
Expertise in
Qualitative Prediction

of Behaviour

Ph.D. thesis (Chapter 8)

University of Amsterdam
Amsterdam, The Netherlands

1992

Bert Bredeweg



Chapter 8

Conclusions and Outlook

In this thesis we have presented an integrated approach to qualitative prediction of be-

haviour, both as a knowledge level description and in terms of a detailed account of an

implemented system that performs state of the art qualitative reasoning. Protocol anal-

ysis of human problem solving behaviour supports the cognitive plausibility hypothesis

of the conceptual model and thereby its utility for knowledge acquisition. In addition,

the approach has been augmented with an initial step towards re
ective competence as-

sessment and improvement. In the following sections the contributions of our research to

these issues are further discussed. The last section points out a number of issues that are

worthwhile for further investigation.

8.1 A Uni�ed Framework for Prediction of Behaviour

The conceptual model presented in this thesis extends previous approaches to qualitative

prediction of behaviour by distinguishing between domain, inference, task and strategic

knowledge. This uni�ed approach presents a frame of reference for comparing the original

approaches on how they use these di�erent types of knowledge.

8.1.1 Domain and Inference Knowledge

At the domain layer the original approaches provide ontological primitives for modelling

the domain speci�c knowledge. The knowledge at the inference layer abstracts from these

modelling primitives by describing the canonical inferences used in the reasoning process,

and pointing out the role the domain knowledge plays in this reasoning process. The three

original approaches to qualitative reasoning can be viewed as using parts of the inference

layer described in this thesis for qualitative prediction of behaviour.

8.1.1.1 Roles Played by the Domain Knowledge

In many ways the approach presented in this thesis advances each of the original ap-

proaches as a result of the integrated view.

� The notion of system model description, which is used in di�erent ways in all three

approaches, is extended to include a full description of the elements in the phys-

ical system, the partial behaviour models, the parameters, the parameter values
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and the parameter relations. This allows the use of powerful modelling techniques

and heuristics for interpreting a physical situation, and thereby greatly reduces the

number of states that need to be considered.

� The notions of view, qualitative state and process are uni�ed and extended to a

generic domain ontology for partial behaviour models that discriminates between

static, process and agent models. Static models represent general properties of sys-

tem elements. They can be further divided into single description, composition, and

decomposition models, referring to modelling properties of a single system element,

a collection of system elements or to how a system element can be decomposed into

its sub-structure. Processes describe changes that are based on inequalities between

interacting quantities of di�erent system elements. Agent models are used for mod-

elling changes that are caused by agents. As shown in a number of examples, each

of these modelling primitives is an essential part of a qualitative model.

The no-function-in-structure principle must be rede�ned as follows: the behaviour

description of a partial model may refer only to properties of system elements which

are de�ned in the conditions for applying that partial behaviour model. Recall that

the no-function-in-structure principle was de�ned in order to develop a library of

component models that can be used independently of the speci�c con�guration in

which the components appear. Obeying this principle, as rede�ned above, guarantees

that each partial behaviour model represents the behaviour of a system element, or

of a con�guration of system elements, independent of the behaviour of other system

elements in the same context, i.e not mentioned in the conditions of the partial

behaviour model.

� A third extension beyond earlier approaches concerns parameter values and param-

eter relations. Parameter relations can be used for a number of purposes (table

4.4). The most important ones being: relating quantity spaces, relating parameters

and relating derivatives. The set of parameter relations provided by the integrated

framework enables a broader functionality for specifying dependencies between pa-

rameters. In particular, we can use both directed (causal) and undirected (non-

causal) dependencies between derivatives and between parameter values in a single

behaviour model. In addition, the notions of directed and undirected quantity space

correspondences and directed value correspondences are new. The introduction of

di�erent types of directed relations allows explicit representation of di�erent kinds

of causal dependencies between variables.

8.1.1.2 Knowledge Sources

� The speci�cation inference uses a depth-�rst search algorithm for generating a full

state of behaviour (system model description), which provides feedback on the ap-

plicability of partial behaviour models. In addition, the inference step determines

explicitly which (knowledge level) assumptions are necessary and which sets of as-

sumable partial behaviour models mutually exclude each other.

� The use of inequality reasoning has several advantages. It is more general, but still

generates a manageable search space. The qualitative calculus, as originally pro-
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posed in [57; 93], exhibits spurious behaviour, especially with regard to conservation

of quantities such as energy, 
ow, and force. We severely reduced the generation of

spurious behaviours by applying reasoning about inequalities and arithmetic sum-

mations. Our method combines the axioms for reasoning about transitivity and

arithmetic summations and thereby avoids the problems associated with the ap-

proaches of [120; 73]. Furthermore, it enables the speci�cation of quantity spaces

containing any number of values.

� The transformation inference can make use of domain independent transformation

rules similar to those used in earlier approaches, but may also use rules that refer to

domain speci�c knowledge. Of particular interest is the conceptual distinction made

between termination, precedence and continuity rules. Each of these rules refers

to a di�erent type of knowledge used in the transformation inference. In qualita-

tive reasoning the transformation step, in particular, tends to cause unmanageable

branching of possible states of behaviour. In our approach this ambiguity is reduced

by representing precedence knowledge for merging related transitions or �ltering

out undesired transitions. The distinction between �nding terminations and then

explicitly ordering them was not present in earlier approaches.

8.1.2 Task and Strategic Knowledge

The task layer is used for representing typical chains of inferences that experts make in

solving a particular, well-known task. In our framework, the task knowledge is organised

such that all the states of behaviour are found that apply to, or follow from, a certain

input system. When the input system speci�es only a con�guration of system elements,

this leads to generating all possible states of behaviour (total envisionment). When addi-

tional parameter values and parameter relations are added to this input system, then the

behaviour prediction will be more directed, resulting in a more speci�c trace of behaviour

(attainable envisionment).

Strategic knowledge, in the sense of the four-layer model, is not present in the orig-

inal approaches to qualitative reasoning. The approaches always execute the same task

structure, are not able to monitor their own inference process, and as such are not able to

modify or change their own reasoning process. In the integrated framework two solutions

to this problem have been realised. Firstly, the task layer is accessible by the user. In

this way the user can decide to give control to the prediction engine (resulting in full au-

tonomous execution of the task), or the user can decide to control the prediction by him-

or herself and manipulate the prediction engine such that a required trace of behaviour is

derived. Secondly, in our research on re
ection we have started to explore the knowledge

needed for operationalising the strategic layer (see section 8.4).

8.2 Operationalising an Interpretation Model for KADS

The framework for qualitative prediction of behaviour presented in this thesis was partly

developed simultaneously with the KADS methodology for building knowledge based

systems. The research on qualitative reasoning served as one of the domains used for

further enhancement and consolidation of the theoretical insights developed within the
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methodology (cf. [14]). In particular, the research on qualitative reasoning concentrated on

operationalising a speci�c problem solving task according to the principles and guidelines

provided by the KADS methodology. However, the approach taken to this study was

contrary to a regular knowledge acquisition process. Instead of analysing the problem

solving behaviour of a human expert, we focused on existing arti�cial intelligence programs

that performed the same problem solving tasks. The KADS methodology, and more

speci�cally the four-layer model, was applied as a method for pointing out similarities

and di�erences in the problem solving capabilities o�ered by the di�erent approaches to

qualitative reasoning. In addition, the distinction between the knowledge level model of

expertise and its computation speci�c counterpart (design and implementation), provided

strong guideliness for discriminating between computational and conceptual issues.

Being part of a model driven methodology for knowledge based systems development,

the framework for qualitative prediction of behaviour serves as a method for interpret-

ing and analysing expertise for prediction tasks in new domains. The usability of the

framework for knowledge acquisition is supported by a protocol analysis of humans solv-

ing prediction problems, which showed that the conceptual model represents expertise at

a level of abstraction that closely matches the human conceptualisation of the prediction

problems.

The design and implementation of the model of expertise resulted in a domain in-

dependent reasoning shell, called GARP , which allows a knowledge engineer to quickly

prototype prediction models. After providing GARP with the domain speci�c knowledge

an engineer can run the program and analyse the predicted behaviour. The solutions

generated by GARP provide guidelines for focusing the knowledge acquisition process on

gathering the additional knowledge needed for optimising and �nalising the prediction

model. Moreover, the implementation of the task and strategic layer allows the user to

interact directly with the prediction process. This makes it possible to tune the behaviour

predicted by GARP in such a way that it traverses those paths that are of most interest

for the knowledge acquisition process. The choices that have to be made by a knowl-

edge engineer provide a focus for where additional strategic knowledge is required in the

prediction model.

8.3 Cognitive Plausibility

Cognitive plausibility is relevant for deciding which parts of the problem solving potential

should be described in the design model and which by the analysis model.

The conceptual framework underlying the design and implementation of GARP ap-

pears to be useful for describing and interpreting the reasoning processes observed by

students who predicted the behaviour of complex balance problems. Both the di�erent

viewpoints subjects have on the domain knowledge as well as their reasoning process can

be modelled by the framework. The canonical inferences and the meta-classes de�ned in

the model provide a strong means for interpreting the steps of the reasoning process in

the protocols. The notion of strategic reasoning explains disruptions, and changes in the

order in which the new states are determined.

It is therefore fair to conclude that the conceptual model presented for qualitative

prediction of behaviour does describe this problem solving task at the right level of ab-
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straction, i.e. it constitutes a psychologically plausible knowledge level model of this

problem solving expertise.

8.4 Re
ective Control and Improvement

Based on a framework for knowledge level re
ection [112], we gave a classi�cation of

re
ective behaviour and investigated a knowledge level theory of re
ection. In particular,

we analysed how the notion of knowledge con
icts can be used as a means for reasoning

about the competence assessment and improvement of knowledge based systems. It turned

out that impasses in the problem solving process of GARP can be identi�ed and described

with one of the three basic con
icts: inconsistent, missing, and irrelevant knowledge. In

addition, we discussed how remedies can be used to aid competence improvement. In

particular, we presented algorithms for improving the problem solving behaviour of GARP

by removing irrelevant parameters and irrelevant states of behaviour from the behaviour

description.

8.5 Outlook and Further Research

Despite the advances resulting from the research presented in this thesis there are still

many topics that are insu�ciently addressed by the study. In the following sections we

discuss a number of directions for further research.

8.5.1 Support Knowledge for the Modelling Process

Building models of real-world systems is an important problem. Even the smallest pre-

diction model soon takes a few hours before it `runs'. In particular, modelling the domain

knowledge is a major bottleneck. Research on qualitative reasoning would greatly ben-

e�t from a theory that supports the domain modelling process. The conceptual model

described in this thesis provides a starting point for the knowledge elements that such

a theory should reason about. The support knowledge should specify the characteristics

of the available modelling primitives and compare these to the speci�c features of the

domains that must be modelled in the framework. Based on this comparison the support

knowledge should determine to what extent speci�c modelling primitives are appropriate

for representing certain parts of the domain knowledge. The approach to competence as-

sessment (chapter 7) provides important handles for developing such a theory. However,

more research is needed for operationalising these ideas.

8.5.2 Cognitive Modelling

The protocol analysis, carried out in the course of the research presented here, provides

material for studying further the cognitive validity of the speci�c model of the balance

problems represented in GARP , as well as for further research on how humans perform

common sense reasoning about the everyday physical world. From the protocol analysis

it became clear that further research should focus on the learning aspects concerning the

knowledge structuring principles that people use for developing their domain knowledge.

Interesting work on cognitive modelling can be found in [77; 74].
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8.5.3 Learning and Domain Knowledge Structuring

A research issue related to both supporting the knowledge acquisition process and cognitive

modelling is that of machine learning. Machine learning techniques can in this respect be

used for two purposes:

� to automate the knowledge acquisition process, and

� to improve domain models over a number of behaviour prediction sessions (see chap-

ter 6).

Research in this direction can, for example, be found in [66; 107; 108]. In particular,

questions concerning the level of abstraction at which domain knowledge must be modelled,

and the set of parameters that is needed for analysing the behaviour of a certain system,

are essential problems that must be dealt with in further research.

8.5.4 Re
ective Control and Strategic Reasoning

Although some typical examples have been tried out in experiments (cf. [5]), further re-

search is needed for operationalising the ideas concerning re
ective improvement of prob-

lem solving behaviour presented in chapter 7. The crucial topic to be addressed here

concerns the realisation of a strategic layer `on top of' an artifact such as GARP . There is

some work going on as an extension of the constraint centred approach (cf. [93; 95]) aiming

at �ltering, and thereby reducing, the number of generated states of behaviour. However,

the framework underlying GARP realises a broader functionality than provided by QSIM

and consequently requires a di�erent control mechanism. Moreover, it is essential that the

re
ective control is active during the behaviour prediction, instead of �ltering the output

after the problem solver is �nished, otherwise, an explosive growth of predicted states,

for example, cannot be prevented. The approach presented in this thesis for competence

improvement provides initial ideas on how this re
ective control can be realised.

8.5.5 Prediction Based Diagnosis

A possible extension of our research on qualitative prediction of behaviour is to use the

domain ontology for partial behaviour models in order to represent di�erent behaviour

models for prediction based diagnosis.

A crucial aspect in prediction based diagnosis (cf. [45; 59; 79]) is the use of partial

models that represent behaviours of entities in the real-world. These partial behaviour

models are used to determine the overall behaviour of some system that is the object of the

diagnostic reasoning process. In the original GDE approach [59] each behaviour model

represents the behaviour of a single component. The aggregation of these models into

an overall behaviour description is realised by directly combining the speci�c behaviour

models that are available for each component.

Extensions of the initial GDE approach, however, require an enhanced de�nition of

behaviour models. The behaviour models must be able to represent fault models, multiple

correct models and structural decompositions. In addition, a behaviour model does not
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always apply to a single component, but may refer to a functional abstraction or even to

processes [70].1

In order to address the advanced requirements for the behaviour models the integrated

framework for qualitative prediction, described in this thesis, can be used (cf. [19]). In

particular, the ontology for partial behaviour models can be used to control the search

for applicable behaviour models in the extended GDE paradigm. Fault models [129],

for example, can be represented as an alternative class of behaviours next to correct

behaviours. The modelling primitives needed for representing these fault models do not

di�er from those needed for representing correct behaviour, i.e. both static, process and

agent models can be used.

The notion of simpli�cation, abstraction, and approximation (cf. [128]) can be rep-

resented by using the super-type relation, modelling the more speci�c models lower in

the hierarchy with respect to the more abstract and simpli�ed models. Instead of using

the complete hierarchy the diagnostic problem solver should take care only to take into

account as much level of detail as is required for establishing a su�cient diagnosis. In

addition, we can use more than one model at a single level of detail for representing the

di�erent views that may apply to a certain device or a subpart of the device. Multiple

correct behaviours of a single component can, for example, be represented as di�erent

single description models that all apply to the same system element, but which have dif-

ferent conditions with respect to the parameters, parameter values, parameter relations

and other partial behaviour models. The diagnostic problem solver should decide which of

these condition sets is valid and therefore which of the available behaviour models should

be used.

Structural decomposition, as used in SiDia [78] and inMuDia [10], can be represented

by the decomposition models. The notion of an unknown behaviour mode as used in [60]

should not be represented by a partial behaviour model (although this could be a way of

representing it), but is better realised by the speci�c way in which the diagnostic problem

solver applies the use of partial models.

In conclusion, the ontology for partial behaviour models developed for qualitative

prediction of behaviour can be used for the integration of the di�erent behaviour models

used in the extended GDE paradigm. The integrated set of modeling primitives provides

handles for controlling the search for applicable behaviour models.

8.5.6 Intelligent Tutoring Systems

A further extension of the presented research is the use of GARP as a shell that represents

and simulates the (physical) world at the conceptual level (instead of at the mathematical

level) and which is therefore better suited for use within an intelligent tutoring environment

[22], both for:

Domain modelling Representing the domain knowledge that has to be acquired.

Student modelling Representing alternative notions held by the students.

1To our knowledge the latter has not yet been studied in practice, but only brie
y discussed in [128].

However, such an extension would be essential for the GDE paradigm to be applicable in environments

where there are no active components, but only physical objects that interact on the basis of some

inequality.
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A growing number of computer based learning environments is simulation based (see for

instance [49] for an overview). Usually these environments are based on the discovery

learning educational philosophy (cf. [29]) and are aptly called discovery worlds. Research

shows, however, that such simulations are e�ective only when the actions of the students

are monitored by a teacher (human or computer based) and guidance is provided (e.g. [98;

63]). One solution is to embed the simulation in an intelligent tutoring system. However,

most of the simulations are based on complex mathematical procedures that calculate

how the speci�c aspects within the simulation are to be manipulated (cf. SOPHIE I/II

[28], STEAMER, [84], RBT [147]). These mathematical procedures, although e�cient

in simulating the physical world, provide no conceptual access to the objects and their

behaviour in the simulation. This makes it hard, if not impossible, for the intelligent

tutoring system to use the simulator for explanations or student modelling, because it

has no means for relating the mathematical calculations within the simulation to the

conceptual framework (that represents the knowledge the student possesses, or has to

acquire). It is impossible to derive causal explanations of the behaviour of the particular

device or system from the mathematical model, so these would have to be added by hand.

Therefore we are looking for di�erent models to use for simulations, models that explicitly

represent the objects and their behaviours that play a role in the system. These models

should allow for causal reasoning, and preferably comply with the way humans reason

about the system.

The only well known intelligent tutoring system that uses a qualitative model for its

simulation is SOPHIE III [28], a reactive learning environment for teaching troubleshoot-

ing in electronic circuits, of which the coaching module was never realised. (Note that

although SOPHIE III is based on a qualitative approach, it does not have true causal

models of the circuits, but uses circuit speci�c rules and links). More recently White et

al. [138] describe their work on QUEST , an instructional system for the same task, based

on a progression of mental models, from a qualitative to a quantitative one.

In order to make the use of qualitative reasoning techniques for teaching purposes

e�ective, the following requirements should be met:

� The simulation should be based on a single conceptual framework, which allows the

representation, and the use, of di�erent types of models of the physical world in a

single intelligent tutoring system.

� The conceptual framework must be represented explicitly in the implemented arti-

fact, in order to facilitate access to the entities from the simulation in terms of the

conceptual framework.

� The framework must be cognitively plausible in order to ensure that the access to

the entities represented by the simulation model closely matches the human inter-

pretation of that simulation.

GARP is a qualitative reasoning shell that meets these requirements. It can be used

for both domain simulation and student modelling. The conceptual framework on which

GARP is based is explicitly represented in the implemented artifact and maps well onto

the conceptions that humans seem to use. In addition, GARP can reason with di�erent

types of qualitative models (component, process, or constraint centered) and with di�erent

conceptualisations of a particular system (including wrong ones). This makes the domain
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model suitable for providing explanations for student responses (i.e. be used for diagno-

sis) or for predicting them. This extends to selecting critical problems for diagnostic or

teaching purposes, in particular, for stimulating learning or awareness of misconceptions

on the part of the student (cf. [124]).
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