttons, menu’s, dialogs, etc) that
operate on the other components of the application. Interaction is concerned with questions such as
‘how does the user create a new object?’ or ‘how does the user start a simulation?’ Representation is
concerned with offering a view on the current state of the application. Representation is concerned
with questions like ‘what does an object look like?” or ‘how are the results of a simulation displayed?’
Creating an intuitive graphical user interface is the main reason for building a modeling
environment in the fist place. Qualitative models in their ‘natural’ form (usually a structured text file
containing first-order logic statements) are too complicated to be understood by non-experts. A
modeling environment should provide an intuitive visual language for representing knowledge, and an
intuitive way for the user to interact with the model. This allows non-experts to use the expressive
power of qualitative models, without requiring them to spend a lot of time learning about qualitative
reasoning. This is easier said then done. Finding the appropriate visual representations for objects,
relations, properties and quantities, or for abstract notions like conditions and consequences, is the
subject of a sizeable portion of the research done in the field of modeling (e.g. Bessa Machado &
Bredeweg, 2001). It is well beyond the scope of this document. In fact, it is the aim of this project to
create a module that handles as much of the functionality required in a modeling application as
possible, so that application developers can spend more time on representation and interaction issues.

A knowledge articulation language

Qualitative models are usually stated in a declarative language like Prolog. But a modeling application
is usually written in a procedural language such as C or Java and requires a knowledge representation
in its native language. This internal representation is in essence a mapping of qualitative concepts to
the concepts of the programming language used in the application and should be designed for
interoperability with the graphical user interface, the support system and other components of the
modeling environment.

Designing an internal knowledge representation in Java was the original goal with which we
started this project (hence the name GARP Knowledge Object Model), and the GKOM knowledge
representation is an important part of the GKOM module. The knowledge representation is outlined in
4.3 and extensively described in chapters 6, 7, and 8.
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A support system

Modelers make mistakes in their use of a modeling language and a support system should at least
provide the modeling-equivalent of spelling and grammar checkers. But a support system for creating
qualitative models can be much more comprehensive than that. For example, student models can be
compared to normative models to generate suggestions for improving a model. Simulations can be
used to actively determine the consequences of changes made to a model. Automatically generated
explanation can clarify unexpected simulation results.

These more comprehensive forms of modeling support are research themes in their own right
(e.g. Bouwer & Bredeweg, 2001). Offering them is beyond the scope of this project, but the modeling-
equivalent of spelling and grammar checkers is not. The support offered by GKOM is detailed in
chapter 5. Additionally, application builders can use other GKOM features to implement more
comprehensive support. The import-export module will assist in reading normative models, for
example. An as described above, GKOM offers access to a simulation service.

2.2.2 Facilitating a community of practice

Figure 2-2 presents a high-level overview of a distributed modeling environment. In such an
environment, knowledge articulation applications communicate with other applications and with
modeling services on the network. Separating the services from the applications has two important
benefits: the services can be managed at one single location and the applications can be kept relatively
simple, because they can leave advanced functionality to the services.

Services
Simulation Model Other
service repository services
Applications communicate I---- Applications have access to
with each other. remote services.
T
|
]
| Applications
Knowledge Knowledge Knowledge
articulation articulation articulation
application application application

Figure 2-2: A distributed modeling environment.

To make a GKOM-based knowledge articulation application operate in an environment like the one
depicted in Figure 2-2, the GKOM module includes a communication module.

A simulation service

Many of the advantages of using qualitative reasoning in educational software relate to the fact that it
makes qualitative prediction of behavior by a qualitative simulator possible. The ideal modeling
application includes a simulator, but in classroom situations, where computing resources are often
scarce, including a simulator in the modeling application is not always the best solution. It is better to
set up a remote simulation service and have the modeling application access that.

For qualitative reasoning with GARP, a simulation service already exists. The protocol for
communicating with this service needs to be implemented by the communication module. This is
detailed in chapter 4. Additionally, GKOM must provide a way to export models to a format that can
be transmitted over a network connection, and to import models that originate from the network.
These tasks are carried out by the import-export module introduced in chapter 4.
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A model repository

A model repository is a central location for accessing and storing models. There are numerous reasons
for creating a repository of models. First, one of the central ideas of qualitative modeling is that
principles and processes found in one domain can be extended to other domains. A model repository
can facilitate this by making all models available for future reference and use. Second, a model
repository can serve as a portfolio of models made by one student or a group of students. This
promotes reflection and captures how the student’s understanding of the domain advances. It also
allows for comparing models made by students in the classroom. Third, a model repository can
achieve, or at least bring closer, the original goal of naive physics as formulated by Hayes in his naive
physics manifesto (Hayes, 1978), namely the formalization of a sizeable portion of our everyday
knowledge.

In its simplest form, a model repository may be a directory on a file server where models are
stored. This requires a knowledge representation that can be saved as a file, a function offered by the
import-export module. A more comprehensive solution would be a remote repository service: a
machine on a network that allows modeling applications to store and retrieve models. This would be
relatively easy to implement for an application builder, because GKOM already has built in support
for accessing a simulation service. Accessing a repository service only requires minor changes.

Direct communication between applications

Collaboration is a valuable learning-technique and visual representation languages are excellent
vehicles for communication about knowledge. A modeling environment in education can facilitate
collaboration by allowing students to send fragments of their models to others, so that student can
compare each other’s models. Ideally, students can reuse parts of each other’s models in their own
models.

In its present implementation, GKOM does not offer support for collaboration. However, any
implementation that an application builder would create will make use of the import-export module
and the communication module.

2.3 Conclusion

This chapter has introduced qualitative reasoning and qualitative reasoning in education, and has
analyzed the possibilities for facilitating the development of QR-based educational software. This
analysis resulted in a set of functions that the GKOM module must offer. Chapter 4 continues on that
subject and describes the design of the GKOM module. Readers who are familiar with GARP can skip
ahead to that chapter. For those who are not, the chapter 3 introduces the qualitative reasoning tool
that GKOM interoperates with: GARP.
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3  Qualitative reasoning and GARP

GKOM was designed for interoperability with a qualitative reasoning engine called GARP (General
Architecture for Reasoning about Physics, Bredeweg, 1992). GARP is an implementation of the QR
principles described in the previous chapter and serves as a tool for qualitative analyses and qualitative
simulation. The interoperability between GKOM and GARP is discussed in chapter 4, this chapter
describes GARP itself. In section 3.1, the functioning of GARP is outlined in general terms. Section
3.2 describes the GARP language in more detail. Section 3.3 presents an example GARP-model.

3.1 Qualitative reasoning with GARP

GARP is a tool for qualitative analyses and simulation. It is given a description of a system in
qualitative terms, and generates a set of possible states of behavior of that system. This section aims to
give a description of GARP that is specific enough in the context of this document, but it is by no
means complete. For other descriptions of GARP see Jellema (2000) or Bredeweg (1992).

At a high level, we can distinguish four concepts in a GARP knowledge representation:

e Building blocks are objects, attributes and quantities of objects, values and derivatives of
quantities and dependencies between quantities, values and derivatives. They represent things
in the real world and are the ‘stuff’ that scenarios, model fragments and rules are made of.

e Scenarios are aggregates of building blocks that describe a system in its initial state. They are
the starting point of a simulation.

e Model fragments describe small pieces of domain knowledge in terms of conditions and
consequences. A model fragment could specify, for example, that if an object liquid exists,
then liquid will have a quantity amount and the value of amount will be greater than zero.

¢ Rules describe how the simulated system changes over time. An example rule could state that
if a quantity is at a certain value and increasing, it will be at a higher value in the next state of
behavior.

Given a scenario, a library of model fragments and a library of rules, GARP simulates the possible
behavior of a system, starting at the initial state described in the scenario and stopping when it cannot
infer any more new states of behavior.

Figure 3-1 illustrates the simulation process. The process starts with a scenario; an initial state.
GARP then scans the library of model fragments to find those that apply to the scenario. It adds the
consequences of the matching model fragments to the initial state and subsequently starts looking for
rules that apply to the current description. This step yields a number of states. Then the process
repeats: the new states form the input to another search for matching model fragments. The loop is
traversed until it no longer produces new information.

Find applicable Find applicable
model fragments rules

- -
Library of Library of

model fragments rules

Scenario

5

Figure 3-1: Inferring states of behavior



16 Tools for knowledge articulation software in education

The task of a GARP user building a model of some real-world system is to create the library of model
fragments and the library of rules, and the scenario that will serve as the initial state. More often than
not, pieces of other models can be reused. The library of rules, for example, contains a set of basic
rules that are used in every model. The rule specifying that an increasing quantity will reach its next
value is a good example of a rule that is general enough to be used in any domain.

Model fragments are not usually that general, but many do exist that are general enough to be
applicable in at least a set of related models. An example is the model fragment given above, stating
that if a liquid exists, it must have a quantity amount of at last greater than zero. This model fragment
can be used in any model involving liquids. A more elaborate example is a model fragment describing
the flow of heat: heat flows from objects with a high temperature to objects with a low temperature.
This applies to a cup of coffee cooling down because heat flows from the coffee to the surrounding air,
it applies to water in a boiler heating up because heat flows from a heater underneath the boiler to the
water inside the boiler, and it applies to the air inside a refrigerator cooling down because heat flows
from the air to the cooling-liquid. A model fragment describing a heat flow can be used in any of these
domains. This is what Forbus refers to when he states that using QR in education can underscore the
importance of broadly applicable principles and processes (Forbus et al, 2001).

Reuse has its limits, however, and a modeler inevitably has to create model fragments that are
specific to the real-world system that is being modeled. The modeler may also choose to add any
number of domain-specific rules, although in practice this is less common.

3.2 The world according to GARP

This section deals with the knowledge representation used by GARP. A knowledge representation is a
set of abstractions and conceptualizations about how knowledge can be formulated. It is a language
used to talk about knowledge and must not be confused with the knowledge itself. Unfortunately,
many of the terms used to describe a knowledge representation apply to both the representation
language and the represented knowledge. The words model and ontology are examples of terms that
are often used to describe both. To avoid confusion, this document uses the terms knowledge
representation or formalism to describe the language in which knowledge is formulated, and the term
model to describe formulated knowledge. The term ontology is used later in this document to describe
a subset of the knowledge in a model. The following sections describe the concepts of the knowledge
representation used by GARP.

Entities

Entity is the term for what has been called object until now. An entity represents a ‘thing’ in the real-
world system being modeled. Entities can be defined generically or as instances. On a generic level,
entities are defined in the is-a hierarchy, as concepts or generic types. The is-a hierarchy shows how
entities inherit from one another; it is a tree-like structure that allows a modeler to specify that a liquid,
for example, is a specific type of substance, or that water is a specific kind of liguid.

When used inside model fragments, scenarios, or rules, entities are called instances. An instance
does not represent a generic object or a class of objects; it represents an actual object of a particular
class. A modeler may make a model that has an entity container in the is-a hierarchy and two
instances of container (maybe containerl and container?) in a model fragment. The containers in the
model fragment are instances of the generic concept container in the is-a hierarchy.

Attributes

Attributes are found in model fragments, scenarios and rules and represent structural relations between
instances. The word structural must be read as the opposite of behavioral here; the structural
description of a system is that part of the description that does not change in the course of a
simulation. Attributes can be of topological nature, such as the container contains liquid, but may also
be more abstract; such as person A4 is a colleague of person B.

Attributes can also describe a property of an instance. This type of attribute does not relate
instances to one another, but relates an instance to a particular value out of a set of nominal values.
The container is open is a typical example. There is some discussion about whether this type of
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attribute can really be considered part of the structural description of a system, because property
values do change in a simulation. This question is not relevant in the context of this document,
however, and we will consider properties to be part of the structural description of a system.

Quantities and quantity spaces, values and derivatives

Quantities are variables that potentially change over time. In model fragments and scenarios,
quantities are associated with instances of entities. In rules, however, they may exist on their own. A
quantity has a set of possible values and a set of possible derivatives; both represented by a quantity
space. In a simulation, quantities represent the dynamic behavior of a system.

The term quantity is used to refer to both the generic concept and an actual instance. In a model
fragment or scenario, a quantity is declared with both a generic name (such as height) and an instance
name (such as heightl or height of water column). However, there is no place in a GARP model where
all generic quantities are declared. In other words, there is no equivalent for quantities to the is-a
hierarchy for entities. There is no need to formally list all generic quantities because the GARP
language is declarative: it will recognize the generic quantities as unique concepts. It must be noted
that in rules, the generic name of a quantity may be omitted to represent the fact that the rule will hold
for any type of quantity.

A quantity space contains a set of possible qualitative values of a quantity on an ordinal scale. The
values in a quantity space must alternate between points and intervals. An example of a quantity space
is the set of qualitative states for the temperature of a substance. That quantity space could contain the
interval below melt point, the point melt point, the interval between melt point and boil point, the point
boil point and the interval above boil point.

Quantity spaces are defined separate from quantities; two quantities may use the same quantity
space. This does not mean that the values of the quantities are equal; it means that both quantities use
the same kind of value-set. Even if two quantities use the same quantity space and have the same
qualitative value, the quantitative value of the quantities may not be the same. For example, if two
boilers contain water and alcohol, which both have a quantity temperature that is at boil point, the
qualitative values are the same, but their quantitative values are still different.

The possible derivatives of a quantity are also captured in a quantity space. The quantity space for
derivatives contains the values min, zero and plus. In theory, derivatives can be represented by a
different quantity space, but in practice the min-zero-plus range is always used.

Dependencies

Dependencies are relations between quantities, values or derivatives. They specify the constraints that
hold between quantities, and are used in model fragments, scenarios and rules. There are four types of
dependencies: inequalities, correspondences, proportionalities and influences'.

Inequalities are statements of inequality or equality between quantities or between a quantity and one
of its values or derivatives. They allow statements like the value of quantity ql is greater than the
value of quantity q2 or the value of quantity ql is smaller than zero. Inequalities also make qualitative
calculus possible through the subtypes plus and min. This allows a modeler to specify that, for
example, the flow rate of water trough a pipe is equal to the water pressure at one end of the pipe
minus the water pressure at the other side of the pipe.

Inequalities may refer to point values, but not to interval values. This is because qualitative values
refer to the underlying quantitative value of a quantity, and interval values do not have a specified
quantitative value, but rather represents a set of values. To clarify this with an example: using an
inequality statement it is not possible to declare that the temperature of a substance is equal to the
interval between its melt point and its boil point.

! Bredeweg (1992) specified a fifth type of dependency: the implication. Implications relate two dependencies in a conditional statement: if
the conditional dependency holds, than the implied dependency will also hold. In practice, implications are not used and we will not describe
them here.
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Correspondences state that particular values of two different quantities always occur together. There
are two types of correspondences: value correspondences and quantity space correspondences. The
latter can be seen as a set of value correspondences for each value in the quantity spaces of two
quantities. It follows that a quantity space correspondence can only exist between two quantities with
equal quantity spaces.

Correspondences can be directed or undirected. In a directed correspondence, one value can be
derived from the other, but not the other way around. In an undirected correspondence, both values
can be derived from the other.

Proportionalities are relations between the derivatives of two quantities. Proportionalities are always
directed: if the influencing quantity increases, the influenced quantity also increases, or decreases.
There are two types: positive and negative. A positive proportionality states that if the influencing
quantity increases (or decreases), the influenced quantity also increases (or decreases). The negative
proportionality states the reverse: if the influencing quantity increases (or decreases), the influenced
quantity decreases (or increases).

Influences capture situation in which the value of one quantity influences the derivative of another
quantity. For example: if the flow rate of water coming out of a tap is positive, the /evel of water in the
container beneath it will start to increase (its derivative becomes plus). Two types of influences exist:
positive and negative. In a positive influence, a positive value of the influencing quantity causes a
positive derivative of the influenced quantity, and a negative value causes a negative derivative. In a
negative influence, a positive value of the influencing quantity causes a negative derivative of the
influenced quantity, and a negative value causes a positive derivative.

Model fragments

Model fragments allow a modeler to create reusable descriptions of subsystems of the real-world
system described in a model. Model fragments are used to capture the notion of behavioral aspects that
emerge from structure. For example, a model fragment could state that whenever an entity liquid
exists, that liquid will have a quantity amount, the value of which is greater than zero. Another model
fragment could state that whenever a /iquid is contained in a container (i.e. the container has a relation
contains with the liquid), then a quantity /evel exists, which is also greater than zero. These examples
show both the reusability of model fragments (the first model fragment could be reused in the second)
and the ability of model fragments to describe behavior emerging from structure (amount emerges in
the first model fragment as a result of an entity liquid being present, and level emerges in the second
as a result of the liquid being contained by the container).

A model fragment consists of a set of conditional elements (referred to as the conditions) and a set of
consequential elements (referred to as the comsequences or givens). The conditions are used to
describe under which circumstances the model fragment applies, and the givens describe what can be
assumed true if the conditions are met. The step ‘find applicable model fragments’ in Figure 3-1
should now be clear: the simulator looks for model fragments whose conditions match the current
system description, and when it finds one it adds the elements in the givens to the system description.
The elements in the conditions can be instances of entities, attributes, quantities, values and
derivatives, inequalities and other model fragments. The givens can additionally contain
correspondences and causal dependencies but cannot contain model fragments.

The declaration of a model fragment in GARP may also include the specification of a model fragment
type or one or more parent model fragments. There are five model fragment types:

e Single description model fragments describe the static properties of a single element. The
model fragment that states that when a liquid exists, that liquid has a quantity amount, given
as example above, is a single description model fragment.

e Composition models fragments describe the static properties of a more complex system, a
system consisting of several elements in a structure. An example of a composition model is a
model fragment describing that if a liquid is contained in a container, that liquid has a
quantity Jevel.
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e Decomposition model fragments describe the structure and workings of a complex system
in terms of part of relations. In practice, this type of model fragment is rarely used because it
is not often needed in a model and because decomposition can also be represented in a
composition model fragment.

e Process model fragments describe processes, such as the flow of matter or energy as a result
of an inequality. For example, heat will flow from a heat source to a boiler until the
temperature of the heat source and the boiler are equal. A model fragment capturing this is a
process model fragment.

e Agent model fragment describe the effect of influences from outside of the system. The
level of liquid in a container, for example, can start to increase because a fap above the
container was opened. In a model fragment describing this situation, the tap plays the role of
agent: it initiates a process that does not result from an inequality.

We can think of these five types as the base of a hierarchy of model fragments. A model fragment may
either descend directly from a model fragment type or it may descend from a parent model fragment.
And because a model fragment can have more than one parent, multiple inheritance is possible.

There is a subtle but important difference between parent model fragments and nested model
fragments. A nested model fragment, one that is found in the conditions block of a model fragment, is
a model fragment that must be active in order for the model fragment in which it is contained to be
applicable. Parent model fragments, on the other hand, place a model fragment in a hierarchy. This
allows a modeler to create more specific versions of existing model fragments. As an example of a
parent-child relation between two model fragments, a model could contain a model fragment
substance flow that describes the flow of a substance in general terms, and a model fragment gas flow
that describes properties specific to of a flow of gas. In this case, the gas flow would be a child of the
substance flow. In it’s simplest form, the gas flow model fragment would state that the entity
substance in the substance flow must be a gas in order for the gas flow model fragment to be
applicable’.

An example of model fragment nesting is a contained liquid model fragment that has a nested
open container model fragment. In this case, the nested model fragment states that the container in
contained liquid must be an open container.

Scenarios

Scenarios describe an initial state in a simulation. Originally called input systems, scenarios describe
the input to the simulator, based on which the simulator will search for applicable model fragments
and rules. We can think of the scenario as ‘state zero’.

Scenarios closely resemble the conditions block of a model fragment, the exception being that a
scenario does not contain nested model fragments. Scenarios can thus contain instances of entities,
attributes, quantities, values and derivatives and inequalities.

Transition rules

Transition rules determine when and how a system moves from one state a next state. They are applied
in the second step of a simulation process: after the simulator has found and applied model fragments,
it searches for applicable transition rules. The output of this step is a set of possible states. See Figure
3-1 for a reminder.

In many simulators, transition rules are considered to be part of the simulator itself. GARP takes a
different approach here and explicitly includes the transition rules in the model. This gives the modeler
the flexibility of creating domain-specific rules. In practice, however, this is not often done. Most
transition rules can be described in domain-independent terms and GARP users usually copy the rules
from an existing model when creating a new one.

There are three types of transition rules: termination rules, precedence rules and continuity rules.
They are described below.

2 This assumes that gas is a child of substance in the entity hierarchy.
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Termination rules describe how a change to a quantity’s value or derivative causes a state to
terminate, and what will change in the next state. An example of a termination rule is: if a quantity is
increasing it will reach it a higher value in the next state. Termination rules capture the notion of
changes to a system over time.

A termination rule has a set of conditions, describing when the rule applies, and a set of givens,
describing what the consequences are if the rule applies. The conditions may contain instances of
entities, attributes, quantities, values and derivatives, inequalities and correspondences. In practice,
however, a termination rule rarely contains entities or attributes. The givens may contain all the same
elements the conditions does, and may additionally contain influences and proportionalities.

Precedence rules contain information about the ordering of termination rules. In situations in which
multiple termination rules apply to a system description, precedence rules are used to determine which
terminations have precedence over others and which may be merged into one termination. Two
members of a precedence rule are the two termination rules that it applies to. A precedence rule may
additionally contain instances of entities, attributes, quantities, values and derivatives, inequalities and
correspondences. These elements and the two terminations describe the conditions under which the
rule applies. Furthermore, a precedence rule has an action, which can be either remove or merge. The
action describes the consequence of the rule: what happens to the two terminations that the rule applies
to. If one of the terminations should have precedence over the other, the action is remove and the rule
states which of the two terminations should be removed in favor of the other. If the two terminations
are to be merged, the action is merge.

An example of a remove rule is one that states that if one termination exists in which a quantity is
moving from a point value to an interval and another termination exists in which a quantity moves
from an interval to a point, then the former will occur first. This is because an increase or decrease
from a point value leads to a new value immediately, while an increase or decrease in an interval may
take time.

Continuity rules describe how behavior in one state continues in the next. They apply to all elements
in a system description that are not affected by a termination rule. An example continuity rule is that if
a quantity is increasing in one state, it will still be increasing in the next state or will have become
stable. A continuity rule has a set of conditions and a set of givens. The conditions may only contain
values and derivatives of quantities. The givens may additionally contain inequalities.

States and state transitions

As explained in section 3.1, the output of the simulator consists of a set of states. States describe a
possible state of behavior of the system; one that the system may reach at some point in time. State
transitions describe transitions from one state to another. They capture why and how a state-change
occurs.

In the first step of the simulation process, the simulator matches the scenario against the library of
model fragments and adds the consequences of the matching fragments to the state description. In the
second step it applies transition rules, which may also result in adding elements to the state. The result
is a full state description containing all the entities, attributes, quantities, values and derivatives,
dependencies, and model fragments that are active in the state.

State transitions represent the result of the second step in the simulation process: applying
transition rules. They give a full description of which rules were applied, what caused them to be
applied and what the results of applying the rules were. Transitions have a single from-state attribute
and a set of to-state blocks. A to-state block contains a cause block (containing the rules that were
applied), a conditions block (containing the model ingredients based on which the rules were applied)
and a results block (containing the results of applying the rules).

Looking at the states and state transitions together, the simulator output can be viewed as a state
graph. This graph emerges from the states themselves and the from-state and fo-states attributes of the
transitions. States are referenced by their state number. Figure 3-2 shows an example of a state graph.
The initial state in a state graph is always the scenario on which the simulation was based.
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Figure 3-2: A simple state graph.

3.3 An example model: the u-tube

Throughout this chapter, most of the examples given refer to a model that has been used as a
prototypical qualitative model for years. To clarify some of the concepts used in this chapter, and
because the u-tube example is often used in this document, this section describes the u-tube model in
greater detail.

Figure 3-3 depicts a u-tube as envisioned in the u-tube model. It consists of two containers filled
with liquid and a path connecting the two containers through which liquid may flow. The containers
are open, which means that the containers will overflow rather than explode when the level of liquid in
them reaches the height of the container. The liquids have the quantities amount, level, and pressure.
In Figure 3-3, the u-tube is in a state in which the level of liquid 1 is higher than the level of liquid 2.
We can expect liquid to start flowing from left to right in the next state.

Container 1 Container 2
Is open RSN Is oven
L~} T N Level of Liquid 1 is greater than level of Liquid 2 L~
L d £ d ™~

Liquid 1 L = Liquid 2
Has amount | |-, -, .. ", Liquidpath | .ottt Has amount
Haslevel | }-.7.0.m00. Has flow-rate ST Has level
Haspressure | .-~ - - b T s Has pressure
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Figure 3-3: The u-tube.

Analysis of the u-tube domain

There are three distinct types of entities in this example: container, liquid and liquid path. A modeler
creating a model of this u-tube could put only these three entities in the entity hierarchy, but the model
becomes more articulate by including a distinction between objects and substances in the hierarchy.
Figure 3-4 shows the entity hierarchy of the u-tube model. Substance is shown to have three children:
solid, liquid, and gas. Only liquid is relevant in the example at hand, the other two are used in other
examples in this document.

Substance

|C0ntainer Liquid path| | Solid | | Liquid | | Gas |

Figure 3-4: The entity hierarchy of the u-tube model.

In the u-tube domain, containers can be open or closed and they can contain liquid. Note that these are
general statements about containers, not statements about one specific container: containers as a class
of things can have the attributes openness (open or closed) and contains (an entity of type liquid).

In a u-tube, the liquid in a container has three relevant quantities: its amount, its level in the
container and its pressure at the bottom of the container, at the level of the liquid path. Each of these
quantities can be in three qualitative states: zero (when no liquid is present in the container), plus
(when some liquid is in the container) and max (when the container is full). The modeler thus has to
define a zero-plus-max quantity space.
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A liquid path has a quantity flow-rate. For simplicity, the modeler assumes that a positive flow-
rate is a flow of liquid in one direction and a negative flow-rate is a flow in the opposite direction. A
flow-rate of zero means no flow at all. The quantity space min-zero-plus captures this. This is
incidentally also the quantity space used for derivatives of quantities.

Having defined the entities and quantity spaces present in the domain, the modeler can now start
creating a number of model fragments. In the process of analyzing the domain, the modeler has also
discovered the attributes and quantities that are to be used in the model. These will be used in the
model fragments.

The ‘liquid view’ model fragment

In analyzing the domain, the modeler took note of the fact that liquids have a quantity amount. This is
the sort of information that is captured in single description model fragments, which describe the
properties of a single entity. The liquid view model fragment is a single description model fragment
and states the following:

If an entity of type liquid exists, that entity will have a quantity amount and the value of that
amount will be greater than zero.

Translating this to a model fragment: /iquid view has an entity of type liquid in the conditions
block. In the givens block it has a quantity amount, which belongs to the liquid and has a quantity
space of zero-plus-max. The givens block also contains a dependency greater, relating amount to the
value zero in its quantity space.

The ‘open container view’ model fragment

Open container view is another single description model fragment. It contains only two model
ingredients: an entity of type container and an attribute openness with value open. Both are part of the
conditions block; the givens block is empty. This model fragment is used to state:

An open container is a container that has an attribute openness with value open.

Note that open container view is used for a different purpose than liquid view. Liquid view is used
to derive new information (a quantity amount) from existing information (a liquid being present).
Open container view is only used to create a structural description.

The ‘contained liquid’ model fragment

With a view on liquids and containers defined, the modeler can now talk about how liquid behaves
inside a container. Liquid in a container has three quantities: amount, level and pressure. These
quantities are related to each other: the amount determines the level and the level in turn determines
the pressure of the liquid at the bottom. This is captured in the open contained liquid model fragment.
Open contained liquid is a composition view model fragment: it contains a number of entities in a
structure and describes the behavior of that structure.

At this point the modeler can reuse the model fragments built so far by including them in the
conditions block of the new model fragment. Instead of creating a new open container in this model
fragment (by adding a container and an attribute openness to the conditions block), the modeler adds a
container and states that it be like the one described in the open container model fragment. Similarly,
the modeler adds a liquid to the conditions block and states that it be like the one described in the
liquid view model fragment. Finally, a contains relation is added between container and liquid. The
conditions block of the open contained liquid model fragment now states:

If a container exists that adheres to the conditions put forth in the open container model
fragment, and a liquid exists that adheres to the conditions put forth in the liquid view model
fragment, and the container contains the liquid, then apply the conditions of this model fragment.

We can thus think of nested model fragments as a set of extra conditions for the model fragment
they are embedded in. For the simulator, a model fragment with nested model fragments applies only
if the nested model fragments also apply. Using nested model fragments also means that the modeler
does not have to redefine the model ingredients in the givens blocks of the nested model fragments.
This is because they are added to the system description when the simulator determines that the nested
model fragments apply. In the open contained liquid model, this means that the modeler does not have
to include the quantity amount and its dependency greater in the givens block, because these are
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already defined in the liquid view model fragment. The modeler can concentrate on the behavior that
follows from the structure of the open contained liquid model fragment. Which is that:

e Two new quantities of the liquid emerge: level and pressure. Both use quantity space zero-
plus-max, as does quantity Amount (which was introduced in the liquid view model
fragment).

e There is a directed quantity space correspondence and a positive proportionality between
amount and level. The quantity space correspondence states that if amount is at value v, then
level will be at that same value in its quantity space. The proportionality states the same thing
for the derivatives of amount and level: when amount has derivative d, so does level.

e There is a directed quantity space correspondence and a positive proportionality between
level and pressure.

The modeler now has all the building blocks needed to construct the u-tube as depicted in Figure 3-3.

The liquid flow model fragment

In the liquid flow model fragment the modeler reuses the open contained liguid model fragment twice
and connects the two containers with a liquid path. Reusing the open contained liquid model fragment
two times yields two containers: container I and container 2, both filled with liquid: liguid 1 and
liquid 2. To this, the modeler adds a liquid path and two connected relations that state that the path is
connected to both containers. The result of this structure is described in the conditions by four
statements:

e Liquid path has a quantity liquid-flow with quantity space min-zero-plus.

e The value of liquid-flow is equal to the pressure of liquid 1 minus the pressure of liquid 2.

e Liguid-flow has a negative influence on the amount of liquid 1.

e Liguid-flow has a positive influence in the amount of liquid 2.
In other words: if there is a pressure difference between liquid 1 and liquid 2, then a liquid-flow will
occur which is either positive (from container 1 to container 2) or negative (from container 2 to
container 1) and which changes the amounts of the liquids.

Simulating the u-tube

The model fragments described above describe what conclusions the simulator can draw from certain
structures. Model fragments are abstract descriptions of domain knowledge. To instantiate them, the
simulator needs a scenario.

A scenario in the u-tube domain could state that:

e Two containers exist: container A and container B. Both are open and both contain liquid:

liquid A and liquid B.
o A liquid path exists. It is connected to container A and to container B.
o The level of liquid A is greater than the level of liquid B.

Based on this scenario, the simulator will quickly derive that:

e Because liquid A and liquid B exist, there must be a quantity amount for both, and the values
of these amounts are greater than zero. This follows from applying the liguid view model
fragment.

e Because liquid A and liquid B are contained in an open container, the liquids must have the
quantities /evel and pressure. This follows from applying the open contained liquid model
fragment.

e Because the level of each liquid has a directed quantity correspondence with amount
(according to the open contained liquid model fragment) and because both amounts are
greater than zero, both levels must also be greater than zero.

e Because the pressure of each liquid has a directed quantity correspondence with level (again
according to the open contained liquid model fragment) and because both levels are greater
than zero, both pressures must also be greater than zero.
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e Because two open containers filled with liquid exist that are both connected to a liquid path, a
quantity liquid-flow exists. The value of liquid flow is equal to the pressure difference
between liquid A and liquid B. This follows from applying the liguid flow model fragment.

Note that the simulator does not know the actual values for the levels of liquid A and liquid B. It does
know that both are greater than zero, cannot be greater than max (the highest value in their quantity
spaces) and that the level of liquid A is greater than the level of liquid B. From this the simulator
concludes that either both levels have value plus or level A has value max and level B has value plus’.
Either way, the simulator will eventually find that the pressure of liquid 1 must be higher than the
pressure of liquid 2, and that this situation will trigger a liquid flow from container A to container B.
This flow will cause the amount of liquid A to decrease and the amount of liquid B to increase, which
will eventually cause the levels of the two liquids to become equal. At that time, the pressure
difference between the two liquids becomes zero and the flow stops.

This example illustrates the strength of qualitative reasoning. The u-tube model describes what
happens in a u-tube in all-qualitative terms; no quantitative values for the quantities are needed at any
time. Not only can the simulator reason with the qualitative description of the domain, it can also serve
as a tool for providing causal accounts of what is happening.

3.4 Conclusion

The previous chapter, chapter 2, focused on the use of knowledge articulation tools as educational
instruments and explored the possibilities to facilitate the development of these tools by creating a
module that offers knowledge-modeling functionality. In that chapter, qualitative reasoning was
chosen as an appropriate language for knowledge articulation in the GKOM module. This chapter has
introduced GARP as the language that GKOM will be compatible with.

Offering a knowledge articulation language is only one of the features identified in chapter 2. The
next chapter returns to these features and outlines the design of the GKOM module.

3 They cannot both have value max, because max is a point value. Two quantities cannot both be at a point and be unequal at the same time.
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4 GKOM design

This chapter describes the overall design of the GKOM module. The first section explains GKOM’s
place in the modeling process. Apart from giving an architectural overview, this section shows that the
functionality that GKOM offers is both functionally and architecturally divided over a number of
modules. In section 4.2, these modules are briefly introduced. Section 4.3 describes the knowledge-
capturing module in greater detail.

4.1 GKOM and the modeling environment

Figure 4-1 shows a high level overview of the modeling environment in which GKOM operates. The
modeling environment for which GKOM is designed is one in which the GKOM module and the user
interface module together form a stand-alone application (the modeling application), which may or
may not be connected to remote services and other modeling applications. In the figure, the modeling
application is connected only to a simulation service.

Modelling application
The user interface enters knowledge into a Knowledge models are sent to
GKOM knowledge model. the simulation service.
L= £~
The user i i
interacts with : i
the User ——L P! GKOM . p| Simulation
application P interface module service
through the module (GARP)
graphical 4—:— < :
user I I
interface. : i
p The user interface is updated when the Simulation results are sent back
knowledge in the model changes. to GKOM and incorporated into
the knowledge model.
y

Figure 4-1: Architecture of a modeling environment.

Before looking at the GKOM module at a greater level of detail, it is important to realize that the
GKOM module must be independent of both the user interface module and any remote services.
Regarding the user interface module, the idea is to create a module that handles all of the modeling
functionality and leaves only the representational issues to the application builder. This entails that no
assumptions may be made about how the knowledge is presented to the modeler. An application
builder may choose to only use a subset of the functionality offered. Regarding the remote services,
the GKOM module is designed not to depend on remote services for its operation. Also, GKOM is
only partially dependent on how the communication between the GKOM module and remote services
is implemented and on the knowledge format used by the simulator. This is achieved by creating sub-
modules inside the GKOM module that handle the communication and the import and export of
GKOM models, as the next section explains.

4.2 Sub-modules of the GKOM module

Figure 4-2 shows a high-level overview of the inner workings of the GKOM module. The tasks that
are to be performed by GKOM are carried out by a set of sub-modules.
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Figure 4-2: Sub-modules of the GKOM module and the communication between them.

These sub-modules are:

e The Application Programming Interface (API) Module. The task of this module is to offer the
user interface module, depicted in Figure 4-1, a set of handles by which to control the
knowledge captured and control the simulation process carried out by the GARP server.
Because the GKOM module will be incorporated into a modeling application, these ‘handles’
are in the form of method calls on GKOM objects. The full set of these methods is referred to
as the Application Programming Interface.

e The knowledge-capturing module. It is the task of this module to capture the actual
knowledge that a modeler is working on.

e The import-export module. This module converts the knowledge representation used by the
GKOM module to a textual representation that can be sent over a network connection or
written to a file.

e The communication module. The current task of this module is to act as a client to the
simulation service. This includes sending and receiving knowledge models and instructing
the simulation service to run simulations on the knowledge.

This separation into modules is a conceptual one. In particular, the API module and the knowledge-
capturing module are closely intertwined in GKOM. The other two modules are modules in a literal
sense: they are strictly separate from the GKOM module as a whole and can easily be replaced. The
import-export module can be replaced when the knowledge format required by external services
changes. The communication module can be replaced when the communication protocol to control the
simulation service changes.

The knowledge-capturing module

The knowledge-capturing module has two tasks: it captures knowledge in the form of a model, and it
offers modeling support. The knowledge representation itself uses the vocabulary discussed in chapter
3, with some extensions discussed in section 4.3. The issue of modeling support is discussed in chapter
5.

The API module

An API is a module’s interface with the outside world. The API defines the functionality of a module,
while hiding the complexity of the actual implementation of that functionality. Broadly, there are two
categories of functionality that GKOM offers: functionality to create and manipulate a model and
functionality to communicate with external sources. One such source is a simulation service;
simulation is not done by GKOM itself, but by the GARP server, to which GKOM serves as a client. It
forwards all simulation requests to the server and incorporates all the simulation results directly into
the knowledge model.
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The import-export module

The GKOM knowledge representation is an object-oriented one, consisting of objects with properties
and methods. These objects exist in the computer’s memory. To communicate a model with external
services (or even to store a model as a file on a disk) a representation is needed that can be sent over a
network connection or written to a file. The task of the import-export module is that of converting
from the ‘native’ GKOM representation to an external one, and from the external representation back
to the native representation.

An important requirement for this module is that it can be easily extended — or replaced entirely —
when the external format changes. In fact, it is not inconceivable that multiple external representations
will one day exist concurrently. The GKOM module must thus be independent of which import-export
module is used, what the external knowledge representation looks like and how that external
representation is created. But GKOM will include a ‘default’ import-export module, which translates
to and from the external representation used by the simulation service. Currently, this is a
representation in the eXtensible Markup Language (XML, e.g. Harold & Scott Means, 2002).

The communication module

The task of the communication module is to handle all communication between the GKOM module
and external services or other modeling applications. It is controlled by the API module and uses the
import-export module to convert GKOM models to external representations and external
representations to GKOM models. Like the import-export module, the main requirement for this
module is that it should be independent of the other modules; the GKOM module as a whole must be
able to operate without it or with a different communication module. It must be possible to alter the
communication module when changes are made to the protocol used to communicate with remote
sources, and these changes should not affect the operation of the GKOM module.

Presently, only one remote source exists: a simulation service. It is implemented as a GARP
application embedded in a HyperText Transfer Protocol (HTTP) server'. Traditionally, the clients of
HTTP servers have been browsers, requesting HTML pages on the server. In the case of the GARP
server the communication module in GKOM is the client and the ‘pages’ it requests are virtual,
representing instructions (such as ‘load model’, ‘run full simulation’ etc) to the simulator. The server
responds with the result of the instruction, which could either be a report (‘model loaded’, for
example) or the output of a simulation process.

4.3 Design of the knowledge representation

This section outlines the design of the knowledge-capturing module. It describes the primitives of the
GKOM knowledge representation and the design decisions made in the development of GKOM.
Because the GKOM module is written in Java, this section begins with a very short introduction to
object-oriented programming to familiarize the reader with the object-oriented terminology.

4.3.1 A very short introduction to Object Oriented
Programming

Object Oriented Programming (OOP, e.g. Satzinger & Qrvik. 1996) has originally been developed at
the Xerox Palo Alto Research Center in the 1970’ties. The procedural languages of the time basically
consisted of long sequences of instructions to the processor, operating on a set of data shared by the
entire program. The Xerox researchers felt that it would be more natural to have a language that would
consist of objects: small pieces of data, accessible only by sending a message to the object that
requests the data from it. The objects would be representations of real-world things (a person, for
example) and the messages would return properties of these things (like a person’s date of birth).

A programmer writing in an object-oriented language creates classes that consist of members
(also referred to as properties) and operations (also called methods). Staying with the example of the
representation of a person, a very simple class Person would consist of a property ‘name’ and a
property ‘date of birth’. It would have operations that return these properties (‘getName’ and

"HTTP version 1.1 is described in RFC 2616, which can be found at http://www.ietf.org/rfc/rfc2616.txt.
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‘getDateOfBirth’, for example) and operations that perform some sort of logic on these properties (like
a method ‘getAge’ that uses the current date and the date of birth property to determine how many
years have passed in between).

Classes are the blueprints for objects; an object is an instance of a class, created in a running
program. We could have one instance of Person with name ‘Mary’ and date of birth ‘May 15, 1974’
and one with name ‘John’ with date of birth ‘January 6, 1962°. This distinction between classes and
objects is a crucial one, and one that is often hard to grasp for novice object-oriented programmers.
Classes describe the types of objects that can exist in a program and are created by the programmer,
while objects come into existence at runtime and carry the actual data associated with a single instance
of the class. Two things add to the confusion about classes and objects. Foremostly, the term object is
often also used to refer to the class. Second, the code that the programmer writes inside a class always
operates on instances of classes. For example, a piece of code could iterate over a set of Person-objects
to find all Persons above the age of 65.

We include this swift introduction to OOP to clarify that the distinction between the API module
and the knowledge-capture module made above is a purely conceptual one. Knowledge is captured in
GKOM as a set of instances of classes. Example classes include Entity, Quantity, and ModelFragment.
The API available to the application builder is made up of the operations defined for these classes.
Example operations are Entity.getName, Quantity.getValue and ModelFragment.getConditions.

4.3.2 Three knowledge levels, ten modeling primitives

The GKOM knowledge representation offers ten modeling primitives: entities, properties, relations,
quantities, quantity spaces, values, derivatives, dependencies, model fragments and scenarios.
Additionally, GKOM discriminates between three types, or levels, of knowledge: type-level,
occurrence-level, and instance-level knowledge. The knowledge in a model is separated in three types
of knowledge to underscore the fact that different parts of a model play different roles. The first role is
that of type or class. Modeling primitives that play this role generically define the existence of certain
concepts. An entity at the type-level, for example, represents a class of entities. The second role is that
of occurrence. Occurrences are members of the classes defined at the type-level and modelers use
them to construct model fragments and scenarios. The third role is that of instance, or simulation
result. The subtle but important difference between occurrences and instances is that occurrences are
created and controlled by modelers and used to build a model, whereas instances are created as the
result of a simulation process.

The knowledge levels and knowledge primitives are the two dimensions along which the
knowledge representation is constructed: with a few exceptions, each of the knowledge levels contains
all of the knowledge primitives. In other words: there are separate classes for all primitives at each of
the levels, yielding 30 unique classes. A separate class represents the model itself. Class Model serves
as a container for primitives at each of the knowledge levels. In a model, primitives at the type-level
represent the ontology of the domain that the model captures. They prescribe how primitives at the
occurrence-level, used to create model fragments and scenarios, can be used. Primitives at the
instance-level represent simulator output.

The type-level

Primitives at the type-level represent ontology-like knowledge. At this level a modeler specifies what
types of things exist in the domain and how these things are related. The distinction between types and
occurrences (the second level) is like the distinction between classes and instances in the object-
oriented paradigm: types are the blueprints for occurrences. Using the u-tube model outlined in section
3.3 as an example, the type-level of that model will contain, among other things, the entities shown in
Figure 3-4: ‘entity’, ‘object’, ‘container’, ‘fluid path’, ‘substance’, and ‘liquid’. It will contain the
relations ‘contains’, between container and liquid, and ‘connected’, between container and fluid path.
And it will contain the quantities ‘level’, ‘pressure’, and ‘amount’, all related to liquid, and the
quantity ‘liquid flow’, related to the liquid path.

It is important to realize that these type-level primitives are used to describe an ontology of the
domain, not an actual construct like a model fragment or scenario. In fact, the type-level objects in a
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model define what occurrence-level objects are available for building model fragments and scenarios,
and how these can be used. This is described in detail in the next section.

There are a number of reasons to include type-level knowledge in the knowledge representation:

e The type-level objects can be used to create a toolkit-like functionality in a modeling
application. In an educational setting, a teacher may predefine the type-level primitives, and
the task for the students may be to use them as building blocks to create model fragments and
scenarios.

e The information recorded at the type-level can be used for offering support. The support
system can use that information to determine whether modelers make proper use of the
building blocks offered to them, and correct them when they do not. In this sense, creating
the type-level of a model can be seen as ‘teaching’ the support system about the domain.
Offering support is the subject of chapter 5.

e The type-level primitives capture the assumptions that a modeler makes about a domain.
Forcing the modeler to express these promotes reflection. So does confronting the modeler
with the consequences of these assumptions when at some later time the modeler tries to use
an occurrence in a way that is not allowed by the ontology, or, in other words, by the
modeler’s own assumptions.

At the same time, however, the use of a type-level adds an extra layer of complexity to the knowledge
representation. It adds semantical richness, but does so at the expense of what we could call freedom
of expression. A modeler can no longer simply introduce an entity while building a model fragment,
for example. Instead, the modeler must first create the entity type and place it in the entity hierarchy,
to subsequently use an occurrence of the newly created entity type in the model fragment. And this is
true for all modeling primitives, up to a new value for a quantity.

To answer the question of whether the benefits of using type-level knowledge justify the loss of
freedom of expression, consider two possible applications that may use the GKOM module. One is an
application in which students express their knowledge of a domain. In this kind of application, all the
benefits mentioned above are clear and the type-level knowledge would be used to make the
application easier to use, to offer good learner support and to provoke contemplation on the part of the
learner. Another possible use of the GKOM module, albeit not one that is given much attention in this
document, is in a modeling environment for experts. Experts will expect to be treated as such and may
indeed consider the type-level as an extra layer of complexity that does not add to the expressiveness
of the knowledge representation. Even though the third of the three benefits mentioned may still apply
to them. But for such an application, the application builder can, at least in part, automate the process
of creating the type-level. For example, when the expert introduces a new entity in a model fragment,
the application could simply create a new entity type and a new occurrence of that entity type at the
same time”. This would eliminate the objection, and the benefits still hold.

The occurrence-level

Objects at the occurrence-level are the building blocks with which model fragment and scenarios are
composed. They represent how the prototypical elements at the type-level are used to create new,
aggregate types. The occurrence-level is also subject to the bulk of the support built into GKOM.

A type-level object describes a class of things and the properties that members of that class may
have. An occurrence describes an individual member of the class and the actual properties it possesses,
along with their values. Taking the model fragment ‘liquid view’ in section 3.3 as an example, the
entity ‘liquid’ in that model fragment is an occurrence of the entity type ‘liquid’. The entity type
describes liquids conceptually: a liquid is a particular type of substance and it may have the quantities
‘amount’, ‘pressure’, and ‘level’. The entity ‘liquid’ in the model fragment ‘liquid view’ specifies that
this particular liquid has a quantity ‘amount’.

For entities, this difference between conceptual descriptions and individual descriptions is
familiar to most knowledge engineers. GKOM extends this notion to all modeling primitives: all
primitives are represented at both the type-level and the occurrence-level. Returning to the example

2 This raises the issue of how much can be automated. Where in the entity hierarchy is the new entity type to be placed? What if an entity by
the given name is already present there? This issue will be discussed in chapter 9.
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model, the quantity ‘amount’ in the ‘liquid view’ model fragment is an occurrence of a quantity type
‘amount’ in the ontology, as the relation ‘contains’ between the entities ‘container’ and ‘liquid’ in the
‘contained liquid’ model fragment is an occurrence of a relation type ‘contains’ in the ontology. An
occurrence cannot exist without a type and cannot have more than one type. A type can have an
unrestricted number of occurrences (including none) in one or several model fragments or scenarios.

An occurrence must be used in accordance with what its type specifies about possible use. An
entity at the occurrence-level, for example, may have no other quantities than those possessed by its
type. And a relation at the occurrence-level may have no other left and right hand side than the ones its
type has’. This is why we refer to the type-level as a model’s ontology: it describes what elements
exist in a domain and how these elements may be used to create aggregates. This does not mean that
an entity in a model fragment or scenario must have all quantities or properties that its type has, it
means that the entity may not have any other ones. The type-level does not mandate a particular kind
of use; it prohibits invalid use.

The support system actively monitors the construction of model fragments and scenarios and
intervenes when the modeler uses an occurrence in an invalid way. For this task it uses the information
at the type-level. An intervention by the support system forces the modeler to either build the model
fragment or scenario differently, or update the type-level information. Either way, the result is that the
type-level accurately describes the domain ontology at any time.

All modeling primitives are represented at the occurrence-level except one: the scenario. This
stems from the fact that occurrence-level objects are used to create model fragments and scenarios,
and thus include only the primitives that can be used in these aggregates. That does not include
scenarios. It does include model fragments, because model fragments can be used inside other model
fragments, as the example model in section 3.3 demonstrates.

The instance-level

The objects at the instance-level represent the result of a simulation process. Instances are similar to
occurrences in that they represent individual members of a class rather than concepts, and in that they
have a reference to a type. The difference between them is largely a conceptual one: it underscores the
fact that occurrences are created by the modeler, and instances by the simulator. But there are also two
technical differences. The first is that the validity of instances with respect to their types is not actively
enforced by the support system. This is because instances are not created by human agents but by the
simulator®, and the simulator can be expected to produce valid output. The second difference is that
instances are state-aware. Every instance knows in which states in the simulation it exists, and some
instances, like quantities and properties, have values that may change from state to state.

The modeling primitives

The ten modeling primitives in GKOM are derived from a subset of the GARP terms introduced in
section 3.2. They are introduced briefly here, and are discussed at length in chapters 7and 8.

The modeling primitives are:

e Entity A thing or concept. At the type-level, an entity describes a class of things, at the
occurrence and instance-levels an individual thing. Entities can have properties, relations, and
quantities, and at the type-level an entity can have a parent (a more general entity) and
children (a set of more specific entities).

e Property An attribute of an entity. In GARP this primitive is called attribute, which also
includes relations. In GKOM these are two separate primitives. At the type-level, a property
represents a possible attribute of an entity and has a set of possible values. At the occurrence-
level a property has a single, actual value and at the instance-level it potentially has a
different value in each state. A property is related to a single entity.

e Relation A relation between two entities. In GARP this primitive is called attribute, which
also includes properties. A relation has a left hand side entity and a right hand side entity and
exists at all knowledge levels.

3 The inheritance of properties, relations and quantities provides some flexibility in this respect, as explained in section 4.3.3.
* More precisely, instances are created by the input-output module translating the output of the simulator to GKOM.
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e Quantity A variable associated with an entity. A quantity has a set of possible values,
contained in a quantity space, and a set of possible derivatives. At the occurrence-level, a
quantity may additionally have an actual value and actual derivative, which must be one out
of the set of possible values and derivatives. At the instance-level a quantity potentially has a
different value and derivative in each state. A quantity may be associated with a number of
entities at the type-level, and with a single entity at the occurrence and instance-levels.

e Quantity space A set of alternating point and interval values, representing the possible
values of a quantity. At the type-level there is a many-to-many relation between quantities
and quantity spaces: a set of quantities may use the same quantity space and a single quantity
may use several quantity spaces. At the occurrence and type-levels, a quantity space is always
associated with a single quantity.

e Value The value of a quantity. A value is part of a quantity space and represents either a
point or an interval. Every value is associated with one quantity. Values exist at all three
knowledge levels.

e Derivative The direction in which a quantity changes. Technically, derivatives are exactly
the same as values in GKOM,; the difference between the two is entirely conceptual.

e Dependency A binary relation between quantities, values, or derivatives. Dependencies are
further divided into inequalities, correspondences and causal dependencies, the latter
including proportionalities and influences, which were introduced separately in section 3.2.
Dependencies only exist at the occurrence and instance-levels, because the full set of
dependency types is fixed, while including a type-level representation would suggest that the
modeler could create custom dependency types.

e Model fragment A construct describing the emerging properties of an aggregate of other
primitives. Model fragments exist at all three knowledge levels.

e Scenario A description of an initial state of a system, serving as input to the simulator. At the
type-level a scenario represents the input to the simulator, at the instance-level it describes
the state of the input system in a particular state of the simulation. Scenarios do not exist at
the occurrence-level because they cannot be used inside a model fragment or another
scenario.

The statement at the beginning of this section that all modeling primitives exist at all three levels can
now be clarified. The type-level consists of the classes EntityType, PropertyType, RelationType,
QuantityType, QuantitySpaceType, ValueType, DependencyType, ModelFragmentType, and
ScenarioType. Types are related to other types, so EntityTypes have PropertyTypes, RelationTypes
and QuantityTypes, QuantitySpaceTypes consist of ValueTypes and are associated with a number of
QuantityTypes, and RelationTypes relate two EntityTypes, to give a few examples.

The occurrence-level contains the classes Entity, Property, Relation, Quantity, QuantitySpace,
Value, Derivative, Dependency, and ModelFragment. For brevity, these names are not appended with
‘Occurrence’. Every object of a class at the occurrence-level is related to (is an occurrence of) an
object of the class at the type-level that represents the same modeling primitive. So every Entity is
related to an EntityType, every Property to a PropertyType, etc. Besides that occurrences refer only to
other occurrences, so a Property belongs to an Entity, a Relation has a left and right hand side Entity
and a Value is part of a QuantitySpace and belongs to a Quantity.

The instance-level contains the classes Entitylnstance, Propertylnstance, Relationlnstance,
QuantityInstance, QuantitySpacelnstance, Valuelnstance, Derivativelnstance, Dependencylnstance,
Scenariolnstance, and ModelFragmentInstance. Any object of one of these classes has a reference to
an object of one of the classes at the type-level, so every Quantitylnstance is related to (is an instance
of) a QuantityType, every Valuelnstance to a ValueType, etc. Other than that, instances refer only to
other instances.

Another statement made above, that type-level objects prescribe how the occurrence-level objects can
be used, can also be clarified now. It means that an occurrence O1 can be related to an occurrence O2
if the type of occurrence O1 is related to the type of occurrence O2 in the same way. So for example, a
modeler can only create a property P for entity E if E is an occurrence of EntityType ET and P is an
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occurrence of PropertyType PT and PT belongs to ET. Whether PT belongs to ET is defined in the
entity hierarchy, discussed in the next section.

4.3.3 The role of the entity hierarchy

At the type-level, entities are organized in a hierarchy. Every entity has a single parent and an
unrestricted number of children. Because only entity fypes are organized this way, the entity hierarchy
is more formally also referred to as the entity type hierarchy.

GARP also has the notion of an entity hierarchy, an example of which was given in Figure 3-4.
But the GKOM entity hierarchy has an additional purpose: it enables inheritance of properties,
relations and quantities. Any child entity type CET of parent entity type ET inherits all property types,
relation types, and quantity types from ET and can additionally be given a set of property types,
relation types, and quantity types of its own. In the u-tube example the entity type ‘substance’ would
be given the quantity type ‘amount’, so that all children of substance (‘solid’, ‘liquid’ and ‘gas’)
inherit that quantity. Quantities that apply only to one of the children are assigned to that particular
child, so ‘level’ would be assigned to ‘liquid’, not to ‘solid’ or ‘gas’.

This principle of inheritance influences what is considered valid use of objects at the occurrence-
level. The question at the end of the previous section, when does a property type PT belong to an
entity type ET, can now be answered: PT belongs to ET if PT was assigned to ET directly or if ET
inherits PT from its parent. This is also true for relation types and quantity types. In the U-tube
example this entails that occurrences of entity types ‘solid’, ‘liquid’ and ‘gas’ can be given
occurrences of quantity type ‘amount’, while only occurrences of ‘liquid’ can be given an occurrence
of ‘level’.

GKOM uses this extended notion of the entity hierarch for two reasons. First, giving property, relation
and quantity types a place in the entity hierarchy transforms the type-level from a collection of
unrelated concepts into an ontology of the domain. In other words: the type-level does not only
enumerate all possible entities, properties, relations and quantities in the domain, it also contains
information about how all of these elements are related. Incorporating ontology-like information into a
model is desirable in itself, for the reasons given in section 4.3.2. The second reason is related to the
fact that GKOM will not allow the modeler to create duplicate property, relation or quantity types and
at the same time will not allow the modeler to assign a property type to more than one entity type or a
relation type to more than two (left and right hand side) entity types. This forces the modeler to
consider carefully where to place properties and relations in the entity hierarchy, since their placement
will determine which occurrences of entity types may use them. We expect this to lead to greater
conceptual clarity of the model.

4.3.4 Model, simulation, state, and transition

There are four classes in the GKOM knowledge representation that cannot be considered to belong to
the type, occurrence or instance-levels. These classes represent the model itself, the states and
transitions resulting from simulations based on a model and the concept of a simulation itself. All of
these classes can be considered containers for other objects.

e Model All model ingredients described in this chapter are in some way part of a model. Class
Model captures this fact. A model consists of a set of entity, property, relation, quantity,
quantity space, model fragment and scenario types. These types are direct members of a
model. Objects of other primitive types are indirect members of a model: occurrences through
the model fragment and scenario types of a model, and instances through the simulations
based on a model.

e Simulation A simulation is a collection of states and state transitions based on a particular
scenario. Simulations are stored along with the model for future reference. An object of the
Simulation class holds a reference to the ScenarioType that it is based on and a set of State
and Transition objects.

e State A state holds all the instance-level objects that are active in a particular state of the
simulation. Objects of the State class are members of a Simulation.
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e Transition A transition captures how one state changes into the next state. Objects of the
state class are members of a Simulation and contain all instances involved in a state-change.

4.4 Conclusion

This chapter has given a high-level overview of the design of the GKOM module. The GKOM module
consists of three sub-modules: the knowledge-capture module, the import-export module and the
communication module. In the remainder of this document, the primary focus will lie on the
knowledge-capturing module. It has been introduced extensively in this chapter. The next chapter
focuses entirely on one of the most important features of that module: offering modeling support.
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5 Offering support

This chapter describes the modeling support built into the GKOM module. This first section briefly
introduces why support is necessary, what sort of operations require support, what sort of mistakes a
modeler might make and how the GKOM module will prevent these mistakes. After this introduction,
a detailed description of the operations that require support is given in sections 5.2 through 5.4. These
sections handle the creation, modifications and removal of knowledge ingredients, respectively.
Finally, section 5.5 handles the technical implementation of the support system.

5.1 Introduction.

Building a model is the process of articulating one’s knowledge in a particular formalism. Users of a
modeling environment can be expected to be familiar with the domain for which they are building a
model, but not necessarily with the modeling formalism. Modeling support should thus focus on the
correct use of the modeling language, rather than on the semantics of a model. The errors that a
modeler can make in creating a GKOM model, fall into three categories:

e Errors related to the use of duplicate names.

e Errors related to conflicts between information at the type and occurrence-levels.

e Errors related to unforeseen side effects of actions.
The actions of a modeler also fall into three categories:

e Actions that result in the creation of new model ingredients (discussed in section 5.2).

e Actions that modify existing model ingredients (section 5.3).

e Actions that remove model ingredients from a model (section 5.4).
Duplicate name errors occur when a modeler uses the same name for different model ingredients in the
same context. They can happen while creating new model ingredients or while modifying the names of
existing ones. Conflicts between information at the type and occurrence-levels are conflicts between a
model’s ontology and the contents of its scenarios and model fragments. The ingredients of scenarios
and model fragments are occurrences of the types defined in the ontology, and they can only be used
in ways defined in the ontology. Errors of this kind occur when creating knowledge and modifying
knowledge. Unforeseen side effects of actions can occur when a user is modifying or removing model
ingredients. Side effects are conflicts between model ingredients at the type and occurrence-levels that
result from operations upon different model ingredients.

Preventing these errors is the first goal of the GKOM support system, and it does so by not allowing
them to happen. The second goal is to explain the error to the modeler. The modeler needs to become
familiar with the modeling formalism, and errors are a good opportunity for GKOM to explain the
formalism to the user. GKOM must explain why the suggested action is not allowed and what the
effects would be if the action would be carried out. The following three sections cover creating
knowledge, modifying knowledge and removing knowledge, and show how these types of actions can
lead to the three types of errors described above.

5.2 Creating knowledge

Guiding the creation of knowledge in a model is not only a matter of checking conditions that must
apply. It is primarily a matter of not offering operations that would create knowledge in improper
ways. A scenario, for example, cannot contain a model fragment, so the GKOM API does not define a
method to add a model fragment to a scenario. Only knowledge creation operations that create valid
model ingredients are defined in the GKOM API. This way, the API implicitly supports the modeler in
not creating a knowledge model that is structurally incorrect. The GKOM support system is thus
concerned with operations that are correct in certain circumstances, and incorrect in others.
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A modeler can create model ingredients at two levels in GKOM: the type and occurrence-levels.
At both levels, knowledge creation can result in duplicate names. Additionally, at the occurrence-level
errors related to conflicts between the type and occurrence-levels can occur.

5.2.1 Creating elements at the type-level

One operation that can have a valid effect in some situations and an invalid one in another is the
operation that gives a model ingredient a name. The result of that operation will only be valid if the
name given is unique. Users can distinguish between the different model ingredients in a model based
on two characteristics of a model ingredient:

e The type of model ingredient. A user knows the difference between an entity and a relation,
for example.

e The model ingredient’s name. The name identifies the model ingredients among the other
elements of the same type.

The combination of these two characteristics should be unique for every model ingredient in a model.
Not enforcing this restriction would lead to an ambiguous model, both from the perspective of the user
(who would not be able to distinguish between the two elements) and from the perspective of the
simulator (who would simply consider them the same).

However, the above does not imply that no two elements of the same type can exist in the same
model. This is because all elements in a model exist in a particular context. Entities in the entity
hierarchy exist in the context of the model that the entity hierarchy is part of. This entails that no two
entities may exist in the entity hierarchy by the same name, as explained above. But entities in a model
fragment exist in the context of that model fragment. It is not an error two have two entities with the
same name in two different model fragments, nor is it an error to have an entity in a model fragment
that has the same name as an entity in the entity type hierarchy. We can think of the context that a
model fragment provides as a ‘name space’ for its members.

In short, no two model ingredients of the same type with the same name may exist in the same
contexts. The following contexts are found in a model:

e The model itself. The model is the context for the entities, properties, relations and quantities
at the type-level, the quantity spaces, the scenarios and the model fragments. It follows that
no two entities, properties, relations, quantities, quantity spaces, model fragments or
scenarios may exist in a model by the same name, but it is possible that two members of
different types have the same name in a model. For example: it is possible that an entity and a
model fragment have the same name.

e Each of the model fragments and scenarios. A model fragment or scenario enforces the same
restrictions upon its members as a model does: all members of the same type must have a
different name, but it is all right for two members of different types to have the same name.
But each of the model fragments and scenarios enforce these restrictions individually.
Because of this, it is possible that two members of the same type in two different model
fragments or scenarios have the same name. Also, the context provided by a model fragment
or scenario is not related to the context provided by the model. Members of a model fragment
or scenario may have the same name as members of the model.

e Each of the quantity spaces. Values exist in the context of a quantity space. This means that
no two values by the same name may exist in a single quantity space, but two different
quantity spaces may both contain a value v.

To prevent the modeler from using duplicate names, GKOM performs a check every time a user
creates a new model ingredient and refuses to create the element if an element of that type by that
name already exists in the context that the modeler is in. This achieves the first goal of offering
support: preventing mistakes. To achieve the second goal — explaining the user about the formalism —
the error text presented to the user should make clear that it is the context that prevents the user from
creating the new element. As an example, consider a modeler creating a model fragment liguid flow, in
which an entity container exists and to which the modeler is adding another entity container. This is
an error: within one context (the liguid flow model fragment) the user is creating two elements of the
same type (both entities) with the same name. To resolve the error, the user could change the context,
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change the type of element being created or change the name of the element. The user interface
module could choose to offer all three resolutions to the modeler. But because it is unlikely that the
modeler would like to change the context or the type of element being created, the user interface could
simply present the modeler with an error text that could read:

An entity called ‘container’ already exists in model fragment ‘liquid flow’.
This makes it clear that it is the name ‘container’ that causes the problem and that it is the model
fragment ‘liquid flow’ that vetoes the creation of the new element.

When creating model ingredients at the type-level, using duplicate names is the only type of error that
GKOM needs to check for.

5.2.2 Creating elements at the occurrence-level

At the occurrence-level, the GKOM support system checks for both duplicate name errors and errors
related to conflicts between information at the type-level and information at the occurrence-level.
Duplicate name errors are described in the previous section and are no different at the occurrence-
level: they occur when the modeler creates two elements of the same type by the same name in the
same context. At the occurrence-level, the context is a scenario or model fragment. This section
focuses on inconsistencies between the information at the type-level and the information at the
occurrence-level.

Recall from the previous chapter that members of model fragments and scenarios are of a different
type than members of a model. The members of a model form an ontology of the model’s domain:
they define the types of entities that exist in the domain, the kind of properties and quantities that these
entities can have and the relations they can be part of, and the types of quantity spaces that the
quantities may use. In a sense, they provide the building blocks for creating model fragments and
scenarios.

Members of model fragments and scenarios are occurrences of the types defined in the model.
The entities container I and container 2 in model fragment /iquid flow, for example, are occurrences
of the generic entity container in the model. This generic entity is a template for the containers in the
model fragment: it defines how container 1 and container 2 can be used in the model fragment (they
can contain a liquid, for example), but not how they will be used. How they will be used is up to the
modeler creating the liguid flow model fragment.

It is GKOM’s task to ensure that the model ingredients at the occurrence-level adhere to the
ontology defined by the model ingredients at the type-level; GKOM will not allow any action that
causes inconsistencies between the information at these two levels. To implement this functionality,
GKOM requires the modeler to provide a type for every model ingredient created at the occurrence-
level. Whenever the modeler tries to do something with the newly created element that is not explicitly
allowed by its type, GKOM explains to the modeler that he is creating an invalid occurrence and
refuses to perform the action.

An example of this behavior is when a modeler is creating a model fragment that contains a
container — an occurrence of the entity type container in the entity hierarchy. At the type-level, the
modeler defined that a container can have a property openness and a relation contains with entity
liquid. Suppose that an unrelated property at the type-level is status, which is used for pipes and can
have the values aligned and unaligned. Then, the modeler tries to assign the property status to the
container in the model fragment. To do this, the modeler must supply the property type status (the
property as defined at the type-level) and the occurrence of the container used in the model fragment.
The modeler’s intention is to add a property status to the entity of type container. But this action is
invalid, because containers do not have a property status, according to the ontology. GKOM would
thus refuse to fulfill the modeler’s request and respond by saying:

Entities of type ‘container’ cannot have a property ‘status’.

With this behavior, GKOM achieves both goals of offering support. By refusing to perform the
request, GKOM ensures that the model does not become invalid. With the explanation text, it explains
the modeler about the formalism: no inconsistencies may exist between the information at the type-
level and the information at the occurrence-level.
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Relations and quantities at the occurrence-level are created in a comparable manner. To create a
relation as part of a model fragment or scenario, a modeler must supply a relation type (a member of
the model) and a left hand side and right hand side entity from the model fragment or scenario.
GKOM checks whether the entity types of the entities in the model fragment are the same as those
placed at the left and right hand side of the relation’s type. If this is not the case, creation of the
relation is aborted and with an appropriate explanation. To create a quantity as part of a model
fragment or scenario a modeler must supply a quantity type and an entity from the model fragment or
scenario that the quantity will belong to. Before actually creating the quantity, GKOM checks whether
the type of the entity supplied can have quantities of the specified quantity type. If this check fails, the
quantity will not be created and a text is generated explaining why the action would create an invalid
quantity.

Before a value can be assigned to a quantity in a model fragment or scenario, the quantity must be
given a quantity space. The modeler defines the types of quantity spaces as members of the model and
assigns these quantity space types to quantity types as possible quantity spaces of the quantity. When a
modeler subsequently assigns a quantity space to a quantity in a model fragment or scenario, the
quantity space given must be one of those defined as the possible quantity spaces for the quantity. If
this is not the case, the action is aborted and the user will be told something like:

‘min-zero-plus’ is not a valid quantity space for quantities of type ‘level’.

Once a quantity in a model fragment or scenario has been assigned a quantity space, the quantity has a
set of possible values. These can then be used as the actual values of the quantity (the value of quantity
q is plus) or in dependencies (the value of q is greater then zero). But the modeler may not use values
that are not part of the quantity space of a quantity. If a user would try to assign the value ‘min’ to a
quantity ‘level’ that has a quantity space with the values ‘zero’, ‘plus’ and ‘max plus’, GKOM refuses
to assign the value and tells the modeler:

‘min’ is not part of the quantity space of ‘level’.

To summarize, creating new model ingredients can yield two types of errors: those related to naming
and those related to conflicts between types and occurrences. The next section, which covers
modifying model ingredients, introduces the third type of error: model ingredients becoming invalid as
a side effect of operations on other model ingredients.

5.3 Modifying knowledge

Modeling is a process of refinement; early versions of a model rarely capture the domain correctly.
Refining is an important part of the modeling process and GKOM must support modifying models
properly.

Modifying model ingredients can lead to all three types of errors described in the introduction.
Renaming an element is no different then giving it its initial name: it can result in a duplicate name
error. Moving a property, relation or quantity at the occurrence-level from one entity to another, can
result in a conflict between the type and occurrence-levels in the exact same way that assigning a
newly created property, relation or quantity to an entity can. These two types of errors have been
discussed in sections 5.2.1 and 5.2.2.

Errors specific to modifying knowledge are those that cause inconsistencies in a model. For example,
if the modeler changes the quantity space of a quantity in a model fragment or scenario, any values of
that quantity that are part of the model fragment or scenario could become invalid as a side effect.
Consider a quantity in a model fragment or scenario that has been assigned the value min and is
subsequently given a quantity space that does not contain the value min. In that case, changing the
quantity space would make values in the model fragment or scenario invalid. The invalid values are a
side effect of an operation that does not concern the values directly; the operation is concerned with
quantity and its quantity space, not with the values in the model fragment.

Another example is when a modeler deletes model ingredients at the type-level that have
occurrences at the occurrence-level. When a modeler deletes an entity type from the entity hierarchy,
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but entities in model fragments or scenarios reference that entity as their entity type, the entities in the
model fragments or scenarios become invalid as a side effect of the operation.

GKOM does not allow any action that makes a model invalid. This entails that none of the individual
model ingredients in a model may become invalid. This supports the modeler in the sense that the
model cannot ‘break’. But simply telling the modeler that the suggested action is not allowed is not
sufficient. What is of interest to the modeler is what the consequences would be of the suggested
action: what model ingredients would become invalid as a side effect if the action would be carried
out. This allows a modeler to inspect these model ingredients and fix the potential problem (potential
because the operation is not actually carried out) and then try again.

The next sections describe the type of modifications that can be made on model ingredients and
the inconsistencies that they can result in.

5.3.1 Changing the structure of the entity hierarchy

At the type-level, entities, properties, relations and quantities are used to define an ontology of the
domain. It is this ontology that specifies how members of model fragments and scenarios —
occurrences of the types defined in the ontology — can be used, and GKOM uses the ontology to
support the modeler in creating members of model fragments and scenarios, as described above.
Modifying the elements that make up the ontology thus means changing the definition of what is valid
use of model ingredients at the occurrence-level. When these changes are made affer creating
occurrence-level elements, these occurrence-level elements could become invalid; it could lead to
configurations that GKOM would not have allowed at creation time.

Making the modeler aware of such inconsistencies will help the modeler to develop a more
profound understanding of the domain. To achieve this, support for modifying knowledge must not be
confined to simply not allowing the modeler to do things that make the model invalid. More
importantly, the modeler must be given insight into what the effects of modifications would be and
why these modifications would lead to an invalid model. The following four sections show how this is
achieved.

At the type-level, all entities have a parent entity and a set of child entities. Trough these
attributes the entities define an entity hierarchy. Properties, relations and quantities at the type-level all
refer to entities in some way: a property has a single entity to which it belongs, a relation has entities
as left and right hand side and a quantity has a set of entities to which it belongs. Because of this,
properties, relations and quantities can be viewed as members of the entity hierarchy: they are placed
alongside the entities they belong to. From this point of view — which is illustrated in Figure 5-1 —
changes to entities, properties, relations and quantities are changes to the structure of the entity
hierarchy.

5.3.1.1 Moving entities around in the entity hierarchy

When an entity at the type-level is given a new parent, that entity moves from one place in the entity
hierarchy to another. The result of this action is that the entity will stop inheriting the properties,
relations and quantities from its old parent and start inheriting the set of properties, relations and
quantities from its new parent. Figure 5-1 illustrates this process. The figure shows an entity type
hierarchy and the properties, relations and quantities that each entity has. The modeler is about to
move entity E4 from the right branch of the hierarchy to the left branch of the hierarchy.
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Figure 5-1: Moving an entity from one place in the hierarchy to another. Entities are highlighted.

As a child of E3, E4 inherits property P3 and relation R1 from entity E3, and property P1 and quantity
Q1 from entity E1. Additionally, E4 itself has property P4 and quantity Q2. When E4 is moved, it will
take P4 and Q2 with it, but it will no longer inherit property P3 and relation R1. The status of property
P1 and quantity Q1 remains unchanged from the point of view of entity E4, because it will inherit
these trough its new parent E2. It will also begin inheriting property P2.
If entity E4 has any occurrences in the model (that is: if any entities are used in model fragments
or scenarios that are of type E4) and any of these occurrences have a property of type P3 or are part of
a relation of type R1, then moving the entity in the hierarchy will lead to an inconsistent model.
GKOM will not allow this. When a modeler requests an entity in the hierarchy to be moved, GKOM
will do the following:
1. Determine which properties, relations and quantities are no longer valid in the new situation.
2. terate over the occurrences of the entity and select all those that use any of the properties,
relations and quantities selected in step 1.

3. If any occurrences were selected in step 2, the move operation is cancelled and the user is
told that the operation would lead to an inconsistent model. The modeler is given the set of
occurrences selected in step 2 for inspection.

5.3.1.2 Moving a property type from one entity type to another

Properties at the type-level have an entity-attribute: the entity they belong to. It is this attribute that
places the property in the entity hierarchy, and changing it results in moving the property to another
place in the entity hierarchy. Figure 5-2 illustrates this process.

Entity E1

|
Entity E2 = = Property P1 :‘— Property P1 Entity E3

Entity E4 Entity ES

Figure 5-2: Moving a property from one entity to another. Properties are highlighted in this figure.

Before the move operation, property P1 belongs to Entity E3. This means that any occurrence of E3
may have a property of type P1. Entity ES inherits P1 from E3, so any occurrences of E5 may also use
the property. Moving property P1 to entity E2 leads to a situation in which occurrences of P1 can no
longer belong to entities of type E3 and ES5. In this example, this means that if P1 has any occurrences
at all, these occurrences (properties in model fragments or scenarios) will become invalid'.

' The fact that all occurrences of P1 become invalid is a result of the configuration used in this example. If property P1 would be moved to
ES instead of E2, only a subset of the occurrences of P1 would be affected.
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GKOM will not allow the occurrences of P1 to become invalid. Before the actual move operation
is carried out, GKOM iterates over the set of occurrences of P1 to see whether any of these belong to
an entity of type E3 or any of its children. If so, GKOM cancels the operation and tells the modeler
that the operation would lead to an inconsistent model. References to all occurrences of P1 that would
become invalid are given to the modeler for inspection.

5.3.1.3 Changing the left and right hand side of a relation

Inheritance of relations down the entity hierarchy works in the same way as inheritance of properties
does, but it is not the relation itself that is inherited, but one of the relation’s sides. In the example
depicted in Figure 5-3, entities E4, ES and E7 inherit the left hand side of relation R1 from entity E2.
Entity E6 inherits the right hand side of R1 from E3. Note that E7 is the right hand side of relation R2,
and at the same time inherits the relation’s left hand side from ES5.

Entity E1

Entity F2  p—eithandside 1 p 1o tion r1 p—ughthandside 1 g 3

Entity E4 Entity 5 pcithandside 1 o 1 tion R2 Entity E6
]
I
I
Entity E7 Right the _R_ighl_hamd,_sidg =1
>

Figure 5-3: Changing the right hand side of a relation. Relations are highlighted in this figure.

The effect of changing the left or right hand side of a relation type is that occurrences of that relation
type (relations in model fragments or scenarios) may become invalid. In model fragments or scenarios,
the left and right hand side entities of relations are occurrences of the entities in the entity type
hierarchy. Following the example in Figure 5-3, when the right hand side of relation R2 is changed
from entity E7 to entity E6, all occurrences of R2 that have an occurrence of E7 as their right and side,
will become invalid.

When a modeler changes the left or right hand side of a relation type, GKOM iterates over the
occurrences of the relation to see whether they would become invalid. An occurrence would become
invalid if its left or right hand side entity is an occurrence of the entity that will no longer be the left
hand side or right hand side of the relation at the type-level. If any invalid occurrence is found, the
operation is aborted. GKOM explains to the modeler that the operation would create an inconsistent
model and passes the set of occurrences that would become invalid.

5.3.1.4 Changing the entities of a quantity

Quantities in the entity hierarchy exhibit the same behavior that properties and relations do, but have
one unique feature: they can belong to several entities. Unlike properties (that belong to a single
entity) or relations (that have a single left and right hand side), quantities can be used at multiple
places in the entity hierarchy. This makes quantities easier to use: a modeler does not have to look for
the proper place in the entity hierarchy to put a quantity (as would be necessary with a property), but
can simply put the quantity wherever it is needed.

Figure 5-4 illustrates this unique feature of quantities. Quantity Q1 belongs to E3 and E4.
Quantity Q1 belongs to a single entity: E1. Like properties and relations, quantities are inherited down
the entity type hierarchy, so all entities in the figure ‘have’ quantity Q1. Quantity Q2 belongs to
entities E3 and ES, but it is about to be removed from ES.
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Figure 5-4: Quantities in the entity hierarchy and their multiple relations with entities.

Modifying the set of entities that a quantity belongs to can be done in two ways: by adding entities to
the set and by removing entities from it. Adding an entity to the set cannot lead to any inconsistencies,
because it can never make any of the occurrences of a quantity invalid. Removing an entity from the
set can. Taking the situation in Figure 5-4 as an example, if entity E4 would be removed from the set
of entities of quantity Q3, then all occurrences of Q3 that belong to occurrences of E4, E5 or E6 would
become invalid.

GKOM will not allow this to happen, but it can tell the modeler exactly why the action cannot be
performed. It will generate a list of all occurrences of quantity Q3 that belong to occurrences of
entities E4, E5 and E6 and present that list to the modeler. The modeler can then choose to modify the
occurrences or refrain from changing quantity Q3 in the first place.

5.3.2 Modifying quantity spaces at the type-level

In relation to quantity spaces at the type-level, two things must be monitored by the support system:
changing the set of possible quantity spaces of a quantity type and modifying the set of values of an
individual quantity space.

Figure 5-5 shows how quantity types and their occurrences are related to quantity space types and
their occurrences. Every quantity is an occurrence of a quantity type. Quantity types can have a
number of quantity space types. A quantity has a single quantity space, which is an occurrence of one
of the quantity space types of its quantity type.

A quantity space type can belong to a number of quantity types. A quantity space at the
occurrence-level, however, belongs to a single quantity. Every quantity has its own quantity space in
GKOM, but it is possible (and in fact quite common) that several quantities use quantity spaces of the
same type.

Quantity space type

Quantity type | belongs to Value type 1

has n Value type 2

Value type 3

has occurrence has ocourence
has type has type
Quantity space

Quantity 1 belongs to Value 1
has 1 Value 2
Value 3

Figure 5-5: Dependencies between quantities, quantity spaces and their occurrences.
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Changing the set of possible quantity spaces of a quantity is a process that resembles that of changing
the possible entities of a quantity. Adding a quantity space to the set will never result in errors, but
removing one might.

Trough the set of quantity spaces of a quantity, a modeler specifies what types of quantity spaces
are acceptable for what types of quantities. This is part of the ontology of a model. When a modeler
subsequently creates an occurrence of a quantity type, that occurrence can only be given one of the
quantity spaces defined for the quantity type. When the set of quantity spaces for the quantity type is
later changed, occurrences may exist that use the quantity space being removed.

GKOM will not allow this to happen. Instead, when a modeler removes a quantity space from a
quantity at the type-level, it will generate the set of occurrences that use the quantity space and offer
that set to the modeler.

Like most of the model ingredients in a GKOM model, quantity spaces exist at all three levels: the
type, occurrence and instance-level. Quantity spaces at the type-level are part of a model’s ontology
and belong to quantities at the type-level, as described above. The occurrences of these quantity spaces
are quantity spaces used by quantities at the occurrence-level (quantities in model fragments and
scenarios) and the instances of these quantity spaces are those used by quantities at the instance-level
(quantities in a simulation). Occurrences and instances of quantity spaces are created after their type:
they contain the same set of values”. These occurrences and instances must thus be kept in sync with
their type.

Two kinds of changes can be made to a quantity space at the type-level: values can be added and
removed. Adding a value will never result in any inconsistencies in the model, but removing one can.
If the value that is being removed is in use, the action should not be allowed.

But the fact that occurrences of a quantity space exist does not imply that the values in that
quantity space are actually in use. A value is in use when:

e A quantity exists in a model fragment or scenario that has been assigned that value.

e A dependency exists in a model fragment or scenario that has the value as its left or right

hand side.
As an example of the second point: if a scenario exists with a dependency that states that the value of
quantity ¢ is greater than v, GKOM considers the value v of quantity ¢ ‘in use’. Removing v from the
quantity space of ¢ is then not allowed.

When a modeler tries to remove a value from a quantity space at the type-level, GKOM does the
following:

1. It builds a set of quantities that use the quantity space by iterating over the occurrences of the

quantity space asking them for the quantity they belong to.

2. It asks these quantities to what model fragment or scenario they belong.

3. It asks these model fragments and scenarios whether they contain the value that is being
removed; either in their set of values (in which case the value is directly assigned to the
quantity) or as left or right hand side of their set of dependencies.

4. 1t builds a list of all model fragments and scenarios that contain the value and passes this list
to the modeler.

Normally when GKOM returns a set of model ingredients that would become invalid by a particular
action, this set contains occurrences of the type that the modeler was modifying. In this case, that
would be a set of quantity spaces at the occurrence-level. But that would be of little use to the
modeler, who needs to know why the value cannot be removed, not in which occurrences of the
quantity space it exists. Passing a list of quantities would be more appropriate, but that would lead the
modeler to believe that it is the quantity vetoing the removal of the value, which is not the case. It is
the model fragments and scenarios containing the value that would become invalid by removing it.
Thus, returning a list of model fragments and scenarios is the best option.

2 More precisely, an occurrence of a quantity space contains occurrences of the values in its type, and an instance of a quantity space contains
instances of the values in its type.
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5.3.3 Modifying scenarios and model fragments

This section deals with modifying model ingredients at the occurrence-level. Occurrence-level
ingredients are members of scenarios and model fragments. As described in section 5.2, occurrences
must be used in a way that adheres to the constraints defined by their types. This is true when creating
members of scenarios and model fragments, and must remain true when these members are later
modified. Sections 5.3.3.1 and 5.3.3.2 investigate the operations on occurrence-level elements that
potentially make other elements invalid as a side effect. Two such operations exist: changing an
entity’s type (thus changing what properties, relations and quantities are valid fort the entity) and
changing a quantity’s quantity space (thus changing what values are valid for the quantity).

5.3.3.1 Changing an entity’s type

Entities in model fragments can be reused in other model fragments. A modeler can create a new
model fragment as a child of another model fragment and reuse the entities from the parent. In such a
case, the modeler can change the type of the reused entities to more specific ones, so that the child
model fragment becomes more specific than the parent model fragment. This section describes what
errors can result from changing an entity’s type. Before doing so, it should be noted that the entity is
the only occurrence-level element of which the type can be changed at all. None of the other
occurrences allow their type to be changed, for two reasons. First, changing the type can affect the
validity of the occurrence-level element. Changing the type of a relation, for example, can make the
relation invalid in the context of the two entities that it relates. And changing the type of a quantity can
make its quantity space invalid. The second reason is that changing an occurrence’s type changes what
it represents into something else. An example of changing the type of a property would be to go from a
property ‘aligned’ to a property ‘openness’. In the case of a relation, an example would be to go from
a relation ‘contains’ to a relation ‘connected’. Offering this sort of operation is not strictly necessary: a
modeler who creates an occurrence of the wrong type can simply throw that occurrence away and
create a new one. So while, from the modeler’s perspective, the added benefit of being able to change
the type of an occurrence is small, allowing it would require extensive support. Because of this,
GKOM does not allow modelers to change the types of occurrences. But entities form an exception,
because their types are embedded in a hierarchy. Suppose the entity hierarchy of a model contains an
entity substance that has three children: entities solid, liquid and gas. A modeler may create a model
fragment that describes some properties of /iguids, and later realize that these properties in reality hold
for all substances. In that case, the modeler will want to change the type of the liquid originally created
to substance.

The problem with changing the type of an entity is that the validity of an entity’s properties,
relations and quantities depends on the entity’s type. Figure 5-6 depicts a situation in which changing
the type of an entity would lead to an invalid configuration. On the left is a fragment of the entity
hierarchy. On the right is an entity £/ in a model fragment or scenario that has a property P/ and a
quantity Q2. The entity is an occurrence of entity type ET2 in the hierarchy, and P/ and Q2 are
occurrences of property type PT1 and quantity type Q72, respectively.

Entity hierarchy Scenario or model fragment

Property type PT1 I Entity type [m= == == == o= o= - “Sccurrence of L=1"" Entity — Property P1

Quantity type QT1 ET1 / E1 Quantity Q2

Entity type — Property type PT2
ET2 Quantity type QT2

Figure 5-6: Changing the type of an entity.

Suppose the modeler tries to change the type of E/ to entity type ETI. This is an invalid action,
because E/ has a quantity of type OQ72, which belongs to ET2. ET1 does not have this quantity type; so
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changing the type of £/ would make quantity 02 invalid. When a modeler changes the entity type of
an entity, GKOM does the following:
1. It makes a list of all properties and quantities the entity has and all relations it is part of.
2. It removes from that list all properties, relations and quantities that will still be valid for the
new type.
3. If any properties, relations or quantities remain in the list, it aborts the operation and passes
the remaining elements to the modeler for inspection.
If the list is empty after step 2, the operation is carried out.

5.3.3.2 Changing the quantity space of a quantity

Two conditions must hold when changing the quantity space of a quantity in a scenario or model
fragment: the quantity space must be a valid one for the quantity (it must be an occurrence of one of
the quantity space types that belong to the quantity’s type) and the new quantity space must at least
contain those values from the old quantity space that are used by the quantity or by the scenario or
model fragment that it is part of. The concept of ‘usage’ of values is explained in section 5.3.2.

The support for verifying the first of these conditions is described in section 5.2. Changing the
quantity space of a quantity is no different from setting the initial one. But the second condition is
different: once a quantity has been given a quantity space, values from that quantity space may have
been assigned to the quantity and may have been used as left or right hand side of dependencies that
are members of the scenario or model fragment that the quantity is part of. If this is the case, the old
quantity space cannot be removed. Instead of changing the quantity space, GKOM will explain the
problem to the modeler and pass the set of values that are in use for inspection.

5.4 Removing elements from a model

All model ingredients at the type-level may have occurrences in model fragments or scenario’s. Once
a type has an occurrence, removing that type would make the occurrence invalid. In order to be able to
determine the consequences of removing a type from a model, all types know all their occurrences in
GKOM. When a modeler tries to remove a type, GKOM will simply ask the type for its occurrences.
If it has any, GKOM aborts the action and gives the modeler the list of occurrences that would become
invalid. The modeler can inspect this list to determine what to do next.

For most elements at the type-level, the check for occurrences is sufficient to determine whether
it can safely be removed because no other elements in the model depend on them. There is one
exception: removing an entity type from the entity hierarchy. Entity types can have child entity types
and properties, relations and quantities. Removing an entity impacts these elements. GKOM’s normal
behavior in this sort of situation is to not allow the removal and pass the modeler a list of elements
affected. But for removing entity types from the entity hierarchy, GKOM offers an alternative way to
handle inconsistencies: moving all dependent elements to the entity’s parent. This process is as
follows:

1. Take all the entity’s properties and quantities and assign them to the entity’s parent.

2. Take all relations that the entity is part of, find out whether the entity is the left or right hand

side of the relation and assign that side to the entity’s parent.

3. Take all of the entity’s children and make them children of the entity’s parent.

4. Take all of the entity’s occurrences and set their type to the entity’s parent.

5. Remove the entity.

There is one precondition to this process: the entity being removed must have a parent. This is true for
all entity types except the top-level entity. When a modeler tries to removes that, the request will be
denied.

At the occurrence-level, elements fall into three categories with respect to their possible removal:
elements that can always be removed because no other elements can depend on them, elements that
can only be removed after verifying that no other elements depend on them and elements that can
simply not be removed. The latter is not really a category, but rather a single element: it is not possible
to remove a value from a quantity space at the occurrence-level. Quantity spaces at the occurrence-
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level contain the exact same values as their types (quantity spaces at the type-level) and these values
change only when the type changes. Removing a value from a quantity space at the occurrence-level is
an operation that is simply not supported.

The first category of elements, the ones that can always simply be removed, consist of properties,
relations and dependencies. These would be removed from a model fragment or scenario. They can
always be removed because no other elements can ever depend on them: properties and relations can
be removed from the entities they belong to without affecting the entity and dependencies can be
removed from a model fragment or scenario without affecting these constructs.

Entities and quantities make up the second category. Before removing them from the scenario or
model fragment that they are part of, GKOM must assure that no other elements in the model depend
on them. For example: removing an entity that has a property would leave that property without an
entity it belongs to and make the property invalid. The entity may also have dependent relations and
quantities, and in a model fragment the entity could be one that is reused in another model fragment (if
the model fragment is a parent to, or appears as the nested model fragment of, another model
fragment). Quantities in a scenario or model fragment may also have dependent elements: one of its
values, assigned as the actual value of the quantity in that scenario or model fragment or dependencies
of which the left or right hand side is either the quantity itself or a value of the quantity.

GKOM supports two ways of removing entities and quantities from a model fragment or
scenario. One is the normal behavior: remove the entity or quantity only if it has no dependent
elements, and if it does, abort the operation and return a list of all dependent elements. The alternative
way is to simply remove all dependent elements along with the entity or quantity that is being
removed. For quantities this means remove all values and dependencies that refer to the quantity. For
entities it means remove all properties, relations and quantities that the entity refers to. Note that when
removing the quantities that belong to an entity, the quantity’s values and dependencies are also
removed.

Removing an entity type from the entity hierarchy and removing an entity or quantity from a
model fragment or scenario form an exception to the general rule that GKOM will not allow any
operation that affects elements that are not themselves part of the operation. The methods for
removing these three elements are unique in the sense that they offer a solution to the problem of
dependent elements, whereas all other operations will simply report the problem and abort. There are
two reasons for making this exception:

1. The operations are likely to be common ones that should be supported and not left to the

modeler or user interface module.

2. The solutions to the problem of dependent elements are straightforward in these cases.

This is sufficient reason to make the exceptions. Also, although the rule of aborting when dependent
elements exist is broken, the rule that no inconsistencies may be introduced in a model is not broken.
Rather, possible inconsistencies are resolved.

5.5 Implementing support

GKOM is a passive module. It offers a set of functions that are called through an API and result in an
internal representation of knowledge. But by design, it cannot actively call functions on the user
interface module, because it explicitly does not make any assumptions about how the user interface is
organized. This means that GKOM cannot take the initiative in making suggestions about the model.
What GKOM can do is evaluate the effect of an action suggested by the modeler, and reject the action
if it is invalid or would lead to an inconsistent model. It then has an opportunity to explain why the
suggested action is invalid, thus teaching the user something about the formalism.

Java has a built in mechanism to abort the execution of a method, called the exception
mechanism. In brief, it allows a method to declare that instead of running normally, it may abort
execution by ‘throwing an exception’. If a method is declared in this way, the caller of that method
(which in the case of GKOM would be the user interface module) must declare how it will handle the
exception if it occurs. Figure 5-7 and Figure 5-8 illustrate the exception mechanism with a code
example. Figure 5-7 shows how a method is declared normally. No possible exceptions are declared,
so the caller can expect the method to execute correctly. Figure 5-8 shows a method that declares that
it may throw a DuplicateNameException. The method checks some conditions that must be met for the
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method to be able to execute correctly (in this case it would check whether the name supplied to the
method is not already in use), and throws a DuplicateNameException if the conditions are not met.
Otherwise, it executes normally.

public void createEntity (String name)
// create the entity
entity = new Entity (name)

}
Figure 5-7: Declaration of a normal method.

public void createEntity(String name) throws DuplicateNameException {
// check some conditions

if (conditionsFailed) {
// throw the exception
throw new DuplicateNameExcetion () ;

}

else {
// create the entity
entity = new Entity (name)

}

Figure 5-8: Declaration of a method that throws an exception.

Exceptions thrown by methods must be ‘caught’ by the code that called the method. The exception
contains a message, conveying information about why the exception occurred. The user interface
module can handle exceptions by displaying the exception’s message on screen. This mechanism
provides GKOM with the functionality it needs to offer modeling support. By throwing an exception,
GKOM can abort actions that would make a model invalid and explain to the user why the suggested
action cannot be performed.

Exceptions are like any other object in Java; they can have attributes and functions. This means
that an exception need not be only a message. GKOM has three different kinds of exceptions to cover
the support described in this chapter: one for when duplicate names are used, one for when a modeler
creates an occurrence in a way that is not permitted by the type-level and one for when a proposed
change would make the model inconsistent. Each of these exceptions carries information that the user
interface module can use to provide better feedback to the user. The next three sections describe the
three exceptions and the information they provide.

Naming errors: the DuplicateNameException

As explained in section 5.2 duplicate names always occur in a particular context and only occur when
two model ingredients of the same type contend for the same name. The context can be a model, a
scenario or model fragment or a quantity space. A DuplicateNameException has three fields:

e The name that the modeler suggested.

e The kind of model ingredient that the modeler was creating or renaming.

e The model ingredient that vetoed the use of the name. This would be a model, scenario or

model fragment or a quantity space

In addition to these fields, the exception contains a default message, such as ‘an entity called container
already exists in this model’. The user interface module can simply display the default message on the
screen, but it could also create a message that is formatted for easier reading (put the suggested name
in boldface, for example) or create a message in a different language than English.

Conflicts between the type and occurrence-level: the InvalidOccurrenceException

Whenever a modeler creates or alters a model ingredient at the occurrence-level, GKOM checks
whether these model ingredients adhere to the constraints at the type-level. If this is not the case, an
InvalidOccurrence is thrown. This can happen in a large number of situations and, consequentially, the
InconsistentModelException is the most versatile of the three exceptions described here. What
members it has depends on the context in which the exception is thrown, and is described in detail in
the GKOM API documentation. Developers may use these members to offer better support, but may
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also choose to simply display the exception message, which gives an accurate description of the
problem in each of the contexts.

Changes that lead to inconsistencies: the InconsistentModelException

Inconsistencies in a model would arise when a change in one model ingredient causes dependent
model ingredients to become inconsistent. Changing model ingredients at the type-level can cause
inconsistencies to their occurrences. Changing the type of an entity can make properties, relations and
quantities of that entity invalid. This kind of error is the result of modifying knowledge. It occurs
when modifying knowledge leads to a configuration that could never have been built from the ground
up, because InvalidOccurrenceExceptions would have been thrown.

Besides the default exception message, an InconsistentModelException contains a set of model
ingredients that would become invalid by the suggested modification. When the modeler would try to
remove an entity type from the entity hierarchy, for example, the InconsistentModelException thrown
as a result would contain all occurrences of that entity type. The user interface module can present that
set to the user, who can have a look at each of the model ingredients in the set to determine how to
resolve the problem.

5.6 Concluding remarks

Modeling support is an essential part of a modeling environment, and even more so for educational
software. Incorporating it into the GKOM module increases its utility and makes it easier for
application developers to create robust and articulate modeling applications. That said, the support
offered by GKOM focuses on correct use of the knowledge articulation language, and application
developers may want to extend it with their own, extended support features.

The next three chapters offer a detailed, technical description of how the GKOM module is
implemented, and is intended for application developers building modeling applications based on the
GKOM module.
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6 GKOM fundamentals

This chapter and chapters 7 and 8 describe the implementation of the GKOM module in detail. In
chapter 4, four sub-modules of GKOM were identified: the API module, the knowledge-capture
module, the import-export module, and the communication module. This chapter and chapters 7 and 8
focus on the API and knowledge-capture modules. The import-export and communication modules are
conceptually less interesting and are only briefly described.

One can only conceptually discriminate between the API module and knowledge-capture module.
As in any object-oriented design, the classes and their methods that make up the knowledge-capture
module are the Application Program Interface. This chapter and the next two take a programmer’s
view; describing the classes that make up the knowledge representation and the operations these
classes perform'. In brief: the knowledge representation is described by its API.

This first chapter describes the foundation of the knowledge representation: the first two levels of
the GKOM class hierarchy. This includes the abstract classes Type, Occurrence, and Instance; the base
classes for the three knowledge levels described in section 4.3.2. It also includes classes Model,
Simulation, State, and Transition, which fall outside the knowledge levels. Chapter 7 describes the
classes representing the ‘building blocks’ of the GKOM knowledge representation: entities, properties,
relations, quantities, quantity spaces, values, derivatives and dependencies. Chapter 8 introduces the
model fragment and scenario classes.

6.1 Overview

The GKOM module consists of three separate packages’: gkom.model, gkom.parsers, and
gkom.server. The classes in each of these packages serve the following purposes:
e gkom.model
Contains the classes that make up the knowledge representation.
e gkom.parsers
Contains classes that can transform a GKOM model into an external representation and vice
versa. These classes make up the import-export module of the GKOM module.
e gkom.server
Contains classes that handle the communication with the remote simulation module. The
classes in this package make up the communication module.
The primary focus of this chapter lies on the classes found in the gkom.model package and the
functionality they offer.

Language conventions and the use of UML

Two domains meet in this chapter: that of Qualitative Reasoning and that of the Object Oriented
Paradigm. Unfortunately, a number of terms are used in both domains, but have a slightly different
meaning in each of them. First of all, a class in OOP is often referred to as a #ype. In GKOM, Type
refers to either the abstract class Type or to one of its child-classes. Similarly, the term instance in the
0O domain is used to refer to objects of a particular class, while in GKOM the term refers to the
Instance class or one of its child-classes. In this chapter, the term ‘type’ is exclusively used to refer to
the Type class or its descendants and the term Instance is exclusively used to refer to the Instance class
and its descendants. Types and instances in the OO domain are called classes and objects, respectively.

The term ‘property’ is also used in both the GARP domain and the OO domain. In GKOM,
‘property’ is the name of one of the modeling primitives. In the OO paradigm a property is a member
of a class that can either be edited directly, by assigning a value to it, or indirectly, by calling the

' Developers should consider chapters 6, 7 and 8 a comprehensive introduction to GKOM, but a far more detailed description is the GKOM
API documentation. It documents all classes and the methods they consist of and is the hands-on guide for developers implementing GKOM.
At the time of writing we expect to make the API documentation available online at http://www.swi.psy.uva.nl/projects/GARP/index.html.

2 A package in Java is similar to a directory in a file system. It contains a set of related classes with special access privileges to each other’s
methods and attributes.
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appropriate get and set methods. To distinguish between a property in OOP and a property in GARP,
properties in the OO domain will be referred to as attributes (as is common in UML) or members, and
the term “property’ is only used for the corresponding GKOM primitive.

Another possible source of confusion is the fact that GKOM uses up to three classes to represent a
single GARP primitive: a child-class of Type, a child-class of Occurrence and a child-class of
Instance. For example, the classes QuantityType, Quantity, and Quantitylnstance all represent the
GARP primitive quantity. To discriminate between a statement made about the primitive in general
(‘an quantity has a name’, for example) or about one of the particular classes that represent that
primitive (‘an QuantityType has a name which is unique in the context of its Model’), the classes are
always referred to by their Java class name (EntityType, Entity, Entitylnstance) and the primitives in
general are written without capitals.

Each of the classes described in this chapter is depicted by a diagram. These diagrams are drawn
according to the UML standard for class diagrams (Fowler, 2000), but deviate from that standard in
three ways:

1. The diagrams show operations first and attributes last.

2. Arguments to operations are not shown in the diagram, but explained in the text.

3. When a get and set operation exists for a single attribute, only the attribute is shown, not the

two methods’.

The diagrams are often simplified representations of the class they depict®. In particular, operations
that can only be called from within the class (‘private’ operations) are never shown and often when
multiple operations exists that perform the same function on different attributes of a class (such as
EntityType’s getProperties, getRelations and getQuantities methods) the diagram will show one
general method (in this case getTypes) that represents all of these operations. This is also made clear
in the text.

A lot of the classes described in this chapter have operations that return sets of objects. In
GKOM, sets are always returned as arrays. To show that a method returns an array, the return type in
the diagram is suffixed with ‘[]’. This is the token by which Java identifies arrays.

6.2 Top-level classes

Figure 6-1 shows levels 0 and 1 of the gkom.model class hierarchy. All the classes in the gkom.model
package inherit from a single parent: class KnowledgeObject. The first three children in the figure are
the base classes for the three knowledge levels Type, Occurrence and Instance. The other four children
of KnowledgeObject, Model, Simulation, State and Transition, represent GARP primitives that cannot
be considered a type, occurrence or instance. In the following sections each of the classes in Figure
6-1 will be described in detail.

KnowledgeObject

Type Occurrence Instance Model Simulation State Transition

Figure 6-1: levels 0 and 1 of the 