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Abstract

In intelligenteducationatystemsassessmerf whatthelearneris doingis a prereg-
uisite for proper knowledgeableguidanceof the educationaprocess We proposeto use
existing techniquedrom the field of model-basedeasonindor this purpose.This paper
describeiow a modifiedversionof GDE canbeexploitedin diagnosingalearners prob-
lem solvingbehaiour. Theproblemsolvingtaskfor thelearneris structuredoredictionof
behaiour. We presenimodelsof this problemsolving knowvledgethatadhereto the rep-
resentationalequirement®f model-basedeasoningandshav how GDE-lik e diagnostic
techniqguescan be emplo/ed to determinethosereasoningstepsthat the learnercannot
have appliedcorrectly given the obserations. Our approactof diagnosinghe learners
problemsolving behaviouy ratherthanhis or hermisconceptionsnducesan educational
stratgy thatfocusse®n learningfrom errorsandstimulateghe learners ‘self-repair’ ca-
pabilities.

1 Intr oduction

Oneof themainbottlenecksn individualisingeducations theassessmerindinterpretatiorof
thelearners problemsolving behaiour, oftenreferredto ascognitive diagnosis As obsenred
by Self, theorieson model-basediagnosisaim at providing generaframevorksfor diagnosis,
andthus“if cognitive diagnosisis indeeda type of diagnosis..., it shouldbe coveredby
theseframavorks” [16]. In this paper this claimis investigatedy reusingexisting ideasand
techniquesn thecontect educationasystemsBasednanexplicit modelof thesubjectmatter
we applythe GDE paradigni5] to assesshelearners problemsolvingbehaiour.

The problemsolvingtaskthatthe learnerhasto acquireis qualitatve predictionof beha-
iour. Qualitatve reasoninghaslong beenrecognisedsanimportantaspecof humanreason-
ing, and a preferableway of inducingunderstandingf the underlyingprinciplesin physics
education3, 12, 10]. An additionaladwantageof the domainof qualitatve reasonings that
simulatorsexist that can performbehaiour predictionon the basisof a descriptionof some
system(e.g., QPE [11], GARP [1]). Thesesimulatorscanbe usedto automatehe processof
creatingdiagnostianodels.

This papempresentshe STAR! framework, with afocuson its diagnosticcomponentTwo
key issuesareaddressewith respecto the applicationof model-basediagnosisn aneduca-
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tional context. Firstly, in Section2 we exactly definethe diagnosticproblemthatwe wantto
solve: diagnosesiredefinedn termsof reasoningtepshatcannothave beenappliedcorrectly
by thelearnemgiventheobsenations.In accordancevith this definition,we specifythemodels
of thelearnersreasonindehaiour thatareneededo facilitatethis diagnostigprocessandthe
mappingof thesemodelsontothe component-connectigmaradigmusedfor “device models”.
We discusshow theright grain size of the reasoningstepsis determinedandhow the differ-
entknowledgetypescanbedistinguishedn the diagnostianodels.The modelsaregenerated
from the outputof a qualitatve simulator and hierarchicalstructureis addedautomatically
Secondlyin Section3 the diagnostictechniqguesheedadaptatiorto work in the educational
contet. Becauseof the natureof the diagnostictask,a differentprobeselectionalgorithmis
required. An exampleof the working of the diagnosticenginein a prototypesystemcalled
sTAR9M s givenin Sectiord.

Oneadwantageof our approacHiesin thefactthatit putseducationatliagnosison a solid
basisandthatit providesagenericapproacHor diagnosiof problemsolvingbehaiour. More
importantly the STAR framavork adwocatesa specificteachingstrategy by focussingon the
errorsin thebehaviourof thelearnemratherthanon misconceptions thelearnersknowledge.
Section5 discussethe meritsof this focusin detail.

2 A “DeviceModel” for Qualitati ve Prediction Of Behaviour

In atypical domainsuchaselectronicsconsisteng-baseddiagnosiscanbe characteriseas
follows: givena modelof a device in termsof componentand connectiondbetweenthese
componentsplus a setof obsenrations, find thoseminimal setsof componentghat cannot
behaeaccordingo theirspecifiedoehaiour giventheobsenrations.In thecontext of teaching
problemsolving,we restatethis characterisatioas:

Givena modelof the problemsolvingtaskin termsof individual reasoningsteps
and dataconnectiondbetweenthesereasoningsteps,plus a setof obsenrations
aboutthelearners problemsolvingbehaiour, find thoseminimal setsof reasoning
stepghatcannothave beenappliedcorrectlyby thelearnergiventhe obsenations.

Importantto noteis that this definition deviatesfrom the commonlyaccepteddefinition of

cognitive diagnosis being“the processof inferring a persons cognitive statefrom his or her

performance’l14]: we do not try to determinethe ‘internal’ cognitive stateof the learney

but insteadonly diagnosehis or her‘external’ reasoningehaiour. As aresult,the diagnosis
consistof reasoningtepshatcannothave beenperformedcorrectly i.e. bugsin thelearners

reasoningprocess ratherthan misconceptionsn the learners knowledge. In otherwords,
diagnosesiredefinedatthe behaiourallevel, andnotatthe conceptualevel (cf. [9]).

2.1 The Mapping

The first issueto be addresseds how to definea model of the problemsolving task. This
modelshouldadhereo the representationabquirement®f model-basedeasoningthatis, it
shouldconsistof contect-independentomponentsand connectiondbetweenthese. Because
theexecutionof aproblemsolvingtaskcanbeseerasperformingasetof inferenceoperations
(i.e., reasoningteps)n adataset,we modeleachreasoningtepasa componentThismeans
thatin themodelfor aparticulamprediction,eachapplicationof aninferencds representedsa
componentAs anexampleof suchamodel,considerthe modelfragmentin Figurel. For the
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Figurel: An ExampleBaseModel Part

U-Tubesystemin Figurel-I, thismodelrepresentthederivationof thechangean theinequal-
ity betweerthe volumes:becauséhe level is higherat theleft, the pressures higheraswell,
andthereforea flow exists from left to right, which meanghatthe left volumeis decreasing
andtheright oneis increasing As aresultthelevelswill becomezqual.ln themodel,thisrea-
soningtraceis representedy five differentcomponents,epresentingour inferencetypes.As
an example,considerthe leftmostcomponenbf type inequality correspondence thatis used
to derive thatthe pressures higherat the left becausehe level is higherthereaswell. Tech-
nically speakingtheinferencecomponentastwo inputs,namelytheinequalitybetweerthe
levelsL; > L, andthedirectedcorrespondencthatexists betweerthelevel andthe pressure
dir_corr(L,P).

Grain Sizeof the Models In total, 16 differentinferencetypesare definedfor the task of
gualitatve predictionof behaiour [6]. This setis basedn experimentakesearcton how stu-
dentand(human)teachercommunicateaboutpredictionproblems.From protocolstaken of
astudentandteachediscussinghe behaiour of a physicaldevice, we extractedtheterminol-
ogy andthe individual reasoningstepsthat are made. The differenttypesof reasoningsteps
encounterech the protocolsformedthebasisfor thesetof 16 component§/]. Theexperimen-
tal baseof theinferencetypesensureshatthereasoningtepsareatthe appropriategrainsize
of typeto supportaneducationacommunicationFor instancetheinequality correspondence
componentdoesnot modela simple one-stegnferencefrom a qualitatve reasoningpoint of
view. However, the experimentalresearchshoved that this level of inferenceis considered
primitive by bothlearnersandteachersandhencewe do notwantto modelit in moredetail.

Retrieval Components Themodelintroducedsofarrepresentthereasoningtepsthatmale
uptheproblemsolvingtask. The‘contents’of thesereasoningtepsj.e. thesupporknowledge
thatis usedto make theinference s representedsan additionalinput to the reasoningcom-
ponent.For instancetheinequality correspondence componenhastwo inputs:theinequality
L; > L, andtherelationdir_corr(L,P). However, theseinputsareof differentnature:thefirst
oneis agiven,somethinghatthelearneris supposedo seeor readon the screenandhenceit
canbeassumedo be known by thelearner The secondnputdir_corr(L,P) embodiesnowl-
edgethatthelearnemrmay not (yet) master Froma diagnosticpoint of view, this differenceis
important:in model-basediagnosisall inputsareassumedo be correct,anda diagnosisan



only bein termsof deficientcomponentsHence ho diagnosianbe foundthatexpresseshe
factthatthe learnerdoesnot know the relation betweenlevel and pressurealthoughit may
expresshatthelearnerdoesnotknow how to applytherelationin this situation.We therefore
introduceanadditionalcomponentype calledretrieval. Retriezal componentfiave oneinput
andoneoutput,andtheoutputis equalto theinputif thecomponents functioningcorrectly A

“faulty” retrieval componenhencerepresentghe situationin which thelearnerdoesnot know

(cannotreproduceor “retrieve”) anexpressiorlik e dir_corr(L,P).

2.2 BaseModel Generation

A “devicemodel”asintroducedabore,in thefollowing referredto asthebasemode] is specific
for onepredictionof behaiour: althoughthe componentypesaregenericfor thetask,each
predictionfor a specificsystenmsuchasthe U-tuberequiresa nev modelto begeneratedT his
is doneon the basisof the outputof a qualitatve simulatorcalled GARP [1]: the simulator
generates predictionof behaiour, anda postprocessotransformghis outputinto a model
representingll individual reasoningstepsthat a learnershouldmasterin orderto solve the
predictionproblem.

2.3 Adding Hierarchies

The basemodelcontainsall reasoningstepsthatarenecessaryor a correctpredictionof be-
haviour, andhencesuchmodelstendto beratherlarge: acompletemodelfor the behaiour of
a systemsuchasthebalancedepictedn Figure2 consistf 665 component&nd612 points.
Furthermorethenatureof qualitatve reasoningesultsn anincompletesetof behaiour rules,
andhenceanincompletepredictionengine which reducegheefficieng of algorithmssuchas
GDE [5]. As aresult,applyingGDE directly on the basemodelis not feasiblein a run-time
educationakrnvironment. In the caseof electronics suchproblemsare usuallyaddressedty
focussingechniquesuchashierarchicadiagnosige.g., [13]).

The maindifferencefor knowvledgemodelsis thatthe hierarchicalstructureis not readily
availablefrom theblue prints, but hasto be generatedun-timefor eachbasemodel.We there-
fore developedalgorithmsthatautomaticallyaddhierarchicaktructureto a basemodel. Three
differenttypesof abstractiorare subsequentlgppliedto the model: firstly, the modelis sim-
plified by hiding all reasoningsteps(components)hatarenot essentialalthoughtechnically
speakingnecessaryjo the main behaiour of the system. Secondly sequencegchunks of
reasoningstepsarecollapsednto singlecomponentsFinally, a third abstractioris madethat
reducesachspecificationof a behaiour state,andevery transitionbetweentwo statesjnto
onesinglecomponentFor a detaileddescriptionof the hierarchicalayersandthe algorithms
usedfor producingthem,see[8, 6].

The processof generatinga hierarchicaimodelof the taskof qualitatve predictionof be-
haviour is fully automated.

3 DiagnosingKnowledgeModels

The hierarchicalmodelsadhereto the representationatonstraintsof model-basedliagnosis,
andhenceechniquesuchasGDE canin principle be appliedwithout modification.

In GDE, thediagnostigprocessonsistf threesteps:conflictrecognition,candidategen-
eration,andcandidatediscrimination.Conflict recognitionamountgo finding (minimal) sets



of componentsghat,if assumedo beworking correctly resultsin behaiour thatconflictswith
the obsenations. From eachof thesesets(called conflicty, at leastone componenshould
be faulty for the overall behaiour to be consistentwith the obserations. Candidategenera-
tion createghosesetsof componentgcalledcandidate¥ that cover eachconflict. Candidate
discriminationis concernedvith sequentialliagnosis:givena setof obsenations,the setof
possiblediagnosesnay not be satistctory andadditionalobsenationsarethennecessaryo
discriminatebetweerthe possiblecandidataliagnoses.

Thefirst two stepsareappliedwithout significantmodification. The third stephoweveris
different. The reasonis thatthe natureof the componentss significantlydifferentin knowl-
edgemodelsanddigital circuits. In a digital circuit, two component®f the sametype may
behae accordingto the samerules, but arestill physicallydistinctinstances.In knowledge
models,this is not necessariljthe case. Onereasoningstepappliedcorrectlyin one part of
the modelis very likely to behae correctlyaswell in anotherpart: by their nature different
component®f the sametype arelikely to fail collectively. A learnerthatdoesnot know how
to applyaninequality correspondence is lik ely to exhibit the sameerror (faulty inequality cor-
respondence) at several placesin the model. The only exceptionis formedby components
of theretrieval type: here,differentinstantiationsareindeedindependentperationspecause
they referto theretrieval of differentknowledgefacts. The error of not correctly‘retrieving’
the relation betweenlevel and pressurds usually not relatedto anincorrectretrieval of the
negative influenceof theflow rateonthevolume.

This differentnatureof knowledgemodelsis exploited by the diagnosticalgorithm: the
failureprobabilityof asetof instance®f thesamecomponentypeis definedto beequalto that
of asinglecomponentFor example,a candidatadiagnosigIC,,IC,,IC3,IC4] consistingof four
failing inequality correspondence componentfiasthe sameprobabilityasa singlecomponent
candidat€gIC]. We actuallyinterpreta candidateat the level of genericinferencesjnsteadof
atthelevel of individual, instantiatedreasoningteps:thefirst candidatecanbeinterpretedas
“unableto calculatanequalitycorrespondencetyhichis atthislevel of interpretatiorasingle
fault. This interpretatiordoesnot hold for the singlecomponentandidate this may well be
anincidentalinstantiatiorerroror slip.

For retrieval componentsit is possibleto employ anadditionalheuristicin candidatedis-
crimination: becausenosterrorsmadein the experimentappearedo be causedoy missing
or confuseddomainknowledge,retrieval componentganbe assumedo have a highera pri-
ori failureratethaninferencecomponentsSimilarly, higherlevel, decomposableomponents
have a highera priori failureratethanindividual basemodelcomponentshecaus¢hesecom-
ponentsincorporatea numberof reasoningstepsin the basemodel. Note that this a priori
failure rateis inspiredby a structuralfeatureof the model, namelythe numberof inference
componentsiatherthanby the semantic®f theinferenceshemseles.

3.1 The sTar DiagnosticEngine

Onthebasisof theabove considerationsye designed new algorithmfor candidatediscrimi-
nation. The algorithmis a varianton the half split approachthatcandealwith multiple faults
anddiffering a priori failurerates.The half split approachaimsat finding the point thatopti-
mally splitsthe setof componentshatcontributesto a symptom:giventhe setof components
CpS thatcontritutesto asymptomthesplitting factor for apossibleneasurgointp is defined
as|CpSy, — CpS,,|, WhereCpS,, is thesubsebf CpS contrituting to thevalueof p (“before
p”) andCpS,, thesubseCpS notcontrikuting to the valueof p (“after p”). In our case sim-
ply takingthe differencein numbersf componentsloesnot work: componentsreno longer
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synorym with candidates.Hence,we introducethe weightedcardinality of a candidate fa-
cilitating the comparisorof candidatesThe weightedcardinalityof a candidatesxpressests
probabilityin termsof thenumberandtype of component# consistof.

Thealgorithmfor candidatediscriminationis givenbelow.

1. Collectthesetof all possiblemeasurgointsMPShy tracingbackwardsfrom thesetof symptoms
(i.e. obserationsthatdo not matchthe predictedvalue)throughthe model.

2. For eachcandidate’q; in thecandidatesetCas calculatets weightedcardinality WCcy,-
Let R bethenumberof retrieval componentén Ca;;
Let H bethe numberof decomposableomponentin Ca;;
Let T bethenumberof othercomponentypesin Ca;;
Theweightedcardinalityof acandidates definedasW Cco = 0.7« R+ 0.5 H + T

3. LetCpShethesetof componentshatcontributeto thesetof symptomsDefinetheunnormalised
probability of acomponenCp € CpStobe ) for all candidate£a; containingCp.

1
4. For eachpointp in MPS let CpS, (*beforep”) C CpSbethe setof componentshatcontritute
to thevalueof p andlet CpS,, (“after p”) = CpS,CpS,.

5. For eachpoint p in MPS calculateits splitting factor SF},. Let UP,, be the sumof the un-
normalisedprobabilitiesof the componentsn CpS,,, andU F,, the sumof the unnormalised
probabilitiesof thecomponentsn CpS,,.

Thesplitting factorSF, of measurgointp is definedas|U Py, — U P,|.

6. Ordertheprobepointsin MPSaccordingto their splitting factorSF,: the bestprobepointis the
onewith thesmallestvaluefor SF.

The algorithmfirst determineghe possiblemeasuregoints(stepl). In step2, the weighted
cardinalityof eachcandidatas calculated Thedefinitionof acandidates weightedcardinality
embodieghe differentaspectsliscusse@bove: retrieval anddecomposableomponenthave
a highera priori failure rateandare countedindividually. Component®f the sametype are
countedonly once. By its definition, the lower the weightedcardinality of a candidatethe
higherits probability Subsequentlywe canmaptheseweightedcardinalitiesontheindividual
componentsyielding the unnormalisedorobability of a componen{step3). This probability
expresseshe differentcandidateshata components partof: whena componenbelongsto
morethanonecandidateknowing its statuswill provide moreinformation.Hencethehighera
componens unnormalisegbrobability, the moreimportantit is to focusthediagnostigorocess
on this component.The unnormalisegrobabilitiesof the componentareusedin calculating
thesplitting factorfor eachmeasurgoint (step4). As definedin step5, thecandidatediscrim-
ination algorithmdoesnot deliver oneprobepoint, but a list of possibleprobepointsordered
to their discriminatingpower (i.e., their splitting factor). Although the diagnosticmachinery
canreasoraboutthe expectedresultsof a certainprobepoint, it cannotdeterminehe costsof
a specificprobewithin the currenteducationatontet. As a result,the mosteffective probe
suggesteanay be very expensve, in the sensehatit doesnotfit in with the currentdialogue.
In this casethe educationatystemmay selectanotheprobepoint from thelist.
Thediscriminationalgorithmshouldbeviewedasanimplementatiorof anumberof ‘rules
of thumb’. Especiallythe definition of the weightedcardinalityof a candidatancludessome
numericalinterpretationf qualitatve obsenationsthat may prove to be non-optimal. For
example,the factthat a retrieval componenis countedas0.7 is a someavhat arbitrary quan-
tification of the obsenration that more errorsare madein the domainknowledgethanin the



reasoningknowledge. Dueto the hierarchicalstructuringof the models,the numberof com-
ponentghatis diagnosedit onceis usuallysmall. Hence theimpactof suchchoiceswill be
relatively small.

4 The star™" Prototype

Toillustratetheideaspresentedbove, adiagnosticsessiors presentedrom thetestswe per
formedwith the STAR/ 9Nt prototype. The prototypefully implementsmodelgeneratiorand
hierarchicamodelaggrgationasdescribedn Section2, andthe diagnosticenginepresented
in Section3.1. Furthermoreglementarymplementationsf aquestiorgeneratoandanexpla-
nationgeneratoareaddedo facilitatea simplequestion-answettialoguewith alearnerabout
the behaiour of some(physical)system.A screerdumpof the STAR/ight prototypeis shavn
in Figure2. The screenshaws a typical questionaboutthe behaiour of a physicalsystem

volume left is equal to volume right volume left has become greater than volume right
level left is lower than level right position has changed to right side up
width left is greater than width right

What will be the difference between water level left and water level right in the next state?

a: water level left will be higher than water level right
b: water level left will be equal to water level right
c: water level left will be lower than water level right

Figure2: TheSTAR'9M prototype

calledthe balancesystem two containerdilled with waterareplacedon a balanceandeach
containerhasan outlet at the bottom. The weight of the empty containerss assumecaqual,
but their sizediffers. Thetaskof the learneris to predictwhathappengo the watercolumns
andto thebalanceoncethe outletsareopened.

We conducteda small setof testsessionswith 9 learners. To exemplify the diagnostic
machinerywe presenia fragmentof the interactionbetweerthe learnerandthe system.The
indentedphrasesn italics arethink-aloudremarksmadeby the learner In this example,the
initial behaiour stateof the balancgthe leftmostsituationdepictedn Figure2) hasjustbeen
presentedo the learner The dialoguestartswhenthe learneris asked to predictthe second
state(theright situationin Figure2), whichis atthis momentotyetvisible to the student.



1. What will be the difference between volume left and volume right in the next
state?
Hey, look, the volumes are equal. | didn’t take notice of that.
Yes, | think they stay equal?
b: volume left will be equal to volume right
That's not correct.
Before we go on with the prediction, | would like to know what you think about
the present situation.
Please answer the following question:
8. What do you know about the difference between the decrease in volume left
and the decrease in volume right?
9. Volume left decreasing slower than volume right?
10. No, at the same speed | would say.
11. b: volume left is decreasing at the same speed as volume right
12. That's not true.
13. Please answer the following question:
14. What do you know about the difference between outflow left and outflow right?

oakwnN

-~

15. Well | would say that the outflow is equal, but that is now when the
pressure [incomprehensible]
16. Ah! |s that it? The outflow left is smaller

17. c: outflow left is smaller than outflow right

18. That's right.

19. Please answer the following question:

20. which quantity causes a change in volume ?

21. The outflow, or the pressure, yes the outflow

22. c: outflow

23. That's right.

24. | think you don't fully understand the following:

25. the difference between outflow left and outflow right has a direct influence
on the difference between the decrease in volume left and the decrease in
volume right.

26. This means that because outflow left is smaller than outflow right volume left
is decreasing slower than volume right.

27. Let's continue with the exercise where we left off.

28. All right, interesting. . .

To explain the diagnosticprocesaunderlyingthis interaction,considerFigure 3. The answer
givenin line 4 suppliesthe obserationV, = V, in the outputof the state transition compo-
nentST. ST modelsthe transitionfrom thefirst to the secondstateat the highesthierarchical
level. In the prototypesystem the subjectmattersequencings simplifiedto only askingthe
outputof eachsubsequentansition component.Hence,a conflict at the highestlevel results
in a decompositiorof two components:the precedingtransition componentplus the previ-
ous specification componen{for moredetails,see[6]). Hence,SS andST aredecomposed
into the seven-componenmodel depicted. The first call to the diagnoseelivers one con-
flict: (ClI, IT), andhencetwo diagnoses$CIl] and[IT]. The combined inequality influence CIl
is a higherlevel componenthat summariseshe calculationof a derwative (in this casethe
derivative of the positionof the balancejPos) from an(in)equality(in this casethedifference
betweerthewaterlevels L, < L,). Theinequality termination IT determineshenew inequality
betweenthe valuesin the next state. The only probepoint that yields informationaboutthe
candidate$ClIl] and[IT] is in betweerthesecomponentsHence a questionis asked aboutthe
inequality betweenthe derivativesof the volumes(éV; > 46V, line 8). The answergivenin
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Expr = observation/model input
Expr = unknown (predicted)

BEﬁXpr = symptom

dPos =
Pos =
dvil > dVr

SS = state specification
ST = state transition
VD = value determination
CDD = combined derivative
determination
CIl = combined inequality
influence
QT = quantity termination +
IT = inequality termination L[| <c|>_r§
R = retrieval :

Pos =0

—— dvi>dvr
L Cll |

Figure3: First DiagnosticCycle

line 11 is incorrect,yielding a single-fiult diagnosiqCll]. Becausehis is a higherlevel com-
ponent,it is decomposedhto a lower-level modelasshawn in Figure4. The next diagnostic

Expr = observation/input Ll <Lr dvl =dvr
Expr = unknown (predicted) ® el

Expr
Epr = symptom

neg_infl(FI, V)
Cll = combined inequality influence Q

TIC = transitive inequality :
correspondence Ll<Lr | neg_infi(FI, V)o i dVl=dvr
Il = inequality influence o= FISFr | Avi=ar
R = retrieval e Ny

Figure4: SecondDiagnosticCycle: Level 2

cycle yields one conflict (TIC, R3, II) andthreecandidategTIC], [R3], and[ll]. For the two
existing measurgoints, the splitting factorsare determinedby the discriminationalgorithm.
For the point neg.infl(FI,V), the splitting factoris |- — (5% + 1)| = 1.57, for F; < F, it is

o= — (&% + 1)| = 0.43. F; < F, hasthe lowestvalue,andthusthe highestdiscriminating
power. Hence this oneis questionedline 14) andanswerectorrectly(line 17). This results
in the new conflict (R3, I) andtwo candidategRz] and[ll]. Thelastprobeon neg infl(FI, V) in

line 20 deliversthe inequalityinfluencecomponenti asa final single-fault diagnosis.In line

24-26,anexplanationis generatedor this component.

In thetestsessionsa total of ninelearnersvereusingthe prototypefor abouthalf anhour
each.Of theseninelearnersfour hadsomeexperiencen qualitatve predictionof behaiour
(the‘advancedearners’) whereadive hadno relevantforeknavledge(the ‘novices’). In total,
707 questionsvereansweredandtherewere 30 diagnosticsessionsRunningon a 200 Mhz
PentiumPro platformunderLinux, mostdiagnosesverecalculatedwvithin onesecondwith a
maximumof four seconds.The averagenumberof probesneededo determinea satishctory
diagnosisvas2.7;thelongestsequencef probesvaseight,which occuredwice.

Althoughthe experimentaketupandthe numberof subjectsdo notallow for drawing firm
conclusionsthe overall performancef the diagnoseis satishctory: with anaverageof three
probequestionsthediagnosers capableof identifying oneor more‘f aulty componentsin the



model. Thesefaulty componentsepresenthoseinferenceghat cannothave beenperformed
correctlyby thesubject.

Thetestsessionshaowv a differencein competencéor advancedearnersandnovices. The
systemperformsvery well in ‘fine tuning’ the learners reasoningprocess.Whenthe learner
hassomeunderstandingf the predictiontask,but lacksthe necessardomainfactsor thesub-
tletiesof the reasoningprocessthe diagnosesre adequateandhelpful. On average,only a
few probesareneededo pin down a uniquediagnosis.Furthermorethe probequestionsare
often helpful in learningbecausehey trigger self-repair In suchcasesthe final explanation
doesnot indicatean existing error, but senesasa confirmationof the self-repair Whenthe
learnerdoesnot have ary initial knowledgeaboutstructuredoehaiour prediction,the perfor
manceis lessoptimal: the probequestionsthe explanationfollowing thefinal diagnosidgs not
always helpful (althoughcorrect). To someextent, this resultcan be ascribedto the limited
capabilitiesof the STAR/N systemwith respecto phrasingquestionsandexplanationsMore
importantly novicesarenot alwaysableto understandhe detailedexplanationf the system
becausdhey missthe necessarysurrounding’ knowledge: their problemsolving behaiour
may be asyet too unstructuredo be discussedn termsof individual reasoningsteps.In ad-
dition, novicesmay benefitfrom a moregradualintroductionof the subjectmatterin termsof
differentincreasinglycomplex models,asis for instanceconjecturedoy the theoryof causal
modelprogression18].

5 Discussion

Peoplelearnfrom their errors. The value of learningfrom errorshasbeenrecognisedn in-
fluentialeducationaphilosophiesuchasSocratictutoring[4] andLOGO [15]. The principle
alsoplaysanimportantrole in contemporandiscovery or explorative learningervironments
(cf. [17]). By meansof exploration and experimentationa learnercan develop modelsof
the subjectmatterknowledgeinvolved. Errorscanbe a valuableaid in adjustingandrefining
the modelsdevelopedby the learner Knowledgeablesupportof the learners trial-and-error
behaiour canhelpthelearnerto learnfrom his or hererrorsin aneffective andefficientway.

An emphasi®on learningfrom errorsrequiresa view on educationthatis not commonly
practisedby humanteachersthey appeato rely mainly on patternrecognitionon the basisof
known misconceptiongatherthanon detaileddiagnosticsearch(cf. [2]).On theonehand this
is influencedby traditionaleducationaviewsonerrors:“Schoolteacheshaterrorsarebad;the
lastthing onewantsto dois to poreoverthem,dwell onthem,or think aboutthem? [15]. And,
maybeeven moreimportant,detailedstructureddiagnosidgs often computationallyinfeasible
for humanteachers.

Comparedo model-basediagnosiof reasoningbehaiour, diagnosison the basisof bug
cataloguess not merely anothertechniqueto arrive at the sameresult. Instead,the useof
pre-storedbugs involves a significantly differentapproachto educationalguidance:in this
case,the diagnosticactvity is aimedat matchingknown misconceptionghat may explain
the errorsmade. As aresult,diagnosigs often heuristicandshallov, anddoesthereforenot
play a decisve role in the teachingprocess.A focuson learningfrom errorsassupportedy
the STAR framework yields a differentteachingstyle: insteadof directly mappingerrorson
misconception$o be remediatedzoomingin on the specificbug that causeshe error guides
thelearnerin discoveringthis errorandmaybeself-repairingt.

Summarisingtheway in whichthe STAR frameavork providessupports onethatis gener
ally difficult or evenimpossiblefor humanteachersin the STAR approachevery errorin the
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learners problemsolvingprocessanbetracedbackto areasoningtepthatcannothave been
appliedcorrectlygiventheobsenations.The probingmechanisnaccountdor a structuredse-

guenceof questionghat,asasideeffect, will stimulatethelearners self-repaitbehaiour. The

educationaimethodologyollowing from thisapproachs difficult or evenimpossibleto realise
with othermeanghanknowledge-baseéducationabystems.The diagnostictaskasit is de-

finedin the STAR framework is too comple to befeasiblefor humanteachersMoreover, even

if they would be capableof (learning)to diagnosegoroblemsolving behaiour in a structured
anddetailedway, theactualapplicationn educationapracticewill neverbecost-efective. The

STAR framework allows for closemonitoringanddetaileddiagnosiof thelearners reasoning
behaiour, shaving thelarge potentialof knowledge-basedystemsn educationln particular

theframewnork shavsthatthetransferof existing, solid techniquedik e model-basediagnosis
canbesuccessfulllemployedto alleviatelong-standindottlenecksn educationasystems.

6 Conclusions

Thetaskof cognitive diagnosigs oftenconsideredo betoo comple to be cost-efective. The
STAR framework countershis view by providing a genericandautomatedapproacho diag-
nosingthe problemsolvingbehaiour of thelearner By exactly scopingthetaskof diagnosis
within educationandby defining“device models”for the learners problemsolving task, it
becomesossibleto reusetechniquedrom the field of model-basedliagnosis. We defined
educationadiagnosisasthe identificationof (necessaryjeasoningstepsthat have not been
performedcorrectly For thetaskof qualitatve predictionof behaiour, we designedandim-
plementedechniqueso automaticallygeneratehenecessarydevice models”from theoutput
of a qualitative simulator Using a hierarchicalvariantof GDE, we shaved thatmodel-based
diagnosiscanbe usedto identify a learners errorsmadein individual reasoningsteps. This
focuson errorsin thelearners problemsolving behaiour stronglyinfluenceshe educational
approachof the system. Peoplelearnfrom their errors,andthe diagnosticprobescan help
the learnerin detectingtheseerrors. This view on educationis differentfrom the one un-
derlying mostdiagnosticapproacheslnsteadof focussingon tracingmisconceptiongn the
learners knowledgethatcanberemediatedpur approactcanhelpthelearnenn detectinger-
rors. Theseerrorsresultin anexplanationby the systemput alsooftenstimulatethelearnerin
self-repairinghem.

Furtherdevelopmenbf the STAR frameavork canbepursuedn variousdirections.Thecur-
rentframenork is basedn qualitatve predictionof behaiour, whichis applicableo reasoning
aboutmary typesof systemsuchasphysicaldevices,ecologicakystemsandeconomicabys-
tems.Within the context of qualitatve reasoningthe scopeof the framevork canbe enlaged
to incorporateotherproblemsolvingtaskssuchasmonitoring,design,or diagnosis.

A secondnterestinglirectionfor extensions thedevelopmenbf othergenericeducational
functionsbasedon the modelrepresentationsSophisticatedechniquegor subjectmatterse-
guencinganddiscourseplanningareervisagedthattake advantageof the hierarchicaimodels
of problemsolvingknowledgeasdefinedandgeneratedvithin the STAR framavork.
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