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agement and education in ecology. However, a number of problems hamper the use of

traditional modelling approaches when addressing complex systems involving three or

more populations. In this paper we describe implemented qualitative models for improving

understanding about the ants’ garden, a complex system consisting of ants, their cultivated

fungi, a virulent parasitic fungus that may attack the garden and bacteria that produce

antibiotics against the parasitic fungus. These models are based on a qualitative theory

of population dynamics and use models about symbiosis, commensalisms, amensalism

and parasitism to create the structure of the ants’ garden. Simulations show the effects of

changes in populations affecting the whole garden behaviour. Finally, we discuss the pos-

sibility of using a qualitative approach for building conceptual models of complex systems,

grounding explanations on explicit representations of the causal influences, implementing

easy to change assumptions, testing different hypotheses and complementing numerical

models.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction

Because few organisms cultivate their own food, fungus-
gardening by ants is considered to be a major breakthrough in
evolution. It is a symbiosis in which organisms of two differ-
ent species (ants from the family Formicidae and fungi mostly
from the family Lepiotaceae) benefit each other and creates a
system that can successfully survive in a number of different
environments, being the dominant herbivores in the Neotrop-
ics. Recent studies (Currie et al., 1999a,b) showed that the ants’
garden is far more complex than initially understood. A third
species, the specialized garden parasite fungi of the genus
Escovopsis is often involved and may destroy the system, by
attacking the cultivated fungi. However, it almost never hap-
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pens because ants carry on their body colonies of bacteria
(genus Streptomyces) that produce antibiotics effective to con-
trol the growth of Escovopsis. Therefore, the system consists of
four species and of complex balance of interactions in which
eventually the ants’ garden survives. The basic configuration
of the ant’s garden is shown in Fig. 1.

Interactions between populations have been a hot topic in
ecological theory and practice. Competition, for instance, is
still seen as a driving force for shaping biological communi-
ties. However, traditional modelling approaches, mostly based
in differential and difference equations, are limited in many
aspects. In general, they are difficult to build, very hard to cal-
ibrate and almost impossible for non-experts to understand
their result. Such models are ‘black boxes’, that is, they have
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no a clear representation of the system structure and cannot
explain how a system works (Gillman and Hails, 1997).

Applied to more complex systems, the predictive capacity
of numerical population models may be jeopardized by other
problems. It has been shown that even simple mathematical
models may produce complex trajectories, with stable points,
cycles and chaotic behaviour (cf. May, 1974, 1976). For exam-
ple, modelling interactions among populations with ordinary
differential equations, Gilpin (1979) demonstrated that chaos
can be observed when there are at least three populations.
Cyclic behaviour has been observed in many populations, but
the existence of chaotic behaviour in natural populations is
still an open question (e.g., May, 1974; May and Oster, 1976).

Qualitative reasoning models (Weld and de Kleer, 1990) may
play an important role in this discussion, particularly for rep-
resenting the structure of the system and grounding causal
explanations about the system behaviour in this structure.
We here describe models about the ants’ garden developed for
improving understanding about this complex system, imple-
mented on the top of models about single population dynam-
ics (Salles and Bredeweg, 1997) and interactions between two
populations (Salles et al., 2003). These models are ‘simpler’
than the complex mathematics used to represent population
and community dynamics but powerful enough to support
useful conclusions about the system behaviour.

We start presenting the ants’ garden and some questions
we expect our models to answer (Section 2), and then discuss
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endemic Escovopsis were only overgrown by this fungus. Actu-
ally, even in the presence of ants Escovopsis may overgrow gar-
dens, both in the field and in laboratory (Currie et al., 1999b).

What factors may control Escovopsis growth and keep the
ants’ garden working? Further studies discovered a third
mutualist, bacteria of the genus Streptomyces. These bacte-
ria have been largely used in the pharmaceutical industry
to produce antibiotics for human use. Currie et al. (1999a)
demonstrate that they produce antibiotics that specifically
suppress the growth of Escovopsis. Further studies indicate
that Streptomyces produce metabolites (vitamins, amino acids)
that may enhance the growth of the cultivated fungi (Currie
et al., 1999a).

A modelling approach may provide a representation of the
system structure to support explanations about why the sys-
tem behaves as it does. Models are intellectual tools that
give a ‘simplified’ picture of reality. In some way, models
reflect our knowledge about a system, and provide formal
representations of this understanding so that they can be
assessed by members of the scientific community (Jørgensen
and Bendoricchio, 2001).

Models designed to improve the understanding of the sys-
tem are also called conceptual models. According to Grimm
(1994), conceptual models should be understandable, manage-
able and allow full exploration. These kinds of models can be
used for supplying a ‘conceptual framework’ for a research
program and for proposing and testing hypotheses, that is, to
elated work on building qualitative models about populations
Section 3). The model building effort (Section 4), the resultant

odels (Section 5) and simulations with two models (Sec-
ion 6) are presented next. Finally, we comment related work
Section 7) and discuss the potential of qualitative modelling
pproaches for representing complex systems with more than
wo populations and how they can complement current tech-
iques used in ecological modelling (Section 8).

. How does the ants’ garden system work?

he ants’ gardens have been thought to be ‘monocultures’ free
f microbial parasites, but it has been discovered that they are
osts of specialized garden parasites belonging to the genus
scovopsis. Currie et al. (1999b) noted that these fungi are only
nown from attine gardens and that they are found in many
ttine nests. In the absence of the ants, rapidly and almost
nvariably Escovopsis overgrow the garden. Instead of multi-
le contaminants, after removal of tending ants, gardens with

ig. 1 – The ant’s garden: positive and negative interactions.
demonstrate the ‘consequences of what we believe to be true’.
The objective of the work described here is to build mod-

els to improve learners understanding of the ants’ garden.
The models described here should be able to answer ques-
tions such as What are the mechanisms, at the population level,
that keep the ants’ garden functioning, even in the presence of para-
sitic fungi? As shown in the following sections, we explore the
causal dependencies in interactions between the four popula-
tions to provide answers for this question.

3. Modelling approaches to multi-species
communities

Theoretical population ecology became a well-established dis-
cipline during the 20’s and 30’s by Lotka, Volterra, Gause
and others. These authors have developed mathematical
approaches both to field and to experimental population ecol-
ogy that still are references for modelling population dynam-
ics and interactions between populations (Kingsland, 1991).
Although powerful and elegant, differential equations pose a
number of constraints on the way knowledge is represented,
and require good quality data. Given that data about ecological
systems are often difficult to obtain and available knowledge
is incomplete, qualitatively expressed, building mathematical
ecological models is thus not an easy task. Nevertheless, most
of the ecological modelling approaches are based on mathe-
matical equations.

In spite of the wide acceptance of mathematical population
ecology (cf. May, 1976), during the 1970s these models received
some criticisms: they assume a deterministic approach to
systems that are affected by stochastic factors; they are not
adequate to describe the behaviour of certain species; they
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oversimplify the problems and so on. Moreover, it has been
shown that the very simplest non-linear difference equation
can possess a rich spectrum of dynamic behaviour, from stable
points to stable cycles and to a regime in which the behaviour,
although fully deterministic, is in many aspects “chaotic”
(May, 1976). Further studies on this topic are not conclu-
sive and whether or not natural populations present chaotic
behaviour is still an open question (Godfray and Blythe, 1990).

Derived from population dynamics, research on commu-
nity dynamics has been assuming that all the species in a com-
munity were fluctuating around a stable equilibrium of den-
sities of the different populations. It was accepted that more
complex biological systems (defined in terms of the number
and nature of the individual links in the trophic web) would
become more stable (defined by the tendency of returning
to the equilibrium after small perturbations). Investigations
described by May (1973) did not support this idea and fuelled
a discussion about whether or not complexity and stability are
in fact coupled in biological communities.

It is interesting to build models that predict behaviours that
were not observed in nature. However, the fact that simple and
deterministic equations can possess dynamical trajectories
which look like random noise has disturbing practical impli-
cations for the analysis and interpretation of biological data,
as discussed by May and Oster (1976). Being black box mod-
els (Gillman and Hails, 1997), the use of these approaches is
not very helpful to improve understanding about the structure

pretation, except that the rate is subtracted from the state
variable.

Qualitative proportionalities carry much less information
than direct influences. According to Forbus (1984), P + (A, Y)
represents a situation in which there exists a function that
determines A and is increasing monotonic (that is, strictly
increasing) in its dependence on Y. In algebraic notation, this
can be represented as A = f(. . ., Y, . . .). In other words, if P + (A, Y)
is the only influence on the quantity A, then when Y is chang-
ing (increasing or decreasing), A is also changing, in the same
direction. Negative proportionalities are defined in the same
way, except that the function is decreasing monotonic.

Combining more than one direct influences or qualitative
proportionalities is called influence resolution. If their relative
strength is known, there is no ambiguity. If not, either the
modeller should include extra knowledge or the reasoning
engine will try all the possible combinations, increasing the
number of states in the simulation.

Causality is represented in both direct influences and pro-
portionalities as flowing in one direction: for example, in both
expressions I + (Y, X) and P + (Z, W), the quantities X and W
cause changes, respectively, in Y and Z, and not the contrary.
Combinations of direct influences and proportionalities suf-
fice for building causal chains. For example, if I + (Y, X) and
P + (A, Y) and the process is active, then Y increases by an
amount equals to X and given that Y is increasing, A will
increase as well. A number of examples of this causal rea-
and behaviour of ecological systems.
Alternative approaches and conceptual models are

urgently required to enhance understanding about complex
ecological systems. Qualitative reasoning models (Weld and
de Kleer, 1990) are an interesting option in a situation like
this, providing representations of relevant concepts when
mathematical approaches in general are not good options or
when the lack of good quality numerical data hampers their
application. Some basic concepts of qualitative reasoning
models are presented in the next section.

4. Qualitative reasoning and population
ecology models

In this modelling effort, we adopted the ontology provided
by the qualitative process theory (Forbus, 1984). This theory
defines a simply notion of physical processes that is a useful
language to write domain theories about dynamics. Accord-
ingly, processes are assumed to be the only mechanism that
may cause changes in the system. Two modelling primitives
are used to represent the effects of processes: direct influences
(I+; I−) and qualitative proportionalities (P+; P−).

These modelling primitives have both a mathematical and
a causal interpretation. The mathematics of direct influences
and proportionalities can be summarized as follows. Direct
influences define the derivative of influenced quantities. Thus,
for example, the expression I + (Y, X) reads dY/dt = (. . . + X . . .).
If this is the only direct influence on Y, then its derivative
will take the value X and, if X > 0, it will increase by an
amount equals X. Compared to differential equation mod-
els, Y plays the role of a state variable and X is the rate
of the process. Negative direct influences have similar inter-
soning will be given below.
Using the ontology provided by the qualitative process

theory, we implemented a qualitative theory of population
dynamics, used as the basis for representing the succession
in the communities of the Brazilian Cerrado vegetation (Salles
and Bredeweg, 1997), interactions between populations (Salles
et al., 2003) and now to implement models about the ants’ gar-
den.

The starting point of the qualitative domain theory of pop-
ulation dynamics is the equation:

Number oft = Number oft−1

+ (Born + Immigrated) − (Dead + Emigrated)

where Number of is the number of individuals in the popula-
tion at the time points t and t − 1, and Born, Immigrated, Dead
and Emigrated are the rates of the basic processes of natality,
immigration, mortality and emigration. The qualitative repre-
sentation of this equation is:

I + (Number of, Born); I + (Number of, Immigration);

I − (Number of, Dead); I − (Number of, Emigration).

In order to capture the idea that there is a feedback loop
involving these quantities, so that when the population size
increases (or decreases), the rates of the basic processes also
change (except immigration because it is seldom influenced
by the population size), the following three proportionalities
were implemented:

P + (Born, Number of ); P + (Dead, Number of );

P + (Emigration, Number of ).
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For implementing the domain theory we adopt the com-
positional modelling approach (Falkenhainer and Forbus, 1991).
Accordingly, domain knowledge is encoded as stand alone
partial models called model fragments. A model fragment
often contains information about objects, relations with other
objects, quantities and their possible values, inequality state-
ments, causal dependencies and descriptions of situations
and processes. Model fragments are automatically combined
by the reasoning engine in order to compose a running model.
The model building activity is, in fact, the work of building
a library of model fragments. These model fragments can be
reused, so that the library, in general, supports the construc-
tion of more than one model, scaling up the level of complex-
ity (considering the number of processes and state variables
included in the model). A special type of model fragment is the
initial scenario, used to start a simulation. A scenario contains a
partial description of the system, including objects, relations,
dependencies and the initial values of relevant quantities.

The models described here were implemented in the
domain independent qualitative simulator GARP (Bredeweg,
1992). Associated to GARP we used the graphical tool VisiGarp
(Bouwer and Bredeweg, 2001) to inspect the running models
and the simulations.

Given an initial scenario, the library, and a set of model
fragments specifying domain independent transition rules,
GARP produces a simulation. This is done by selecting from
the library the model fragments that mention the entities and
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{zero, normal, maximum}. The magnitudes of birth rate (Born)
and death rate (Dead) are included in the quantity space {zero,
plus}. Derivatives of all the quantities have quantity space
{minus, zero, plus} meaning that the quantity is decreasing,
stable or increasing, respectively.

As typically occurs in Artificial Intelligence, entities are
represented by using a subtype (isa) hierarchy. In this isa hier-
archy entities placed below in the hierarchy inherit attributes
from the entities above. For example, the models described in
this paper include entities such as ‘population’ and, below it,
‘ants’. Assuming that ‘ants’ isa ‘population’, GARP associates
to ‘ants’ the quantity Number of and its quantity space. This
is a powerful way of encoding knowledge: a domain theory
about population dynamics defined for the entity ‘population’
can be associated to the entities involved in the ants’ garden.

Entities may be physical objects or conceptual objects. Con-
cepts are also organized in subtype hierarchies. The models
described here include conceptual entities such as ‘assump-
tions’. Examples are the ‘operating assumptions’ and the ‘sim-
plifying assumptions’. Operating assumptions play an impor-
tant role in defining a perspective for approaching the sys-
tem. For instance, if the operating assumption ‘closed pop-
ulation’ is assumed, as done for the models described here,
then only natality and mortality processes are considered.
Simplifying assumptions do not change the structure of the sys-
tem but simplify the simulations, because they reduce the
number of ambiguities and the number of states in a sim-
t to the conditions stated in the initial scenario. From the
nitial scenario, one or more initial states are created. A qual-
tative state is a unique description of the structure of the
ystem combined with a distinctive set of values associated
o the quantities of interest, described by a particular subset
f model fragments. Next, GARP checks the conditions of the
ystem in that state and proceeds to the influence resolution
f direct influences and proportionalities. As a result, new con-
itions are defined and GARP goes through the library again,
electing a new set of model fragments that are consistent
ith the new conditions of the system. In the description of

his new state, some model fragments active in the previous
tate may continue to hold, some may be removed and new
nes may be included. Details of GARP and the reasoning pro-
ess can be found in Bredeweg (1992), Salles and Bredeweg
2003, in press) and in Bredeweg et al. (in press).

The backbone of GARP models is the description of the enti-
ies involved in the model and definitions of how they are
elated. For example, a model may include the entities ‘popu-
ation’ and ‘biological entity’ and their relation may be defined
y the statement ‘consists of’. In this case, the structure of the
odel can be described as ‘population consists of biological

ntity’. Relevant properties of the entities are represented as
uantities. For example, the size of the entity ‘population’ can
e represented by the quantity Number of.

Numerical values of quantities are abstracted in order to
epresent just their most relevant qualitative states. In quali-
ative models, these values are included in a set called quantity
pace (Forbus, 1984). Any quantity value in a GARP model is
haracterized by the tupple 〈magnitude, derivative〉. The former
ives an idea of the ‘size’ of the quantity and the latter defines
ts direction of change. We may say that the magnitudes of
umber of assume qualitative values from the quantity space
ulation. For example, models about parasitism may include
correspondences (Bredeweg, 1992) between the population size
and the strength of its effect on the other population. This way,
Number of = maximum corresponds to an effect with maximum
strength (see below).

The simulation run in GARP can be inspected with the visu-
alizing tool VisiGarp (Bouwer and Bredeweg, 2001). The state
graph (or behaviour graph) shows the set of states and state
transitions produced during the simulation. A sequence of
states is called a behaviour path. It is possible to identify a
set of behaviour paths in the state graph. The state where a
behaviour path finishes is called an end state. Other aspects of
the simulation can be explored with VisiGarp. Worth to men-
tion here are the dependencies and the so-called value history
diagram. The former presents the causal model, a diagram
with the quantities and the active dependencies (direct influ-
ences, proportionalities, correspondences and inequalities)
relating them in each state. The value history diagram rep-
resents the values of magnitude and derivative each quantity
assumes in each state during the simulation. Each sequence
of states and state transitions constitutes a behaviour path; it
is possible to follow the changes a quantity goes through dur-
ing the simulation. A number of examples of these features
are presented in the sections below.

In the next section, we present the models about interac-
tions between populations used for implementing the ants’
garden.

5. The ants’ garden models

Different types of interactions between populations can be
described according to the effects each population causes on
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Table 1 – Interactions between the four populations
involved in the ants’ garden

Ants Cultivated
fungi

Parasitic
fungi

Bacteria

Ants ** + ? +
Cultivated fungi + ** + ?
Parasitic fungi ? − ** ?
Bacteria ? + − **

The sign refers to the effects of the population in the row on the
population in the column. For example: the fourth row reads as
bacteria having an unknown influence (?) on the ants, a positive
effect (+) on cultivated fungi, and a negative effect (−) on parasitic
fungi. The symbol (**) indicates self-interaction.

the growth of the other population (positive, neutral or neg-
ative) by combining the signs, respectively {+, 0, −} (Odum,
1985). Following this author, we use [(predator, prey) = (+, −)]
to represent, for example, predation. The predator increases
due to the positive influence (+) from the prey, while the latter
decreases due to the negative influence (−) from the predator.

Table 1 presents the relationships between the four species
involved in the ants’ garden system, as inferred from Currie et
al. (1999a,b).

The relations between ants and cultivated fungi, and
between cultivated fungi and parasitic fungi are clearly
defined in the table. However, some interactions are only par-
tially defined. They are: [(ants, bacteria) = (?, +)]; [(bacteria, par-
asitic fungi) = (?, −)] and [(bacteria, cultivated fungi) = (?, +)]. For
the sake of simplicity, we assume that these relations are uni-
directional, that is, both ants and bacteria are not affected by
the other populations. Therefore, we define the following rela-
tions as the minimum set of interactions required to model the
ants’ garden:

(a) [(ants, cultivated fungi) = (+, +)];
(b) [(parasitic fungi, cultivated fungi) = (+, −)];
(c) [(ants, bacteria) = (0, +)];
(d) [(bacteria, parasitic fungi) = (0, −)];
(e) [(bacteria, cultivated fungi) = (0, +)].

Salles et al. (2003) describe six models of interaction types

Fig. 2 – Base model for two interacting populations models
(Salles et al., 2003).

‘Non-existing population’. In the former, Number of is greater
than zero and, in the latter, equal to zero.

The assumption that only natality and mortality pro-
cesses may be active is implemented by the model fragment
‘Assume open population’. As this assumption applies to all
interactions, only the model fragments ‘Natality’ and ‘Mortal-
ity’ are included in the ants’ garden models.

The models of interactions are specifications of the basic
architecture depicted in Fig. 2.

As shown in Fig. 2, the effect one population can cause on
the other is represented by the quantity Effect. The effects of
population1 on population2 and vice versa are represented,
respectively, by Effect1on2 and Effect2on1. These quantities are
renamed to better express each interaction. For example, Bene-
fit or Supply in positive interactions and Consumption or Pollution
in negative interactions. The relation between effect and the
size of the influencing population is modelled by the propor-
tionality P + (Effect, Number of).

This option for an intermediate quantity (Effect) as an alter-
native for creating an influence directly from Number of to the
influenced population increases the representational capacity
of the models, as it allows for modelling a situation in which
Effect either corresponds or not to the size of the population
that produces the effect. For example, the ants interact both
with cultivated fungi and with bacteria. Each interaction is
modelled by a specific quantity Effect and their values can be
different.
between populations, defined by all the possible combinations
of the signs {+, 0, −}. According to Odum (1985), these com-
binations can be used to represent nine types of interactions,
given that some pairs apply to more than one type of interac-
tion. For example, (+, −) can be used to represent predation,
herbivory and parasitism. In order to implement the ants’ gar-
den models, we took from Salles et al. (2003) the following
models: symbiosis (a), parasitism (b), commensalisms (c, e)
and amensalism (d). Recently, these models have been slightly
adapted following discussions with experts. For details see
Bredeweg and Salles (in press).

The library for the ants’ garden models consists of 33 model
fragments. Three model fragments are used for a general defi-
nition of population. The model fragment ‘Population’ defines
the relation between a set of things (population) and a biologi-
cal entity (species): ‘population consists of species’. The quan-
tity Number of is introduced and associated to population. This
model fragment has two subtypes: ‘Existing population’ and
Given that only processes may change the population size,
in the ants’ garden models a population influences the other
population via the basic processes of natality and mortality.
A positive interaction, for example, can be implemented as
increasing the birth rate, P + (Born, Effect), decreasing the death
rate, P − (Dead, Effect), or both at the same time. Similarly, neg-
ative interactions can decrease the birth rate; increase the
death rate or both.

Each interaction is typically modelled by using five model
fragments: a model fragment that defines general aspects of
the interaction, and four subtype model fragments to imple-
ment detailed knowledge. Among them, one model frag-
ment specifies details of the interaction; two model fragments
define the absence of each population; and one model frag-
ment defines some simplifying assumptions for the interac-
tion. Extra model fragments may be used to implement extra
assumptions for the interactions. Details of each interaction
included in the ants’ garden models are described below.

To model parasitism, a set of five model fragments are used.
The most general is ‘Parasitism’, which introduces the two
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populations, being population1 the parasite and population2
the host, and the quantities Supply (the effect of the host on the
parasite) and Consumption (the effects of parasite on the host).
A directed correspondence (Bredeweg, 1992) establishes that the
magnitude of Supply takes the same values as the magnitude
of Number of2. The relation between the values of Consumption
and Number of1 is represented in the same way.

The model fragment ‘Parasitism interaction’ implements
the effects of the interaction: it establishes that Supply
increases Born1 and decreases Dead1, while Consumption
increases Dead2. This model fragment also assumes that both
the magnitude and the derivative of Supply have to be greater
than or equal to, respectively, the magnitude and the deriva-
tive of Consumption. This way, consumption is less than or, at
most, equal to supply and there is no food shortage for the
parasite.

The conditions for parasite and host populations to go
extinct are defined, respectively, by the model fragments ‘Par-
asitism without parasite’ and ‘Parasitism without host’. The
former sets no constraints or consequences for the host pop-
ulation due to the disappearance of the parasite population.
However, we assume that the parasite cannot exist without
the host: if Number of2 goes to zero, then Number of1 will do
the same. Finally, simplifying assumptions for this interaction
are encoded in the model fragment ‘Parasitism assumptions’:
directed correspondences establish that the derivatives of Born
and Dead take the value of the derivative of Number of. This
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standing that bacteria disappear from the ants’ garden if
they do not receive the benefit from the ants is captured in
the model fragment ‘Commensalisms without producer’. It
establishes that if Number of1 is zero, then Number of2 also
should go to zero. The model fragment ‘Commensalisms with-
out affected’ sets no constraints or consequences for popula-
tion1 due to the disappearance of population2. Finally, as in
parasitism and symbiosis, simplifying assumptions involving
Number of, Born and Dead are implemented by the model frag-
ment ‘Commensalisms assumptions’.

Three model fragments implement constraints on the
strength of the influence of population1 on population2. ‘Com-
mensalisms effects magnitude1’ establishes that only when
Benefit has value maximum, Number of2 can go to maximum.
‘Commensalisms effects magnitude2’ establishes that if the
magnitude of Benefit is normal, then the magnitude of Num-
ber of2 has to be below maximum. Finally, ‘Commensalisms
high impact’ implements the ‘commensalisms high impact’
assumption, which establishes that the value of Number of2
always corresponds to the values of Benefit. This assumption is
more restrictive because the value of the former is completely
determined by the latter. As a consequence, the number of
states in a simulation is reduced.

Finally, amensalism is implemented with eight model
fragments in the same way as commensalisms. The model
fragment ‘Amensalism’ introduces the two populations and
the quantity Pollution to represent the effect of popula-
ssumption reduces the number of possible combinations
for example, Born increasing, Dead decreasing and Number of
ncreasing), and therefore reduces the size of the simulations.

Symbiosis is also modelled by five model fragments. ‘Sym-
iosis’ is the most general one, and introduces the two popu-

ations (1 and 2) and the quantities Benefit1 and Benefit2. As in
arasitism, direct correspondences establish that magnitudes
f Benefit take the same magnitudes of Number of in both pop-
lations.

The model fragment ‘Symbiosis interaction’ defines how
he effects are implemented: in both populations, Benefit
ncreases Born and reduces Dead. This model fragment also
mplements correspondences establishing that the maximum
alue of Benefit1 corresponds to the maximum value of Bene-
t2, and that the derivatives of the two benefits correspond.
hese assumptions are useful to reduce ambiguities during

he simulation. The conditions for the absence of each pop-
lation are represented in two model fragments, ‘Symbiosis
ithout symbiont1’ and ‘Symbiosis without symbiont2’. Given

hat we assume the symbiosis as being obligatory for both
nts and cultivated fungi (they cannot survive alone, according
o Currie et al. (1999a)), when Number of1 is zero, Number of2
ill be also zero, and vice versa. Finally, the model fragment

Symbiosis assumptions’ sets for this interaction the same
implifying assumptions defined for parasitism.

Commensalisms are modelled by a set of eight model frag-
ents. ‘Commensalisms’, the most general one, introduces

he two populations and the quantity Benefit, to represent the
nfluence of population1 on population2. This quantity corre-
ponds to Number of1 and their maximum values are assumed
o be equal.

The model fragment ‘Commensalisms interaction’ defines
hat Benefit increases Born2 and reduces Dead2. Our under-
tion1 on population2. It is also assumed that the maxi-
mum value of Pollution corresponds to the maximum value
of Number of1. The model fragment ‘Amensalism interaction’
defines that Pollution decreases Born2 and increases Dead2.
The model fragments ‘Amensalism without producer’ and
‘Amensalism without affected’ set no constraints or con-
sequences for any population due to the disappearance of
the other population. The same simplifying assumptions
already described for the other three interactions are imple-
mented for amensalism by the model fragment ‘Amensalism
assumptions’.

As in commensalisms, three model fragments implement
details about the strength of the amensalism interaction:
‘Amensalism effects magnitude1’ establishes that if Pollution
has value maximum, then Number of2 has value zero; ‘Amen-
salism effects magnitude2’ determines that if Pollution has
value normal, then Number of2 has to be smaller than maxi-
mum; and ‘Amensalism effects magnitude3’ establishes that
if Pollution has value zero, then Number of2 can assume any
value.

It is important to mention that these magnitude assump-
tions implemented in commensalisms and amensalism do
not produce unknown or unexpected behaviours, but only
control the level of details represented in the simulations. For
example, when the ‘commensalisms high impact’ assumption
is not introduced in the initial scenario, the simulation has
more states to express fundamentally the same behaviours,
and most of these states show different combinations of
derivative values of the quantities. These results are correct,
but superfluous, as they do not give additional insights to the
understanding of the system.

In the next section we describe three simulations obtained
with two models of the ants’ garden.
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Fig. 3 – Causal dependencies involving four populations (four interactions) in state 3 of simulation 1.

6. Simulations with the ants’ garden
models

As mentioned above, building qualitative models is actually
building libraries of model fragments and initial scenarios.
From such libraries, often the reasoning engine can automati-
cally build a number of simulation models exploring different
aspects of the encoded domain knowledge.

Following the suggestions of Salles and Bredeweg (1997),
the ants’ garden library was built incrementally. Starting with
simulation models about the symbiosis between ants and cul-
tivated fungi, we included parasitism between cultivated and
parasitic fungi and commensalisms to express the relation
between ants and bacteria. Finally, we introduced commen-
salisms between bacteria and cultivated fungi. Adequate ini-
tial scenarios can retrieve simulations of each of these steps.

Simulations involving two models of the ants’ garden will
be shown in this section. The first model consists of four pop-
ulations linked by four interactions. Only the relation between
bacteria and cultivated fungi is not considered. Two simu-
lations are run with this model, showing the ants’ garden
without the parasitic fungi and the four populations with
initial values set to normal, with unknown derivatives. The
second model implements the fifth interaction, representing
the interaction between bacteria and cultivated fungi. A sim-
ulation with this model will show the outcomes of the four

parasitic fungi is 〈zero, ?〉. Three initial states are derived from
the initial scenario. While the parasitic fungi are stable in
all these initial states, the other three populations may be
decreasing (state 1), stable (state 2) and increasing (state 3).
The causal model, as it appears in state 3, is presented in Fig. 3.

The full simulation produces eight states. The state graph
of this simulation and the values (magnitude and derivative)
of the state variables Number of in these states are shown in
Fig. 4.

The state graph shows six end states, that is, states in
which the behaviour path stops: [2, 4, 5, 6, 7, 8]. The behaviours
observed in these end states are, respectively, the following:
the three populations are stable in the value normal (2); or
in the value maximum (4); cultivated fungi is stable in normal
while the other two populations are stable in maximum (5); ants
and bacteria are stable in normal and cultivated fungi is stable
in maximum (6); bacteria is extinct (7); and, finally, the whole
system is extinct (8). Behaviours expressed by the system and
the six possible behaviour paths are shown in Table 2.

The results of the simulation with this model were as we
would expect for an ants’ garden free of parasitic fungi: differ-
ent states of coexistence of the three populations; and, as we
assume an obligatory symbiosis between ants and cultivated
fungi, either only the bacteria is extinct or the whole garden
is extinct. Worth to mention is that natality and mortality of
parasitic fungi are not active because this population has mag-
nitude zero, a ‘Non-existing population’. In this case, no direct
populations with initial values set to normal, with unknown
derivatives. In both models, the ‘commensalisms high impact’
assumption is included. Details of each simulation are pre-
sented below.

6.1. Simulation 1

The initial scenario describes four populations and four inter-
actions between them, with the initial values of Number of
ants, cultivated fungi and bacteria set in 〈normal, ?〉, that is,
magnitude normal and derivative unknown, while Number of
Table 2 – Behaviours and behaviour paths expressed by
the ants’ garden in simulation 1

Behaviour of the system Behaviour paths

Coexistence of the three
populations

[2], [3 → 4], [3 → 5] and [3 → 6]

Extinction of bacteria [1 → 8]
Extinction of the whole sys-

tem
[1 → 7]
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Fig. 4 – State graph and value history of the quantities Number of of the four populations (four interactions) in simulation 1.

Fig. 5 – State graph and value history of the quantities Number of of the four populations (four interactions) in simulation 2.

influences are affecting Number of (see Fig. 3). The same con-
figuration appears when a population goes extinct during the
simulation (for example, bacteria in state 8). These examples
illustrate one of the most interesting features of qualitative
reasoning models: the possibility of including into or remov-
ing from the model structural elements during a simulation.

6.2. Simulation 2

The second simulation with this model starts with an ini-
tial scenario which assigns to Number of the value 〈normal, ?〉,
that is magnitude normal and derivative unknown, for all the
populations. From this initial scenario, five initial states are
produced. The magnitudes of the state variables are the same
(normal), but their derivatives are different: all the populations
are decreasing (state 1); parasitic fungi is decreasing, while the
others are increasing (state 2); all the populations are stable
(state 3); parasitic fungi is stable and the others are increasing
(state 4); and all the populations are increasing (state 5).

The full simulation consists of 15 states. The state graph
and the value history showing magnitudes and derivatives of
the state variables Number of ants, cultivated fungi, bacteria
and parasitic fungi are depicted in Fig. 5.

The simulation produces nine end states: [3, 6, 7, 8, 9, 10,
12, 13, 14]. The behaviours expressed in these end states are,
respectively, the following: the four populations are stable
with value normal (3); ants, bacteria and parasitic fungi are
s
a
p
m

fungi is extinct (8); ants and bacteria are stable in normal, culti-
vated fungi is stable in maximum, and parasitic fungi is extinct
(9); ants, bacteria and cultivated fungi are stable in normal, and
parasitic fungi is extinct (10); ants and cultivated fungi are
stable in normal, parasitic fungi and bacteria are extinct (13);
bacteria is extinct (14); and, finally, all the garden is extinct
(12).

The 17 possible behaviour paths are shown in Table 3.
This simulation shows a rich variety of behaviours

expressed by the garden, according to the implemented
assumptions: coexistence of the four populations, with dif-
ferent population sizes; extinction of parasitic fungi and sta-
bilization of the other three populations in different values;
extinction of bacteria and of parasitic fungi; extinction of the
bacteria; and the extinction of the garden. As in the previ-

Table 3 – Behaviours and behaviour paths expressed by
the ants’ garden in simulation 2

Behaviour of the system Behaviour paths

Coexistence of the four
populations

[3], [4 → 6], [5 → 6] and
[2 → 6]

Extinction of parasitic fungi and
coexistence of the other
populations

[1 → 10], [2 → 7],
[2 → 11 → 7], [2 → 8],
[2 → 11 → 8], [2 → 9],
[2 → 11 → 9] and [2 → 10]
table in normal, and cultivated fungi is stable in maximum (6);
nts, cultivated fungi and bacteria are stable in maximum, and
arasitic fungi is extinct (7); ants and bacteria are stable in
aximum, cultivated fungi is stable in normal, and parasitic
Extinction of parasitic fungi and
bacteria

[1 → 13] and [1 → 15 → 13]

Extinction of bacteria [1 → 14]
Extinction of the whole system [1 → 12] and [1 → 15 → 12]
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Fig. 6 – Causal dependencies involving four populations (five interactions) in state 5 of simulation 3.

ous simulation, ants and cultivated fungi are always present,
except when the whole garden disappears.

6.3. Simulation 3

For this simulation we used a model that includes commen-
salisms to represent the fifth interaction, namely between
bacteria and cultivated fungi. The initial values of all the state
variables Number of are set in 〈normal, ?〉. GARP derives five
initial states, with the same values observed in the five ini-
tial states of simulation 2. The causal dependencies of this
model, as they appear in state 5, are depicted in Fig. 6. Note
the effects of bacteria on the other populations, represented
by two quantities: Pollution (which affects parasitic fungi) and
Benefit (which affects cultivated fungi).

The whole simulation consists of 10 states. The state graph
and the values of magnitudes and derivatives of Number of of
the four populations are depicted in Fig. 7.

The state graph shows that the six end states of the simula-
tion are [3, 4, 5, 6, 7, 9]. The behaviours expressed in these end
states are, respectively, the following: the four populations are
stable with value normal (3); ants, bacteria and cultivated fungi
are in value 〈normal, +〉 and parasitic fungi is stable in normal
(4); the four populations are in value 〈normal, +〉 (5); ants, bac-
teria and cultivated fungi are stable in maximum, and parasitic
fungi is extinct (6); ants, bacteria and cultivated fungi are sta-
ble in normal, and parasitic fungi is extinct (7); all the garden

value zero as well. This prevents the bacteria to be extinct
alone.

7. Related work

Given the difficulties of using mathematical models when
knowledge is incomplete or numerical data have no good qual-
ity or simply do not exist, a number of authors tried alternative
approaches for modelling multi-species community dynam-
ics. Some of these works are commented in this section.

Noble and Slatyer (1980) and Moore and Noble (1990, 1993)
proposed an approach for building qualitative models about
the dynamics of communities subject to recurrent disturbance
(such as fire). This approach is based on a small number of
attributes of the plant’s life history (vital attributes), which can
be used to characterise the potentially dominant species in a
particular community, under different types and frequencies
of disturbance. Simulations typically produce a replacement
sequence which depicts the major shifts in composition and
dominance of species which occur following a disturbance.
These models differ from ours in many aspects. They describe
the replacement sequence, but cannot provide causal expla-
nations for changes in the system. Also, these models rely on
is extinct (9).
The behaviours expressed by the garden and the nine pos-

sible behaviour paths are shown in Table 4.
The inclusion of the interaction between bacteria and cul-

tivated fungi increased the possibilities of coexistence, as
shown in states 4 and 5. Also, the extinction of the bacte-
ria population was not observed, except along with the other
three populations. This can be explained by the assumption
implemented by the model fragment ‘Commensalisms with-
out producer’ (see Section 5): when bacteria go to value zero,
then cultivated fungi also should assume the value zero. How-
ever, for the latter to be true, the ants should assume the
Table 4 – Behaviours and behaviour paths expressed by
the ants’ garden in simulation 3

Behaviour of the system Behaviour paths

Stable coexistence of the four
populations

[3]

Three populations increasing
and parasitic fungi stable

[4]

The four populations increasing [5]
Extinction of parasitic fungi

and coexistence of the other
populations

[2 → 6], [2 → 8 → 6], [1 → 7]
and [2 → 7]

Extinction of the whole system [1 → 9] and [1 → 10 → 9]
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Fig. 7 – State graph and value history of the quantities Number of of the four populations (five interactions) in simulation 3.

mathematical simulations for calculating changes in popula-
tion sizes, while our representation is based only in qualitative
knowledge, including magnitudes and derivatives of the quan-
tity values.

State-transition modelling is often used to describe com-
munity dynamics. For example, McIntosh (2003) presents a
rule-based modelling language to describe succession in com-
munities stressed by fire and grazing using this paradigm.
Pivello and Coutinho (1996) also describe a state-transition
model about changes in the Brazilian Cerrado vegetation
under influences of fire, wood cutting and grazing. Although
successful in certain way, these implementations of the
state-transition approach do not explain why things happen,
because there is no representation of the underlying mecha-
nisms that cause changes in the system. Also, these models
lack flexibility, as they aim at describing specific systems and
answering particular questions and cannot be (easily) changed
or combined to others to address more (or less) complex prob-
lems.

One of the most important studies on complexity and sta-
bility of biological communities was a qualitative analysis of
the results produced by differential equation models about
interactions between populations (May, 1973). May’s intention
was to investigate what can be said if only the topological
structure of the trophic web is known, i.e., knowing only the
signs (−, 0, +) of the interaction between the species and rea-
soning with changes over time, that is, with the derivatives of
t
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teria required for stability analysis and, in these cases, the
signs of the interactions alone are not enough, and the inter-
action magnitudes should be taken into account. This work
was inspiring for us, as May reasons with derivatives to draw
useful conclusions. Our representation of derivatives does the
same job, and qualitative values of quantity magnitudes over-
come some of the limitations he mentions. Although we are
not able to provide precise answers, qualitative models do not
depend on good quality data and fine tuned parameters and
provide causal explanations for the system behaviour.

Guerrin and Dumas (2001a,b) describe a model represent-
ing empirical knowledge of freshwater ecologists on the func-
tioning of salmon spawning areas. Their model is based on
(single) population dynamics and explore mortality at early
stages, aiming at predicting and explaining the survival rate
of fish under various scenarios. Their approach represents
processes that occur at different time-scales (fast and slow)
and introduces a real time dating and duration in a purely
qualitative model. This model was built according to the
so-called constraint-based approach to qualitative reasoning
(Kuipers, 1994), which provides qualitative representations of
differential equations. Accordingly, knowledge is encoded as
constraints and there is no explicit representation of causal-
ity. This approach also does not explore the possibility of
combining partial model fragments, so it is not possible to
reuse models and, doing that, to address more complex prob-
lems. Finally, our approach allows for easily implementing
he quantities.
May showed that the ‘common-sense wisdom’ that more

omplexity means increased stability may not be true. In his
imulations, a less complex community met the conditions for
tability, while the more complex was not stable. He points out
hat this can be a useful approach for modelling quite complex
ood webs and to capture the general tendencies of the system,
ypassing long and complicated steps required by numerical
odels. However, larger populations violate some of the cri-
and changing assumptions that may reduce the complexity
of the simulations, a serious problem for the constraint-based
approach.

8. Discussion and concluding remarks

This paper describes an effort to build qualitative models
about the complex interactions between four populations in
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the ants’ garden. Current understanding of the ants’ garden
is that ants (Formicidae), cultivated fungi (Lepiotales) and bacte-
ria (Streptomyces) established a highly interdependent interac-
tion long time ago, in which the bacteria is transmitted from
parent to offspring colonies of ants and the fungus is car-
ried by the queens in their mouth when new ant colonies
are founded. Ants provide the fungi with a safe environ-
ment and raw material (leaves and organic material). Lepio-
tales fungi digest the organic matter and provides (becomes)
food for the ants that eat the garden. Another group of fungi
(Escovopsis) was found in colonies and may produce high mor-
bidity and mortality on cultivated fungus. Normally, they do
not overgrow the garden because Streptomyces produce antibi-
otics that suppress Escovopsis growth. It is also possible that
these bacteria produce growth factors used by the cultivated
fungi.

Mathematical models about population dynamics, usually
built as differential and difference equations, may not be use-
ful to model this problem. Besides the well known difficulties
to obtain numerical data of good quality for implementing,
calibrating and evaluating these models, it has been shown
that such models and their results are difficult to under-
stand and can hardly explain why the systems exhibit certain
behaviours.

Qualitative reasoning techniques may be useful to address
complex systems like the ants’ garden, as they provide means
to build comprehensive conceptual models using incomplete

Thus, the situation described in the initial scenario in simu-
lation 1 is quite common, and the results obtained with the
simulation are plausible.

Coexistence of the four populations was observed in more
than 70% of the bioessays carried out by (Currie et al., 1999a),
and complete elimination of the parasitic fungi was observed
in 25% of their bioessays. These results were obtained in simu-
lations 2 and 3, with stabilization of coexisting populations of
different sizes and extinction of the parasitic fungi population.

However, some aspects of the ants’ garden were not
captured by our current version of the models. Bacte-
ria were present in all the colonies of attine ants stud-
ied by Currie et al. (1999a). Therefore, the results obtained
in states 13 and 14 of simulation 2, in which the pop-
ulation of bacteria was eliminated, were not reported by
these authors. Given that no specific knowledge about this
restriction was encoded in the models, our results are
correct.

Also, according to Currie et al. (1999b), in the absence
of ants and sometimes even in their presence, the parasitic
fungi may outgrow the cultivated fungi and destroy the gar-
den. This kind of behaviour does not appear in the simula-
tions due to the implemented assumption that both mag-
nitudes and derivatives of Supply (the effect of the host on
the parasite population) are greater than or equal to, respec-
tively, the magnitudes and derivatives of the quantity Con-
sumption (the effect of the parasite on the host population).
knowledge. Qualitative models are not sensitive to arbitrary
parameters and allow for valid predictions in situations that
mathematical models cannot be used. Some features that may
be interesting include the possibility of developing conceptual
models with a rich vocabulary to describe objects, quantities,
relations, situations, mechanisms of change and conditions
for processes to start and finish. Moreover, explicitly repre-
sented causality is useful to improve understanding of the
structure of ecological systems and to support explanations
about the systems behaviour.

Our models of the ants’ garden reflect the current under-
standing of how populations interact (“the consequences of
what we believe is true”, in Grimm’s (1994) words). When infor-
mation was not available, we assumed the interactions to be
as simple as possible. It happens with the interpretation of
the relationship between ants and bacteria (commensalisms),
bacteria and parasitic fungi (amensalism) and between bac-
teria and cultivated fungi (commensalisms). Explicitly repre-
sented modelling assumptions may either provide alternative
perspectives for approaching the system or reduce ambigu-
ity and the number of states in the behaviour graph. These
assumptions may easily be changed, and alternative hypothe-
ses can be tested. Using an incremental approach to scale up
the complexity of the systems being represented, we devel-
oped alternative initial scenarios involving the four popula-
tions to fully explore different aspects of the ants’ garden
system.

The three simulations presented in this paper are rela-
tively small and, therefore, easy to be inspected. Most of the
results obtained in these simulations were described by Currie
and her co-authors. Contamination of ants’ garden by non-
mutualistic fungi was found in 39.7% of the samples studied
by Currie et al. (1999b), being Escovopsis the most abundant.
This assumption, as mentioned in Section 5, keeps the pop-
ulation size of parasites at most equal to the size of hosts.
Relaxing this assumption will produce states that show the
extinction of the tripartite association of ants, cultivated fungi
and bacteria. Finally, Currie and collaborators do not mention
any situation in which the whole system disappears. How-
ever, it is plausible that this situation happens in the real
world.

Ongoing work includes implementations of alternative
hypotheses to answer some open questions. For example, the
interactions between ants and bacteria, and between bac-
teria and cultivated fungi may be symbiosis. The idea is to
try alternative models in order to make predictions that can
be tested; to provide explanations for behaviours observed
in the field; and to include new knowledge about the gar-
den. If possible, these qualitative models could be associated
with mathematical models, providing a conceptual frame-
work for building the equations. Numerical data could then
be used to assess the predictions supported by qualitative
models. Exercises of these types may help us to better under-
stand the functioning of complex systems such as the ants’
garden.
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