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Abstract. Representing the impact of external factors on the behaviour of a system is a challenge for modellers, particularly when
these factors are dynamic and may change during the simulation. This article presents mechanisms implemented in the qualitative
reasoning engine Garp3 for modelling quantities that exhibit exogenously defined behaviours. Exogenous quantities are those
that influence the system but are not influenced by quantities represented in the system. Seven types of mechanisms for handling
exogenous quantities are implemented: “constant”, “generate all values”, “increasing”, “decreasing”, “steady”, “sinusoidal”, and
“random”. Examples drawn from models of environmental sustainability (related to Millennium Development Goal 7) are used
to illustrate the functioning of these primitives. Individually or combined, the mechanisms provide many options for modellers
to represent cycles, oscillations, and regions of local stability.
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1. Introduction

Defining the boundaries of a system is an important
step in modelling. This definition is influenced by the
goals and intended uses of the model. Often a system
is influenced by exogenous factors – those that affect
the behaviour of the system but which are not affected
by the system behaviour [5,9]. Exogenous factors are
thus outside the system boundary, but need to be con-
sidered in the model. For instance solar radiation is an
influential factor on ecological systems but we usually
do not include a description of how such radiation is
produced in an ecological model.

There is a need for modelling environments that al-
low inclusion of such factors without changing the sys-
tem structure in order to explain such non-focal de-
tails. Considering previous work on building quali-
tative models in ecology [11], we identified require-
ments for a modelling environment that would pro-
vide good support for qualitative ecological modelling.

*Corresponding author: Human Computer Studies laboratory
(HCS), University of Amsterdam, Kruislaan 419 (matrix I), 1098 VA
Amsterdam, The Netherlands.

Such modelling environments should allow for exoge-
nously influenced behaviour to appear either within or
at the beginning of the causal chain. In other words,
they should be useful to either constrain behaviours
to conform to some “given” behaviour or to initiate
change in a system. Furthermore, given the large num-
ber of influences normally important in ecological sys-
tems, when using a compositional modelling approach
[3], it would be convenient to have a set of behav-
iour patterns (e.g., oscillating, constant, increasing)
that could be applied to a quantity so that the propa-
gation of that behaviour through a causal chain could
be understood before simulating a model composed
of multiple processes and causal chains. Such a fea-
ture would facilitate the modelling of pieces of domain
knowledge, reserving the details of composing them
together for later.

This article discusses a new functionality imple-
mented in the qualitative reasoning (QR) engine Garp3
(http://hcs.science.uva.nl/QRM/) [1] that allows for the
integration of external influences by assigning spe-
cific behaviour patterns to quantities, the exogenous
quantities. We explore the use of exogenous quantities
in the context of environmental sustainability, as de-
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fined by Millennium Development Goal 7 [6]. Imple-
mented models involving indicators related to MDG7
are described to illustrate how Garp3 handles exter-
nally defined behaviours. These models aim at support-
ing communication with stakeholders about sustain-
ability issues. This is a good test bed for modelling ex-
ogenous quantities, because sustainability requires the
combination of a number of influences and complex
interactions among quantities to be represented in the
models. By treating some processes exogenously, we
can reduce the complexity of the modelled system to
facilitate communication about a given process, with-
out considering the full complexity of its implementa-
tion in a “full” model of the system.

2. Including external factors

In a qualitative model, values of entities that are rele-
vant to the model are expressed using quantities, whose
values represent possible qualitative states the quantity
may assume within the scope of the model. For exam-
ple an entity climate may be characterised by the quan-
tity rainfall. As we are interested in dynamic aspects of
systems, the qualitative value of a quantity is actually a
tupple of two values: < magnitude, derivative >, rep-
resenting amount and direction of change, respectively.
Possible values of a quantity are presented in a Quan-
tity Space (QS) as a sequence of alternating points and
intervals.

Exogenous quantities can be simulated in Garp3 by
selecting the option within a scenario to automatically
generate magnitudes and derivates for a given quantity.
The following options exist:

– Magnitude: Generate all values
– Derivative: Increase, Steady, Decrease,

Sinusoidal, Random
– Magnitudes and/or Derivative: Constant

To further illustrate the behaviour of these exoge-
nous quantities, we use a simple model consisting of
only one quantity rainfall. We assign rainfall the QS
{below, average, above}, where average is a point
value, below is an interval less than average, and above
is an interval greater than average. Typical examples
are shown in Table 1 and discussed below. The first
column of the table introduces a unique identifier that
is used in the text below. The magnitude and derivate
columns show the initial settings in the scenario. The
state graph column shows the behaviour of the model
after a full simulation. The numbered circles refer to

qualitatively distinct states of the system behaviour:
each state is a unique combination of qualitative mag-
nitudes, derivatives and (in)equality statements for all
modelled quantities. The single circle without a num-
ber in each state graph depicts the scenario, which
specifies the starting conditions of the simulation. Aris-
ing from the scenario is a set of states, indicated by
grey lines leading to numbered circles. If the causal
structure of the model indicates that a transition to an-
other qualitatively distinct state is possible, new states
are generated and an arrow connects the starting state
to the next state. A behavioural path refers to all
states connected in a chain of circles and arrows. Note
that branching of behaviours is possible if more than
one transition is possible from a given state. Qualita-
tive values for the quantity rainfall are enumerated in
the value history (rightmost column). Numbers in the
value history refer to the number in the state graph
(note that the order of states in the histories for #7
and #8 do not correspond to a particular behavioural
path). For each numbered state, the small white circles
designate the magnitude of rainfall. When known, the
derivative corresponding to that magnitude is indicated
as increasing (up arrow), decreasing (down arrow), or
steady (black dot). If the value of the derivative is not
known, the white circle is empty (as in #1).

2.1. Magnitude: generate all values

This option tries to generate all possible magnitudes
for a quantity and can, for instance, be used to assume
different values when the modeller is not sure about
which solution is adequate for each possible state. Ta-
ble 1 (#1) shows the state graph and value history pro-
duced when using only this facility. Thus, the initial
scenario has just the quantity rainfall, without an initial
magnitude or derivative defined. On the basis of this
scenario the simulator generates three states, one for
each value of the rainfall. Notice that this option does
not set the derivatives, hence they are not shown in
the value history, and no transitions between the three
states are found.

The idea of “generating all values” was inspired by
observing modellers creating model fragments for all
possible values of a quantity. Being able to automat-
ically generate all values for a quantity simplifies the
approach of specifying all qualitative behaviours. Im-
portantly, the algorithm used in Garp3 generates all
values while obeying other constraints (e.g., a model
fragment may specify that only certain values are to be
considered, or that certain quantities must always cor-



B. Bredeweg et al. / Using exogenous quantities in qualitative models 51

respond in value). It may thus happen that not all mag-
nitudes are generated for a quantity when additional
constraints prevent this.

2.2. Derivative values

The idea of automatically generating certain values
for derivatives comes from observing modellers trying
to specify different exogenous influences on a system,
which is not supported well by traditional QR engines.
Particularly, the idea of moving from equilibrium to
disequilibrium caused by factors outside of the system
being simulated requires new reasoning capabilities.
Consider a stable ecosystem that moves to an unsta-
ble situation because new individuals start immigrating
[12]. How to represent a situation in which immigra-
tion is < 0, 0 > (non-existing and steady) that changes
to a situation in which immigration is building up as
an exogenous influence on the system? For instance:
[< 0, 0 >→< 0, + >→< +, + >]. To accommodate
such situations, we have developed five mechanisms
to automatically derive derivative values while obey-
ing crucial QR principles such as the “continuity”1 and
“epsilon ordering”2 rules [2].

2.2.1. Exogenous decrease, steady, and increase
Take the example of “generating all values” (Ta-

ble 1, #1). We now specify that rainfall is “exogenous
increasing” (#2). This results in the reasoning engine
trying to add a positive derivative to each of the value
statements of rainfall in each state. As there is no other
information in the model that conflicts with that, rain-
fall is increasing and transitions between the states are
found, leading to the path [1 → 2 → 3]. Alterna-
tively we can specify “exogenous decreasing” and “ex-
ogenous steady”. In the case of the former, rainfall is
decreasing and a path will be found from magnitude
above to below: [3 → 2 → 1]. In the case of steady, all
derivatives become 0, and no transitions will be found.

It is also possible to abandon the “generate all
values”, and start with a specific value for rainfall,
while keeping the option of exogenous decreasing
(#4), steady (not shown), or increasing (#3). Notice the
subtle difference in the resulting state graphs. The sce-
nario now links only to one specific initial state (to state
1 in the case of #3), and not to all possible states. In
other words, the simulation produces only one initial
state, but the same overall system behaviour.

1Magnitudes and derivatives cannot jump across values. Instead
they move continuously towards adjacent values in their quantity
spaces.

2Changes from a point (into an interval) precede changes towards
a point (from an interval).

2.2.2. Exogenous sinusoidal and random
A very common pattern observed in ecological sys-

tems is cyclic behaviour, where the quantity regularly
increases and decreases within certain bounds. This
can be achieved using the option “exogenous sinu-
soidal”. The derivative of the exogenous quantity keeps
going in one direction until the maximum magnitude
is reached. Then the derivative changes to zero, and
starts moving in the opposite direction until the min-
imum magnitude is reached and the derivative value
changes to zero, and starts moving in the opposite di-
rection again, and so on. As this behaviour is repeated
it results in cycles, for example, daily cycles (night
and day), monthly cycles (tides) or annual cycles (day-
length, precipitation). Table 1, (#5), shows a simula-
tion in which generate all values and sinusoidal are as-
signed to rainfall. The main behaviour has the follow-
ing sequence of states: [1 → 2 → 3 → 5 → 8 →
7 → 6 → 4 → 1]. In addition, state 4 can directly
go to state 2 (ignoring state 1) and state 5 to state 7
(ignoring state 8). Also notice that the system behav-
iour does not become steady at point average. The si-
nusoidal continuously changes from its lowest value to
its highest value, and the other way around. Stabilising
at an intermediate value does not fit that idea. If we re-
place the “generate all values” by assigning a specific
initial value, the ultimate system behaviour remains the
same. However, only three initial states are now gen-
erated when starting at an interval (#6), and two when
starting at a point.

Exogenous random may also produce cycles. How-
ever, instead of continuously moving towards the ex-
treme values, random can assume any derivative value
(albeit obeying continuity) and move in any direc-
tion. The idea is that some quantities may unexpect-
edly change direction, giving them a random behav-
iour. #7 presents a simulation in which rainfall is as-
signed the combination of “generated all values” and
“random”. In this simulation many behaviour paths are
possible. For example, the sequence [1 → 2 → 3 →
6 → 9 → 8 → 7 → 4 → 1] reflects a cyclic behaviour.
Also notice that the system behaviour may oscillate
within an interval, e.g., [1 → 2 → 1], or [3 → 2 → 3],
etc. The behaviour cannot oscillate at a point, because
while being at a point any change in the quantity nec-
essarily leads to the magnitude moving to one of the
adjacent intervals. Finally, notice that with “exogenous
random”, it is possible to become stable at an interme-
diate value. #8 shows a simulation in which rainfall is
assigned a specific initial value, namely average, and
“exogenous random”. The behaviour is the same as for
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Table 1

Examples of exogenous quantity behaviours in Garp3

#7 except that from the scenario only three initial states
are found.

There is a subtle issue concerning the notion of the
“epsilon ordering rule” [2] and the behaviour of ex-
ogenous quantities. By using the derivatives for im-
plementing exogenous behaviour these quantities can
be treated as regular quantities during the reasoning
process. This is an advantage over having a dedi-
cated mechanism controlling all exogenous behaviour,

including their value changes. However, an excep-
tion has to made for the ordering/transition inference
and a specific ordering procedure is implemented for
this. Firstly, combination constraints are generated for
mutually exclusive terminations: a random exogenous
quantity cannot start to move up and down simultane-
ously. Secondly, Garp3 features derivative correspon-
dences [1]. These are used in determining combination
constraints on exogenous terminations of different ex-
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Fig. 1. State graph: “generate all values” for rainfall, “random” for
soil humidity, and soil humidity proportional to rainfall.

ogenous quantities. This inference is similar to the one
using value correspondences to order value termina-
tions already implemented in Garp3. The epsilon type
of the terminations that determine the derivatives of ex-
ogenous quantities is treated as non-immediate. These
terminations do not have a specific reason for happen-
ing and therefore should not have precedence over oth-
ers [7].

2.3. Exogenous constant

One of the most useful features for simplifying a
simulation, or to provide different perspectives to a
model, is to assign a constant value to a quantity. In
Garp3, this can be done with an exogenous quantity.
To illustrate this we present two simulations involving
a model that consists of two quantities, rainfall and soil
humidity. These two quantities are related by a qual-
itative proportionality, P + (soil humidity, rainfall),
so that when rainfall changes, humidity changes in
the same direction. Initially, let us consider that rain-
fall is exogenously influenced and assigned “generate
all values” and “exogenous random”. Soil humidity
is not under external influences. A simulation starting
with the following initial values: rainfall =<?, ? >
and humidity =< wet, ? > is shown in Fig. 1. The sim-
ulation produces nine initial states, including all the
possible combinations between the three values of each
quantity. The full simulation results in 27 states, with
all the combinations between the two quantities mag-
nitudes and derivatives.

Fig. 2. Details as in Fig. 1 but now “steady” for soil humidity.

Fig. 3. Value history for the state graph shown in Fig. 2.

Consider now a simulation in which soil humidity
is still exogenous but held constant at the interval Wet,
while rainfall has the same conditions as in the previ-
ous simulation. The resulting state graph is shown in
Fig. 2. It produces again nine initial states, but now
these are the only states produced in the full simula-
tion. In fact, only the states with the quantity with the
constant value Wet are possible, as shown in the value
history (Fig. 3). Having a quantity with the magnitude
constant due to external influences clearly reduces the
number of possible behaviours and simplifies the sim-
ulation. This function is useful if the value of a certain
quantity is known and it is desired to know what other
quantity values and system behaviours are consistent
with that.

3. Qualitative models of sustainable development

We now discuss applications of exogenous quanti-
ties for models related to environmental sustainability.
These models are related to the seventh Millennium
Development Goal (MDG7), to “ensure environmental
sustainability”. The MDG were defined in The Millen-
nium Declaration, signed in 2000 at the United Nations
(UN), and consist of 8 goals and 18 targets on poverty,
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hunger, education, gender, health, environment and co-
operation, to be achieved mostly until 2015. There
are 48 indicators to monitor progress of countries to-
wards achieving the goals. National governments are
expected to periodically report on the situation of the
MDG. Among the MDG, the MDG7 is probably the
most difficult to understand and to achieve on time.
In fact, most national reports published so far men-
tioned difficulties with MDG7 [6]. Reasons for that
include conceptual problems in defining sustainabil-
ity and problems to select (or create) suitable indica-
tors to monitor MDG7 (Table 2 shows indicators pro-
posed by the UN to monitor MDG7). Basically, for ex-
perts there are hypotheses and commonsense knowl-
edge about environmental sustainability. In develop-
ing countries, despite the efforts of UN agencies and
national governments, data about indicators of envi-
ronmental sustainability often do not exist or are in-
complete, based on poor-quality statistics, expressed in
qualitative terms. Finally, there are problems in com-
munication with the public: environmental issues are
poorly understood and the indicators, to make things
worse, are often presented as mere lists of data. Avail-
able data is left out of context and unrelated to data pro-
vided by other indicators in this format. Explanations
and predictions can hardly be drawn directly from the
data because causal relations are not made explicit.

In our work, we focus on building qualitative mod-
els and simulations of external influences to indicators
of MDG7, pointing out the importance of Garp3’s new
functionality for dealing exogenous quantities. Envi-
ronmental sustainability is a good domain to explore
exogenous influences, because it lies at the intersection
of domains such as ecology, sociology, and economics.
Exogenous quantities can therefore be useful to inves-
tigate the consequences for a system whose causality
is fairly well understood (e.g., pair wise ecological in-
teractions) of behaviour in a system whose causality
is poorly understood (e.g., market fluctuations). In this
case, the less-well understood system can be treated
as an exogenous quantity, and assumed to behave in a
certain way. Furthermore, the Pressure-State-Response
(PSR) framework adopted by the UN and the European
Environmental Agency [13] to monitor and manage in-
dicators and targets for the MDG is highly adaptable to
the ontology provided under Qualitative Process The-
ory (QPT; [4]), where pressures from PSR can be con-
sidered rates in QPT and states in PSR are states in
QPT (response, aimed at reducing negative undesirable
pressures or states in PSR, can be modelled either as
rates or influenced quantities).

Based on QPT, we use two types of relations be-
tween quantities to drive the computation of quantity
values and to implement causal relations: direct influ-
ences, posed by processes, which directly add to or
take away from the influenced quantities, and quali-
tative proportionalities (or indirect influences), which
propagate changes initiated by processes in one quan-
tity to other quantities. Direct influences, modelled by
I+ and I-, mean that the influencing quantity (a rate)
is used to calculate the influenced quantity’s derivate
value. For example, if I+(X,A) and this is the only in-
fluence on X, the derivative of X takes the value of the
rate A. If rate A has a positive value, X increases. Sim-
ilarly, if I-(X,B), this is the only influence on X and
the rate B has a positive value, then X decreases by an
amount equal to B’s value.

Qualitative proportionalities are modelled by P+ and
P- and establish a relation between two quantities in a
way that the influenced quantity gets the same deriv-
ative sign as the influencing quantity. For instance, if
P+(C,X) and this is the only influence on C, then this
quantity will change in the same direction as X. Thus,
if X is increasing, C will also increase. Similarly, if P-
(D,X) and this is the only influence on D, then D will
change in the opposite direction.

We implemented models involving the indicators of
MDG7 (Table 2). They are discussed below.

3.1. Energy consumption and air pollution

This model considers how changes in the global oil
market propagate to indicators of MDG7. Changes in
oil market are caused by complex interactions among
economic, environmental, and social factors; these in-
teract to create cycles of shortage and abundance of pe-
troleum. Hence, we model change in the oil market as
an exogenous quantity, and its behaviour assumes gen-
erate all values and exogenous sinusoidal options. This
model shows how changes in supply and demand of
available energy due to market oscillations may affect
the use of petroleum in industry, transport and domes-
tic activities, which in turn are causally related to at-
mospheric pollution, including CO2 emissions, ozone
depleting substances production and global warming
gases (indicator 28). The model also includes indoor
air pollution, caused by smoke produced by use of
solid fuel such as wood and charcoal (indicator 29).
The model shows the consequences of atmospheric
pollution on the incidence of respiratory diseases and
on atmospheric temperature, a condition related to
global warming.
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Table 2

Targets and indicators associated to the MDG7

Goal 7: Ensure environmental sustainability

Targets Indicators

Target 9 – Integrate the principles of sustainable 25 – Proportion of land area covered by forest

development into country policies and programmes 26 – Land area protected to maintain biological diversity

and reverse the loss of environmental resources 27 – Use of energy per unit of GDP (energy efficiency)

28 – Carbon dioxide emissions (per capita)

[Plus two figures of global atmospheric pollution: ozone

depletion and the accumulation of global warming gases]

29 – Proportion of population that use solid fuel

Target 10 – Halve, by 2015, the proportion of people 30 – Proportion of population without sustainable access to

without sustainable access to safe drinking water and an improved water source

basic sanitation

Target 11 – By 2020, to have achieved a significant 31 – Proportion of people without access to improved

improvement in the lives of at least 100 million sanitation

slum dwellers 32 – Proportion of people with access to secure tenure

The model distinguishes two types of respiratory
diseases: general diseases, due to atmospheric pollu-
tion that affects the whole population, and chronic res-
piratory diseases (crd), due to household air pollution.
This latter type of pollution affects mostly people liv-
ing in poor households, with high densities and bad
ventilation, who use solid fuel for cooking. Data avail-
able support the hypothesis that the use of solid fuel
is an alternative for petroleum as an energy source for
a large number of poor Brazilian households, where
stoves of the two types are available. It was shown that
the use of solid fuel increased during a recent petro-
leum shortage and decreased again after the crisis [10].

Exogenous sinusoidal behaviour is assigned to the
quantity market change rate, which has QS {demand,
zero, offer} to represent situations where demand for
petroleum is greater than, equal to, or less than sup-
ply, respectively. The model consists of 15 model frag-
ments involving 6 entities (human, economy, energy,
atmosphere, industry, transport) and 11 quantities. The
exogenous quantity market change rate puts a direct
influence on the quantity available petroleum, and this
quantity influences the use of petroleum in the indus-
try and in the transport sectors, major producers of at-
mospheric pollutants in many countries. These are in-
direct positive influences, so that when available pe-
troleum is decreasing (because there is a shortage and
demand increases over the supply), so are the quanti-
ties use of petroleum in industry and transport, and the
quantities pollutant gases and O3 depleting substances
are also decreasing.

There is a negative indirect influence of available pe-
troleum on the quantity use of solid fuel so that it in-

Fig. 4. Causal model “Energy consumption and air pollution”.

creases when available petroleum is decreasing (and
the prices increase). As a consequence, the amount of
smoke inside households is increasing and so is the
population with crd. The two quantities representing
atmospheric pollution affect the population with res-
piratory diseases (in general) and atmospheric temper-
ature. This last quantity has QS {below, alert point,
global warming} to capture the idea that there is an
alert point and above that there is an interval that cor-
responds to the global warming phenomenon. Figure 4
shows the causal model.

One of the possible simulations with this model
starts with temperature in the < alert point, ? >,
available petroleum with value < plus, ? > and
the other quantities with intermediate values and un-
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Fig. 5. Behaviour graph based on the model in Fig. 4.

defined derivatives. The exogenous quantity market
change rate may oscillate and 8 initial states are pro-
duced, in which this quantity assumes values demand
(demand greater than supply), zero (or equilibrium, de-
mand equals supply) and offer (supply greater than de-
mand), with derivative increasing, stable and decreas-
ing. This full simulation produces 24 states as shown
in the Fig. 5. Table 3 shows some of the quantity val-
ues exhibiting cyclic behaviours. Interestingly, global
warming is likely to happen when petroleum offer is
increasing and domestic crd follows an opposite pat-
tern.

3.2. Deforestation model

Because there is a multitude of social, economic,
and environmental factors that influence the decision
to remove forest from an area, we treat deforestation
rate as an exogenous quantity in a model to assess the
consequences of deforestation on indicators of MDG7.
Specifically, we explore the consequences of exoge-
nously increasing deforestation rate on area covered by
natural vegetation (indicator 25) and, therefore, loss of
biodiversity (indicator 26). In countries like Brazil that
have potentially vast unexplored resources in terms of
technological products derived from this biodiversity,
this situation could decrease gross domestic product
(GDP), which features in other indicators of the MDG
(including MDG7).

Deforestation also increases the area without natural
cover of vegetation. This situation speeds up the ero-
sion process, which increases the removed soil. Two
outcomes of erosion are reduction of water reservoirs

and of agricultural production. The former influences
the use of water, that is, almost all biological and eco-
nomic activities, including human supply. Hence, in-
creased deforestation is expected to increase the pro-
portion of population without access to a safe water
supply (indicator 30). In the model, GDP is influenced
by three quantities: technological products agricultural
production, and uses of water. A feedback loop (P-) es-
tablishes the link between GDP and deforestation rate,
so that the rate of the process increases when GDP
decreases, reinforcing the destructive process. Con-
versely, when GDP increases, it is expected that defor-
estation decreases.

As an example, we run a simulation starting with
an initial scenario in which the area covered with nat-
ural vegetation has value large and derivative unde-
fined, and GDP has its maximum value. This simula-
tion produces four states, in which the consequences
of exogenously increasing rate of deforestation clearly
reduce the area covered by natural vegetation, reduce
biodiversity, increase removed soil by erosion, reduce
agricultural production and the uses of water, and in-
crease the amount of population without safe water. In
these conditions, the value of GDP reaches its mini-
mum value.

3.3. Energetic efficiency model

Energetic efficiency (indicator 27) is defined as the
ratio between the amount of energy consumed dur-
ing a certain time and the GDP produced during that
period. The idea is that the country is more efficient
in the use of energy when either more wealth is pro-
duced with the same amount of (or less) energy, or the
same amount of wealth is produced with less energy. It
may not be intuitive, but increased efficiency results in
smaller numerical values of the indicator. However, of-
ten both energy consumption and GDP are increasing,
what makes the situation more complex. The problem
is now to figure out which quantity increases faster.
Here, we consider two uses of exogenous quantities.
First, we use generate all values and exogenous in-
creasing for the quantity economic activity. Second, we
use the constant to reduce complexity in the simulation
so that the results can be better understood.

In the implemented model, the economic growth
process is represented by a rate that puts a direct influ-
ence (I+) on the quantity economic activity. This quan-
tity influences the use of energy (represented by the
quantity petroleum in four main activities: agriculture,
industry, transport and services). In each of these sec-
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Table 3

Value histories for 9 quantities in a behaviour path of 9 states present in the full simulation of “Energy and air pollution”

tors the quantity use of petroleum has an indirect influ-
ence (P+) on the quantity sectoral GDP. Taking into ac-
count all the economic sectors, both quantities, use of
petroleum and sectoral GDP, have indirect influences
(P+) respectively on total use of petroleum and total
GDP. The former puts a positive (P+) and the latter a
negative (P-) indirect influence on the quantity ener-
getic efficiency.

Simulations with a model that encodes so many
competing influences results in a large behaviour
graph, with a large number of states. In fact, in a sce-
nario with economic activity is as exogenous quantity
with the generate all values and exogenously increas-
ing derivative, 214 states are produced (with other ini-
tial values of all sectoral use of petroleum and sec-
toral GDP set to value low using QS {low, medium,
high} and energetic efficiency in equilibrium using QS
{decreasing, equilibrium, increasing}). However, if we
also use exogenous constant constraints on use of pe-
troleum and sectoral GDP in agriculture, the simula-
tion produces 65 states. This reduced complexity al-
lows us to more easily examine the behaviour of those
quantities that are not held constant.

4. Discussion

This article presents the use of exogenous quantities
in qualitative models. Exogenous quantities influence
the behaviour of a system, without being affected by
that behaviour themselves. Our approach differs from
previous work in that it allows modellers to define ex-
ogenous quantities and assign specific behaviours to
them.

Seven mechanisms have been established and im-
plemented in the qualitative reasoning engine Garp3.
The examples used to illustrate the exogenously de-
termined behaviours are relatively simple, but repre-
sentative of phenomena typically addressed in ecology
and sustainability sciences, such as oscillations, cycles,
randomness and uncertainty. In fact, the mechanisms
seem of particular interest for ecological modelling, as
is shown by the models presented on environmental
sustainability addressing the seventh Millennium De-
velopment Goal.

Using exogenous quantities enhances the potential
of qualitative reasoning for handling uncertainty in dy-
namic models. Three of the mechanisms are directly
related to uncertain conditions: generate all values, si-
nusoidal, and random. These can be used to model
the kind of uncertainty referred to as “aleatory” un-
certainty [8], where all the values (of both magnitudes
and derivatives) are equally likely to happen, given our
knowledge of the system, and the level of uncertainty
cannot be reduced (e.g., through better measurement).
However, it remains interesting and useful to develop
models to understand the effects on other quantities,
given the uncertain values and behaviour of the uncer-
tain quantities.

Exogenous quantities enrich the representational po-
tential of qualitative models while maintaining the sim-
ulator’s capabilities of deriving behaviour from the
structural description of the system. The exogenous
behaviours, as presented in this article, can be placed
either at the beginning of a causal chain or within a
causal chain, among non-exogenous quantities. Thus,
any type of quantity (directly and indirectly influenced)
can be considered an exogenous quantity.
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Our ongoing work seeks to evaluate the effective-
ness of exogenous quantities in a broader set of ecolog-
ical models as well as the effectiveness of qualitative
models to improve the “average citizen’s” understand-
ing of factors related to environmental sustainability.
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