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Abstract

In intelligenteducationalsystems,assessmentof whatthelearneris doingis a prereq-
uisite for proper, knowledgeableguidanceof theeducationalprocess.We proposeto use
existing techniquesfrom thefield of model-basedreasoningfor this purpose.This paper
describeshow amodifiedversionof GDE canbeexploitedin diagnosinga learner’s prob-
lemsolvingbehaviour. Theproblemsolvingtaskfor thelearneris structuredpredictionof
behaviour. We presentmodelsof this problemsolvingknowledgethatadhereto therep-
resentationalrequirementsof model-basedreasoning,andshow how GDE-likediagnostic
techniquescan be employed to determinethosereasoningstepsthat the learnercannot
have appliedcorrectlygiven the observations. Our approachof diagnosingthe learner’s
problemsolvingbehaviour, ratherthanhis or hermisconceptions, inducesaneducational
strategy thatfocusseson learningfrom errorsandstimulatesthelearner’s ‘self-repair’ ca-
pabilities.

1 Intr oduction

Oneof themainbottlenecksin individualisingeducationis theassessmentandinterpretationof
thelearner’s problemsolvingbehaviour, oftenreferredto ascognitivediagnosis. As observed
by Self, theoriesonmodel-baseddiagnosisaimatproviding generalframeworksfor diagnosis,
and thus “if cognitive diagnosisis indeeda type of diagnosis. . . , it shouldbe coveredby
theseframeworks” [16]. In this paper, this claim is investigatedby reusingexisting ideasand
techniquesin thecontext educationalsystems.Basedonanexplicit modelof thesubjectmatter,
weapplytheGDE paradigm[5] to assessthelearner’s problemsolvingbehaviour.

Theproblemsolvingtaskthatthelearnerhasto acquireis qualitativepredictionof behav-
iour. Qualitative reasoninghaslong beenrecognisedasanimportantaspectof humanreason-
ing, anda preferableway of inducingunderstandingof the underlyingprinciplesin physics
education[3, 12, 10]. An additionaladvantageof the domainof qualitative reasoningis that
simulatorsexist that canperformbehaviour predictionon the basisof a descriptionof some
system(e.g., QPE [11], GARP [1]). Thesesimulatorscanbeusedto automatetheprocessof
creatingdiagnosticmodels.

This paperpresentstheSTAR1 framework, with a focuson its diagnosticcomponent.Two
key issuesareaddressedwith respectto theapplicationof model-baseddiagnosisin aneduca-

1Systemfor TeachingAboutReasoning.
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tional context. Firstly, in Section2 we exactly definethediagnosticproblemthatwe want to
solve: diagnosesaredefinedin termsof reasoningstepsthatcannothavebeenappliedcorrectly
by thelearnergiventheobservations.In accordancewith thisdefinition,wespecifythemodels
of thelearner’sreasoningbehaviour thatareneededto facilitatethisdiagnosticprocess,andthe
mappingof thesemodelsontothecomponent-connectionparadigmusedfor “devicemodels”.
We discusshow theright grainsizeof the reasoningstepsis determined,andhow thediffer-
entknowledgetypescanbedistinguishedin thediagnosticmodels.Themodelsaregenerated
from the outputof a qualitative simulator, andhierarchicalstructureis addedautomatically.
Secondly, in Section3 the diagnostictechniquesneedadaptationto work in the educational
context. Becauseof thenatureof thediagnostictask,a differentprobeselectionalgorithmis
required. An exampleof the working of the diagnosticenginein a prototypesystemcalled
STARlight is givenin Section4.

Oneadvantageof our approachlies in thefactthat it putseducationaldiagnosison a solid
basis,andthatit providesagenericapproachfor diagnosisof problemsolvingbehaviour. More
importantly, the STAR framework advocatesa specificteachingstrategy by focussingon the
errorsin thebehaviourof thelearnerratherthanonmisconceptionsin thelearner’sknowledge.
Section5 discussesthemeritsof this focusin detail.

2 A “DeviceModel” for Qualitati vePredictionOf Behaviour

In a typical domainsuchaselectronics,consistency-baseddiagnosiscanbe characterisedas
follows: given a modelof a device in termsof componentsandconnectionsbetweenthese
components,plus a setof observations,find thoseminimal setsof componentsthat cannot
behaveaccordingto theirspecifiedbehaviour giventheobservations.In thecontext of teaching
problemsolving,werestatethischaracterisationas:

Givena modelof theproblemsolvingtaskin termsof individual reasoningsteps
and dataconnectionsbetweenthesereasoningsteps,plus a set of observations
aboutthelearner’sproblemsolvingbehaviour, find thoseminimalsetsof reasoning
stepsthatcannothavebeenappliedcorrectlyby thelearnergiventheobservations.

Importantto note is that this definition deviatesfrom the commonlyaccepteddefinition of
cognitivediagnosis, being“the processof inferring a person’s cognitive statefrom his or her
performance”[14]: we do not try to determinethe ‘internal’ cognitive stateof the learner,
but insteadonly diagnosehis or her ‘external’ reasoningbehaviour. As a result,thediagnosis
consistsof reasoningstepsthatcannothavebeenperformedcorrectly, i.e. bugsin thelearner’s
reasoningprocess,ratherthan misconceptionsin the learner’s knowledge. In other words,
diagnosesaredefinedat thebehavioural level, andnotat theconceptuallevel (cf. [9]).

2.1 The Mapping

The first issueto be addressedis how to definea modelof the problemsolving task. This
modelshouldadhereto therepresentationalrequirementsof model-basedreasoning,that is, it
shouldconsistof context-independentcomponentsandconnectionsbetweenthese.Because
theexecutionof aproblemsolvingtaskcanbeseenasperformingasetof inferenceoperations
(i.e., reasoningsteps)onadataset,wemodeleachreasoningstepasacomponent.Thismeans
thatin themodelfor aparticularprediction,eachapplicationof aninferenceis representedasa
component.As anexampleof suchamodel,considerthemodelfragmentin Figure1. For the
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P_l > P_r Fl > 0

dV_l < 0

V_l = V_rdV_r > 0
V_l > V_r

pos_infl(Fl,V_r)

Fl = P_l - P_rdir_corr(L,P)

L_l > L_r

II: A Model PartI : The U-Tube

L_l L_r
V_l V_r

Figure1: An ExampleBaseModelPart

U-Tubesystemin Figure1-I, thismodelrepresentsthederivationof thechangein theinequal-
ity betweenthevolumes:becausethelevel is higherat theleft, thepressureis higheraswell,
andthereforea flow exists from left to right, which meansthat the left volumeis decreasing
andtheright oneis increasing.As aresultthelevelswill becomeequal.In themodel,this rea-
soningtraceis representedby fivedifferentcomponents,representingfour inferencetypes.As
anexample,considerthe leftmostcomponentof type inequality correspondence that is used
to derive that thepressureis higherat the left becausethe level is higherthereaswell. Tech-
nically speaking,the inferencecomponenthastwo inputs,namelythe inequalitybetweenthe
levels ��������� andthedirectedcorrespondencethatexistsbetweenthelevel andthepressure
dir corr(L,P).

Grain Sizeof the Models In total, 16 differentinferencetypesaredefinedfor the taskof
qualitativepredictionof behaviour [6]. Thissetis basedonexperimentalresearchonhow stu-
dentand(human)teacherscommunicateaboutpredictionproblems.Fromprotocolstakenof
astudentandteacherdiscussingthebehaviour of aphysicaldevice,weextractedtheterminol-
ogy andthe individual reasoningstepsthat aremade.The differenttypesof reasoningsteps
encounteredin theprotocolsformedthebasisfor thesetof 16components[7]. Theexperimen-
tal baseof theinferencetypesensuresthatthereasoningstepsareat theappropriategrainsize
of typeto supportaneducationalcommunication.For instance,the inequality correspondence
componentdoesnot modela simpleone-stepinferencefrom a qualitative reasoningpoint of
view. However, the experimentalresearchshowed that this level of inferenceis considered
primitiveby bothlearnersandteachers,andhencewedonotwantto modelit in moredetail.

Retrieval Components Themodelintroducedsofarrepresentsthereasoningstepsthatmake
uptheproblemsolvingtask.The‘contents’of thesereasoningsteps,i.e. thesupportknowledge
that is usedto make theinference,is representedasanadditionalinput to thereasoningcom-
ponent.For instance,the inequality correspondence componenthastwo inputs:theinequality���	�
��� and therelationdir corr(L,P). However, theseinputsareof differentnature:thefirst
oneis agiven,somethingthatthelearneris supposedto seeor readon thescreen,andhenceit
canbeassumedto beknown by thelearner. Thesecondinput dir corr(L,P) embodiesknowl-
edgethat the learnermaynot (yet) master. Froma diagnosticpoint of view, this differenceis
important:in model-baseddiagnosis,all inputsareassumedto becorrect,anda diagnosiscan
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only bein termsof deficientcomponents.Hence,nodiagnosiscanbefoundthatexpressesthe
fact that the learnerdoesnot know the relationbetweenlevel andpressure,althoughit may
expressthatthelearnerdoesnotknow how to applytherelationin thissituation.We therefore
introduceanadditionalcomponenttypecalledretrieval. Retrieval componentshave oneinput
andoneoutput,andtheoutputis equalto theinput if thecomponentis functioningcorrectly. A
“f aulty” retrieval componenthencerepresentsthesituationin whichthelearnerdoesnotknow
(cannotreproduceor “retrieve”) anexpressionlikedir corr(L,P).

2.2 BaseModel Generation

A “devicemodel”asintroducedabove,in thefollowingreferredtoasthebasemodel, is specific
for onepredictionof behaviour: althoughthecomponenttypesaregenericfor the task,each
predictionfor aspecificsystemsuchastheU-tuberequiresanew modelto begenerated.This
is doneon the basisof the outputof a qualitative simulatorcalledGARP [1]: the simulator
generatesa predictionof behaviour, anda postprocessortransformsthis outputinto a model
representingall individual reasoningstepsthat a learnershouldmasterin orderto solve the
predictionproblem.

2.3 Adding Hierarchies

Thebasemodelcontainsall reasoningstepsthatarenecessaryfor a correctpredictionof be-
haviour, andhencesuchmodelstendto beratherlarge: acompletemodelfor thebehaviour of
a systemsuchasthebalancedepictedin Figure2 consistsof 665componentsand612points.
Furthermore,thenatureof qualitativereasoningresultsin anincompletesetof behaviour rules,
andhenceanincompletepredictionengine,whichreducestheefficiency of algorithmssuchas
GDE [5]. As a result,applyingGDE directly on the basemodelis not feasiblein a run-time
educationalenvironment. In the caseof electronics,suchproblemsareusuallyaddressedby
focussingtechniquessuchashierarchicaldiagnosis(e.g., [13]).

Themaindifferencefor knowledgemodelsis that thehierarchicalstructureis not readily
availablefrom theblueprints,but hasto begeneratedrun-timefor eachbasemodel.Wethere-
foredevelopedalgorithmsthatautomaticallyaddhierarchicalstructureto abasemodel.Three
differenttypesof abstractionaresubsequentlyappliedto themodel: firstly, themodelis sim-
plified by hiding all reasoningsteps(components)thatarenot essential(althoughtechnically
speakingnecessary)to the main behaviour of the system. Secondly, sequences(chunks) of
reasoningstepsarecollapsedinto singlecomponents.Finally, a third abstractionis madethat
reduceseachspecificationof a behaviour state,andevery transitionbetweentwo states,into
onesinglecomponent.For a detaileddescriptionof thehierarchicallayersandthealgorithms
usedfor producingthem,see[8, 6].

Theprocessof generatinga hierarchicalmodelof thetaskof qualitative predictionof be-
haviour is fully automated.

3 DiagnosingKnowledgeModels

Thehierarchicalmodelsadhereto the representationalconstraintsof model-baseddiagnosis,
andhencetechniquessuchasGDE canin principlebeappliedwithoutmodification.

In GDE, thediagnosticprocessconsistsof threesteps:conflict recognition,candidategen-
eration,andcandidatediscrimination.Conflict recognitionamountsto finding (minimal) sets
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of componentsthat,if assumedto beworkingcorrectly, resultsin behaviour thatconflictswith
the observations. From eachof thesesets(calledconflicts), at leastonecomponentshould
be faulty for the overall behaviour to beconsistentwith the observations. Candidategenera-
tion createsthosesetsof components(calledcandidates) thatcover eachconflict. Candidate
discriminationis concernedwith sequentialdiagnosis:givena setof observations,thesetof
possiblediagnosesmaynot besatisfactory, andadditionalobservationsarethennecessaryto
discriminatebetweenthepossiblecandidatediagnoses.

Thefirst two stepsareappliedwithout significantmodification.Thethird stephowever is
different. Thereasonis that thenatureof thecomponentsis significantlydifferentin knowl-
edgemodelsanddigital circuits. In a digital circuit, two componentsof the sametype may
behave accordingto the samerules,but arestill physicallydistinct instances.In knowledge
models,this is not necessarilythe case.Onereasoningstepappliedcorrectlyin onepart of
themodelis very likely to behave correctlyaswell in anotherpart: by their nature,different
componentsof thesametypearelikely to fail collectively. A learnerthatdoesnot know how
to applyan inequality correspondence is likely to exhibit thesameerror(faulty inequality cor-
respondence) at several placesin the model. The only exceptionis formedby components
of the retrieval type: here,differentinstantiationsareindeedindependentoperations,because
they refer to theretrieval of differentknowledgefacts.Theerrorof not correctly‘retrieving’
the relationbetweenlevel andpressureis usuallynot relatedto an incorrectretrieval of the
negativeinfluenceof theflow rateon thevolume.

This differentnatureof knowledgemodelsis exploited by the diagnosticalgorithm: the
failureprobabilityof asetof instancesof thesamecomponenttypeis definedto beequalto that
of a singlecomponent.For example,a candidatediagnosis[IC � ,IC � ,IC  ,IC � ] consistingof four
failing inequality correspondence componentshasthesameprobabilityasasinglecomponent
candidate[IC]. We actuallyinterpreta candidateat the level of genericinferences,insteadof
at thelevel of individual, instantiatedreasoningsteps:thefirst candidatecanbeinterpretedas
“unableto calculateinequalitycorrespondence”,which is at this level of interpretationasingle
fault. This interpretationdoesnot hold for thesinglecomponentcandidate:this maywell be
anincidentalinstantiationerroror slip.

For retrieval components,it is possibleto employ anadditionalheuristicin candidatedis-
crimination: becausemosterrorsmadein the experimentappearedto be causedby missing
or confuseddomainknowledge,retrieval componentscanbeassumedto have a highera pri-
ori failureratethaninferencecomponents.Similarly, higher-level, decomposablecomponents
haveahighera priori failureratethanindividualbasemodelcomponents,becausethesecom-
ponentsincorporatea numberof reasoningstepsin the basemodel. Note that this a priori
failure rate is inspiredby a structuralfeatureof the model,namelythe numberof inference
components,ratherthanby thesemanticsof theinferencesthemselves.

3.1 The STAR DiagnosticEngine

Onthebasisof theaboveconsiderations,wedesignedanew algorithmfor candidatediscrimi-
nation.Thealgorithmis a varianton thehalf split approachthatcandealwith multiple faults
anddiffering a priori failurerates.Thehalf split approachaimsat finding thepoint thatopti-
mally splitsthesetof componentsthatcontributesto a symptom:giventhesetof components�����

thatcontributesto asymptom,thesplittingfactor for apossiblemeasurepoint
�

is defined
as � ��������������������� � , where

���������
is thesubsetof

�����
contributing to thevalueof

�
(“before

p”) and
������� �

thesubset
�����

not contributing to thevalueof
�

(“after p”). In our case,sim-
ply takingthedifferencein numbersof componentsdoesnot work: componentsareno longer
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synonym with candidates.Hence,we introducethe weightedcardinality of a candidate, fa-
cilitating thecomparisonof candidates.Theweightedcardinalityof a candidateexpressesits
probabilityin termsof thenumberandtypeof componentsit consistsof.

Thealgorithmfor candidatediscriminationis givenbelow.

1. Collectthesetof all possiblemeasurepointsMPSby tracingbackwardsfrom thesetof symptoms
(i.e. observationsthatdonotmatchthepredictedvalue)throughthemodel.

2. For eachcandidate!�"$# in thecandidatesetCaS, calculateits weightedcardinality %&! Ca' .
Let R bethenumberof retrieval componentsin !�"(# ;
Let H bethenumberof decomposablecomponentsin !�"$# ;
Let T bethenumberof othercomponenttypesin !�" # ;
Theweightedcardinalityof acandidateis definedas %&! Ca'*),+.-0/21	3546+.-8791;:<4>= .

3. Let CpSbethesetof componentsthatcontributeto thesetof symptoms.Definetheunnormalised
probabilityof acomponentCp ? CpSto be @ �A

Ca' for all candidatesCa# containingCp.

4. For eachpoint B in MPS, let CpS
���

(“beforep”) C CpSbethesetof componentsthatcontribute
to thevalueof B andlet CpS

���
(“after p”) ) CpSD CpS

���
.

5. For eachpoint B in MPS, calculateits splitting factor EGF �
. Let H9I ���

be the sum of the un-
normalisedprobabilitiesof the componentsin CpS

���
, and H9I � �

the sumof the unnormalised
probabilitiesof thecomponentsin CpS

���
.

Thesplitting factorSF
�

of measurepoint B is definedas J8H2I ����K H9I � � J .
6. Ordertheprobepointsin MPSaccordingto their splitting factorSF

�
: thebestprobepoint is the

onewith thesmallestvaluefor SF.

The algorithmfirst determinesthe possiblemeasurepoints(step1). In step2, the weighted
cardinalityof eachcandidateis calculated.Thedefinitionof acandidate’sweightedcardinality
embodiesthedifferentaspectsdiscussedabove: retrieval anddecomposablecomponentshave
a highera priori failure rateandarecountedindividually. Componentsof thesametypeare
countedonly once. By its definition, the lower the weightedcardinalityof a candidate,the
higherits probability. Subsequently, wecanmaptheseweightedcardinalitiesontheindividual
components,yielding theunnormalisedprobability of a component(step3). This probability
expressesthedifferentcandidatesthata componentis partof: whena componentbelongsto
morethanonecandidate,knowing its statuswill providemoreinformation.Hence,thehighera
component’sunnormalisedprobability, themoreimportantit is to focusthediagnosticprocess
on this component.Theunnormalisedprobabilitiesof thecomponentsareusedin calculating
thesplittingfactorfor eachmeasurepoint (step4). As definedin step5, thecandidatediscrim-
inationalgorithmdoesnot deliver oneprobepoint, but a list of possibleprobepointsordered
to their discriminatingpower (i.e., their splitting factor). Although the diagnosticmachinery
canreasonabouttheexpectedresultsof a certainprobepoint, it cannotdeterminethecostsof
a specificprobewithin the currenteducationalcontext. As a result,the mosteffective probe
suggestedmaybevery expensive, in thesensethatit doesnot fit in with thecurrentdialogue.
In thiscase,theeducationalsystemmayselectanotherprobepoint from thelist.

Thediscriminationalgorithmshouldbeviewedasanimplementationof anumberof ‘rules
of thumb’. Especiallythedefinitionof theweightedcardinalityof a candidateincludessome
numericalinterpretationsof qualitative observationsthat may prove to be non-optimal. For
example,the fact that a retrieval componentis countedas0.7 is a somewhatarbitraryquan-
tification of the observation that moreerrorsaremadein the domainknowledgethanin the
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reasoningknowledge.Dueto thehierarchicalstructuringof themodels,thenumberof com-
ponentsthat is diagnosedat onceis usuallysmall. Hence,the impactof suchchoiceswill be
relatively small.

4 The STARlight Prototype

To illustratetheideaspresentedabove,adiagnosticsessionis presentedfrom thetestsweper-
formedwith the STARlight prototype.Theprototypefully implementsmodelgenerationand
hierarchicalmodelaggregationasdescribedin Section2, andthediagnosticenginepresented
in Section3.1.Furthermore,elementaryimplementationsof aquestiongeneratorandanexpla-
nationgeneratorareaddedto facilitateasimplequestion-answerdialoguewith a learnerabout
thebehaviour of some(physical)system.A screendumpof theSTARlight prototypeis shown
in Figure2. The screenshows a typical questionaboutthe behaviour of a physicalsystem

volume left is equal to volume right
level left is lower than level right

width left is greater than width right

volume left has become greater than volume right
position has changed to right side up

What will be the difference between water level left and water level right in the next state? 

a: water level left will be higher than water level right 
b: water level left will be equal to water level right 
c: water level left will be lower than water level right 

 A   B   C  Give me a hint Quit

Figure2: TheSTARlight Prototype

calledthebalancesystem: two containersfilled with waterareplacedon a balance,andeach
containerhasanoutletat the bottom. Theweightof the emptycontainersis assumedequal,
but their sizediffers. Thetaskof the learneris to predictwhathappensto thewatercolumns
andto thebalanceoncetheoutletsareopened.

We conducteda small setof test sessionswith 9 learners. To exemplify the diagnostic
machinery, we presenta fragmentof the interactionbetweenthe learnerandthesystem.The
indentedphrasesin italics arethink-aloudremarksmadeby the learner. In this example,the
initial behaviour stateof thebalance(theleftmostsituationdepictedin Figure2) hasjust been
presentedto the learner. The dialoguestartswhenthe learneris asked to predictthe second
state(theright situationin Figure2), which is at thismomentnotyet visible to thestudent.
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1. What will be the difference between volume left and volume right in the next
state?

2. Hey, look, the volumes are equal. I didn’t take notice of that.
3. Yes, I think they stay equal?
4. b: volume left will be equal to volume right
5. That’s not correct.
6. Before we go on with the prediction, I would like to know what you think about

the present situation.
7. Please answer the following question:
8. What do you know about the difference between the decrease in volume left

and the decrease in volume right?
9. Volume left decreasing slower than volume right?

10. No, at the same speed I would say.
11. b: volume left is decreasing at the same speed as volume right
12. That’s not true.
13. Please answer the following question:
14. What do you know about the difference between outflow left and outflow right?
15. Well I would say that the outflow is equal, but that is now when the

pressure [incomprehensible]
16. Ah! Is that it? The outflow left is smaller
17. c: outflow left is smaller than outflow right
18. That’s right.
19. Please answer the following question:
20. which quantity causes a change in volume ?
21. The outflow, or the pressure, yes the outflow
22. c: outflow
23. That’s right.
24. I think you don’t fully understand the following:
25. the difference between outflow left and outflow right has a direct influence

on the difference between the decrease in volume left and the decrease in
volume right.

26. This means that because outflow left is smaller than outflow right volume left
is decreasing slower than volume right.

27. Let’s continue with the exercise where we left off.
28. All right, interesting. . .

To explain the diagnosticprocessunderlyingthis interaction,considerFigure3. Theanswer
given in line 4 suppliesthe observation LM�9NOLP� in the outputof the state transition compo-
nentST. ST modelsthetransitionfrom thefirst to thesecondstateat thehighesthierarchical
level. In theprototypesystem,thesubjectmattersequencingis simplifiedto only askingthe
outputof eachsubsequenttransition component.Hence,a conflict at thehighestlevel results
in a decompositionof two components:the precedingtransition componentplus the previ-
ousspecification component(for moredetails,see[6]). Hence,SS andST aredecomposed
into the seven-componentmodeldepicted. The first call to the diagnoserdeliversonecon-
flict: Q CII, IT R , andhencetwo diagnoses[CII] and [IT]. The combined inequality influence CII
is a higher-level componentthat summarisesthe calculationof a derivative (in this case,the
derivativeof thepositionof thebalanceS Pos) from an(in)equality(in thiscase,thedifference
betweenthewaterlevels ���GTU��� ). Theinequality termination IT determinesthenew inequality
betweenthe valuesin the next state. The only probepoint that yields informationaboutthe
candidates[CII] and[IT] is in betweenthesecomponents.Hence,a questionis askedaboutthe
inequalitybetweenthe derivativesof the volumes( S(LM�V�WS(LM� , line 8). The answergiven in
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 = observation/model input
= unknown (predicted)Expr

Expr

= symptomExpr
Expr

CDD

SS ST

dPos = -

CII

Pos = -
VD

R_1

Vl = Vr

IT

QT

R_2

Ll < Lr

Pos =
V2 - V1

Pos = 0

dVl > dVr

[-,0,+]

Vl > Vr

Pos =
V2 - V1

[-,0, +]

Vl = Vr

dPos = -
Pos = 0
dVl > dVr

Pos = -

Vl > Vr
Vl = Vr

Vl = Vr

Ll < Lr

QT
IT

VD
CDD

= value determination
= combined derivative
= determination

= quantity termination
= inequality termination

SS
ST

= state specification
= state transition

R = retrieval

CII = combined inequality
   influence

Figure3: FirstDiagnosticCycle

line 11 is incorrect,yielding a single-fault diagnosis[CII]. Becausethis is a higher-level com-
ponent,it is decomposedinto a lower-level modelasshown in Figure4. Thenext diagnostic

TIC

II

CII = combined inequality influence

= transitive inequality 
   correspondence
= inequality influence

R = retrieval

 = observation/input
= unknown (predicted)Expr

Expr

= symptomExpr
Expr

CII
Ll < Lr dVl > dVr

dVl = dVr

Fl < Fr
neg_infl(Fl, V)

TIC II

R_3

Ll < Lr
dVl > dVr

dVl = dVr

neg_infl(Fl, V)

Figure4: SecondDiagnosticCycle:Level 2

cycle yields oneconflict Q TIC, R3, II R and threecandidates[TIC], [R3], and [II]. For the two
existing measurepoints,thesplitting factorsaredeterminedby thediscriminationalgorithm.
For thepoint neg infl(Fl,V), thesplitting factoris � �XZY [ �<\ �XZY ]V^ ��`_ ��Nba.ced.f , for g;��Thg;� it is� �XZY ] �<\ �XZY [V^ ��i_ �jNWklc8mon . g;��Tpgq� hasthe lowestvalue,andthusthe highestdiscriminating
power. Hence,this oneis questioned(line 14) andansweredcorrectly(line 17). This results
in thenew conflict Q R3, II R andtwo candidates[R3] and[II]. Thelastprobeonneg infl(Fl, V) in
line 20 deliversthe inequalityinfluencecomponentII asa final single-fault diagnosis.In line
24–26,anexplanationis generatedfor thiscomponent.

In thetestsessions,a total of ninelearnerswereusingtheprototypefor abouthalf anhour
each.Of theseninelearners,four hadsomeexperiencein qualitative predictionof behaviour
(the‘advancedlearners’),whereasfivehadnorelevantforeknowledge(the‘novices’). In total,
707questionswereanswered,andtherewere30 diagnosticsessions.Runningon a 200Mhz
PentiumProplatformunderLinux, mostdiagnoseswerecalculatedwithin onesecond,with a
maximumof four seconds.Theaveragenumberof probesneededto determinea satisfactory
diagnosiswas2.7; thelongestsequenceof probeswaseight,whichoccuredtwice.

Althoughtheexperimentalsetupandthenumberof subjectsdonotallow for drawing firm
conclusions,theoverall performanceof thediagnoseris satisfactory:with anaverageof three
probequestions,thediagnoseris capableof identifyingoneor more‘f aultycomponents’in the
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model. Thesefaulty componentsrepresentthoseinferencesthatcannothave beenperformed
correctlyby thesubject.

Thetestsessionsshow a differencein competencefor advancedlearnersandnovices.The
systemperformsvery well in ‘fine tuning’ the learner’s reasoningprocess.Whenthe learner
hassomeunderstandingof thepredictiontask,but lacksthenecessarydomainfactsor thesub-
tletiesof the reasoningprocess,the diagnosesareadequateandhelpful. On average,only a
few probesareneededto pin down a uniquediagnosis.Furthermore,theprobequestionsare
oftenhelpful in learningbecausethey triggerself-repair. In suchcases,thefinal explanation
doesnot indicatean existing error, but servesasa confirmationof the self-repair. Whenthe
learnerdoesnot have any initial knowledgeaboutstructuredbehaviour prediction,theperfor-
manceis lessoptimal: theprobequestions,theexplanationfollowing thefinal diagnosisis not
alwayshelpful (althoughcorrect). To someextent, this resultcanbe ascribedto the limited
capabilitiesof theSTARlight systemwith respectto phrasingquestionsandexplanations.More
importantly, novicesarenot alwaysableto understandthedetailedexplanationsof thesystem
becausethey miss the necessary‘surrounding’knowledge: their problemsolving behaviour
maybeasyet too unstructuredto bediscussedin termsof individual reasoningsteps.In ad-
dition, novicesmaybenefitfrom a moregradualintroductionof thesubjectmatterin termsof
differentincreasinglycomplex models,asis for instanceconjecturedby the theoryof causal
modelprogression[18].

5 Discussion

Peoplelearnfrom their errors. The valueof learningfrom errorshasbeenrecognisedin in-
fluentialeducationalphilosophiessuchasSocratictutoring[4] andLOGO [15]. Theprinciple
alsoplaysan importantrole in contemporarydiscovery or explorative learningenvironments
(cf. [17]). By meansof exploration and experimentation,a learnercan develop modelsof
thesubjectmatterknowledgeinvolved. Errorscanbea valuableaid in adjustingandrefining
the modelsdevelopedby the learner. Knowledgeablesupportof the learner’s trial-and-error
behaviour canhelpthelearnerto learnfrom hisor hererrorsin aneffectiveandefficientway.

An emphasison learningfrom errorsrequiresa view on educationthat is not commonly
practisedby humanteachers:they appearto rely mainlyonpatternrecognitionon thebasisof
known misconceptions,ratherthanondetaileddiagnosticsearch(cf. [2]).On theonehand,this
is influencedby traditionaleducationalviewsonerrors:“Schoolteachesthaterrorsarebad;the
lastthingonewantsto dois to poreoverthem,dwell onthem,or think aboutthem.” [15]. And,
maybeevenmoreimportant,detailedstructureddiagnosisis oftencomputationallyinfeasible
for humanteachers.

Comparedto model-baseddiagnosisof reasoningbehaviour, diagnosison thebasisof bug
cataloguesis not merelyanothertechniqueto arrive at the sameresult. Instead,the useof
pre-storedbugs involvesa significantly different approachto educationalguidance: in this
case,the diagnosticactivity is aimedat matchingknown misconceptionsthat may explain
theerrorsmade.As a result,diagnosisis oftenheuristicandshallow, anddoesthereforenot
play a decisive role in the teachingprocess.A focuson learningfrom errorsassupportedby
the STAR framework yields a differentteachingstyle: insteadof directly mappingerrorson
misconceptionsto beremediated,zoomingin on thespecificbug thatcausestheerrorguides
thelearnerin discoveringthiserrorandmaybeself-repairingit.

Summarising,theway in which theSTAR framework providessupportis onethatis gener-
ally difficult or evenimpossiblefor humanteachers.In theSTAR approach,every error in the
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learner’
r

sproblemsolvingprocesscanbetracedbackto areasoningstepthatcannothavebeen
appliedcorrectlygiventheobservations.Theprobingmechanismaccountsfor astructuredse-
quenceof questionsthat,asasideeffect,will stimulatethelearner’sself-repairbehaviour. The
educationalmethodologyfollowing from thisapproachis difficult or evenimpossibleto realise
with othermeansthanknowledge-basededucationalsystems.Thediagnostictaskasit is de-
finedin theSTAR framework is toocomplex to befeasiblefor humanteachers.Moreover, even
if they would becapableof (learning)to diagnoseproblemsolvingbehaviour in a structured
anddetailedway, theactualapplicationin educationalpracticewill neverbecost-effective.The
STAR framework allowsfor closemonitoringanddetaileddiagnosisof thelearner’s reasoning
behaviour, showing thelargepotentialof knowledge-basedsystemsin education.In particular,
theframework showsthatthetransferof existing,solid techniqueslikemodel-baseddiagnosis
canbesuccessfullyemployedto alleviatelong-standingbottlenecksin educationalsystems.

6 Conclusions

Thetaskof cognitivediagnosisis oftenconsideredto betoocomplex to becost-effective. The
STAR framework countersthis view by providing a genericandautomatedapproachto diag-
nosingtheproblemsolvingbehaviour of thelearner. By exactly scopingthetaskof diagnosis
within education,andby defining“device models”for the learner’s problemsolving task, it
becomespossibleto reusetechniquesfrom the field of model-baseddiagnosis.We defined
educationaldiagnosisasthe identificationof (necessary)reasoningstepsthat have not been
performedcorrectly. For thetaskof qualitative predictionof behaviour, we designedandim-
plementedtechniquesto automaticallygeneratethenecessary“devicemodels”from theoutput
of a qualitative simulator. Usinga hierarchicalvariantof GDE, we showedthatmodel-based
diagnosiscanbe usedto identify a learner’s errorsmadein individual reasoningsteps.This
focuson errorsin thelearner’s problemsolvingbehaviour stronglyinfluencestheeducational
approachof the system. Peoplelearn from their errors,and the diagnosticprobescanhelp
the learnerin detectingtheseerrors. This view on educationis different from the one un-
derlying mostdiagnosticapproaches.Insteadof focussingon tracingmisconceptionsin the
learner’s knowledgethatcanberemediated,our approachcanhelpthelearnerin detectinger-
rors.Theseerrorsresultin anexplanationby thesystem,but alsooftenstimulatethelearnerin
self-repairingthem.

Furtherdevelopmentof theSTAR framework canbepursuedin variousdirections.Thecur-
rentframework is basedonqualitativepredictionof behaviour, whichisapplicableto reasoning
aboutmany typesof systemssuchasphysicaldevices,ecologicalsystems,andeconomicalsys-
tems.Within thecontext of qualitative reasoning,thescopeof theframework canbeenlarged
to incorporateotherproblemsolvingtaskssuchasmonitoring,design,or diagnosis.

A secondinterestingdirectionfor extensionis thedevelopmentof othergenericeducational
functionsbasedon themodelrepresentations.Sophisticatedtechniquesfor subjectmatterse-
quencinganddiscourseplanningareenvisagedthattake advantageof thehierarchicalmodels
of problemsolvingknowledgeasdefinedandgeneratedwithin theSTAR framework.
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