
Expertise in
Qualitative Prediction

of Behaviour

Ph.D. thesis (Chapter 7)

University of Amsterdam
Amsterdam, The Netherlands

1992

Bert Bredeweg

Chapter 7

Reective Improvement

Strategic reasoning, in terms of the KADS four-layer model, is rarely employed in pre-

vious approaches to qualitative reasoning (see chapter 4). However, as discussed in the

previous chapter, it is precisely this strategic layer that should contain the knowledge for

reasoning about the knowledge represented in the other layers. This chapter describes how

the strategic knowledge in the model of expertise can be operationalised as a reective

component `on top of' the artifact. In particular, this chapter discusses ways of improving

the problem solving behaviour of GARP . These improvements are based on the strategic

reasoning found in the protocols of human problem solving which was described in the

previous section. In addition, the framework for strategic reasoning is based on the notion

of reasoning about a problem solver.

7.1 Knowledge about a Problem Solver

Most knowledge engineers, while observing an artifact solving problems, have a good

understanding of why the system solves some of the problems easily, and why it takes too

much time, or completely fails, on others. In addition, they often know what modi�cations

should be made for improving the problem solving behaviour of the artifact.

An artifact usually has no knowledge about its own problem solving capabilities. It

does not know what problem solving task it was developed for or what problems it can

solve within the context of that task. This may hamper the usability of the artifact. For

instance, when given a problem not related to the domain of application, the artifact

should be able to detect, state and explain that it cannot solve that problem. Instead, the

system `enthusiastically' starts solving the problem without knowing that its enterprise is

certain to fail.

To improve the state of the art, in the sense of the artifact being more exible in

applying its knowledge, providing explanation of its reasoning process, being clear about

its problem solving limitations, and for cooperating with other problem solvers, the arti-

fact needs to be augmented with components that represent knowledge about its problem

solving potential. These components can then be used to perform reective reasoning

about the artifact (cf. [121]), which should result in a more appropriate application of the

artifact's problem solving capabilities to the problem in hand.

177

7.2 Knowledge Level Reection: a Point of View

Di�erent de�nitions for reection have been described by Maes and Nardi (cf. [101]). For

our point of view on reection the distinction between the conceptual model and the design

model (see section 3) is important. The conceptual model refers to an implementation

independent description of problem solving behaviour. The design model, on the other

hand, speci�es the computational techniques that constitute the artifact. Crucial for our

approach to reection is that we want the problem solver to reason about its own problem

solving potential in terms of the conceptual model (and not in terms of the design model).

Our approach therefore di�ers from what is known as computational reection (cf. [100]),

because the information exchange between the problem solver and its reective counterpart

is realised in terms of a knowledge level description [109], i.e. the problem solver reasons

about the knowledge that it uses in its reasoning process. We will refer to this point of

view as knowledge level reection (cf. [6; 112]).

Before describing in more detail how this type of reection can be realised, a number of

terms must be de�ned �rst. In particular, we have to specify what we mean by reective

speci�cation, reective system, and reective behaviour.

7.2.1 Reective Speci�cation

Reective speci�cation refers to a conceptual model of the reective system that is to be

built. It describes the model that a knowledge engineer has of such a reective problem

solver.1 Characteristic for a reective speci�cation are the structuring principles that the

knowledge engineer uses for modelling the knowledge. These structuring principles (for

writing down reective speci�cations) are visualised in �gure 7.1. Typical for a reective

speci�cation are:

� the model the knowledge engineer has of the problem solver, and

� the reective knowledge the knowledge engineer has about the problem solver.

Reective speci�cations will be further discussed in section 7.3.

7.2.2 Reective System

From a reective speci�cation we can develop a reective system by implementing the

reective speci�cation in a structure preserving way. If the structuring principles, as given

above for the reective speci�cation, are imposed upon the architecture of the artifact,

then we consider such a system as a reective system. Crucial in this respect is that the

reective system uses a model of the problem solver as an intermediate step for realising

the interaction between its `reective' and its `object' problem solving parts. A reective

system must therefore consist of the following aspects (see also �gure 7.1):

Object problem solver The problem solver that is the object of reective reasoning.

1Notice that the term knowledge engineer is used in two ways. One, as the person who has knowl-
edge about some problem solver, and two, as the person who constructs a reective speci�cation of that

knowledge.

178

Problem
solver

Model of
problem solver

Knowledge about
Problem solver

Observable
behaviour

Modifying
actions

Artifact
Knowledge engineer

Write reflective
specifications

Knowledge level
interaction

Models of:

KE's model of
problem solver

KE's knowledge
about probl. solv.

Synchronisation
function

Knowledge level
interaction

Problem solver
Reflective

Knowledge of PS

Build a reflective system

Model of
problem solver

Reflective artifact

Figure 7.1: Reective speci�cations and reective systems

Model of the object problem solver A knowledge level model that the reective

problem solver has of the object problem solver.

Reective knowledge Additional knowledge that the reective problem solver uses for

reasoning about the object problem solver.

In order to coordinate the interaction between these three aspects of a reective system,

the following additional entities are required:

Synchronisation function This maps the object problem solver to the model that the

reective system has of that problem solver.

Knowledge level interaction This mechanism speci�es how the model of the object

problem solver relates to the additional knowledge the reective system has of the

object problem solver.

Reective architectures and reective systems are not further discussed in this thesis.

179

7.2.3 Reective Behaviour

Reective behaviour refers to a speci�c type of problem solving, namely reasoning about

the problem solving process. The hypothesis here is that there are problem solving be-

haviours that are not so much concerned with actually solving problems (as knowledge

based systems do), but that reason about how these problem solvers solve their problems.

An example might help to clarify this notion. In the constraint satisfaction community

it is generally known that selecting constraints, preceding value assignment, can be op-

timised by selecting the most constraining �rst. Reective behaviour now would be for

an artifact to `sit back' and `observe' its selection process and at a certain time interrupt

the problem solving, having noticed that the selection process is random, and change the

selection process according to the optimisation mentioned above.

Reective behaviour, as de�ned here, does not require a speci�c architecture of the

system. It refers to a type of reasoning and not to a speci�c implementation. In �gure 7.2

possible combinations of reective and non-reective behaviours and systems are given.

The �gure speci�es that, for a system to be reective, the reective system (R.S.) must

Reflective Behaviour Non Reflective Behaviour

Reflective
System

Non
Reflective
System

• A specific type of architecture
 (the R.S. has a model of the O.S)

• No distinction between
 specific types of architectures

• A specific type of reasoning
 (namely: about problem solving)

• No distinction between
 specific types of reasoning

• A specific type of reasoning
 (namely: about problem solving)

• No distinction between
 specific types of reasoning

• No distinction between
 specific types of architectures

• A specific type of architecture
 (the R.S. has a model of the O.S)

and and

andand

Figure 7.2: Reective behaviours and reective systems

reason with a model of the object system (O.S.). For performing reective behaviour the

system must show a speci�c type of problem solving, namely reasoning about problem

solving. Examples of reective problem solving are given in section 7.5

7.3 Conceptual Model of a Reective Problem Solver

For developing reective descriptions of problem solvers we can again use the KADS

approach for modelling expertise (see chapter 3). Both the knowledge represented in the

artifact and the knowledge the engineer has of the artifact, can be modelled with the

framework provided by KADS (see �gure 7.3).2

2Notice that it is in principle possible to formulate a reective layer `on top of' a reective problem

solver. However, instead of allowing this recursion, we impose just one reective layer `on top of' an object

180

Object Problem Solver

RReeff lleecctt iivvee ttaasskk llaayyeerr

RReeff lleecctt iivvee iinnffeerreennccee llaayyeerr

RReeff lleecctt iivvee ddoommaaiinn llaayyeerr

Knowledge
about the
domain of
application

Knowledge
about the
problem

solving task

Task layer

Inference layer

Domain layer

Model of Object P.S.

Synchronisation function

Figure 7.3: Conceptual view of reective systems

7.3.1 Reective Domain Layer

At the domain layer of a reective problem solver the following aspects can be distin-

guished:

� the model of the object system, and

� additional reective knowledge, consisting of:

{ knowledge about the problem solving task being performed by the object prob-

lem solver, and

{ knowledge about the domain of application.

Particularly relevant is the synchronisation function between the model of the object

problem solver and the problem solver itself. This functionality is realised by the causal

connection [7; 99; 135]. Two aspects are important for this synchronisation: the reective

system must be able to inspect (read) and change (write) the object problem solver. In

our approach this interaction between the object and reective problem solver occurs via

the model the reective system has of the object problem solver.

A di�cult problem to solve is the amount of reasoning that the object problem solver

may perform before the reective system interrupts. Di�erent solutions have been pro-

posed [117]. Two opposite views in this respect are:

problem solver.

181

Eager synchronisation: whenever there is a change in one entity (object problem solver

or the model of the object problem solver), it is immediately propagated to the other.

Lazy synchronisation: changes in either entity are not immediately propagated, but

only after a certain amount of problem solving has been performed.

The general point is to interact with the object problem solver at the `right' level of detail.

Only the important manipulations carried out by the object problem solver should be

inspected, and possibly be modi�ed, by the reective system. In the case of knowledge

level reection, the conceptual model of the object problem solver must be the basis for

determining this level of detail.

7.3.2 Reective Inference Structure and Task Layer

An inference structure for the reective problem solver is depicted in �gure 7.4. It is taken

from the knowledge representation described for the strategy layer in section 3.1.4, and

modi�ed such that it applies to GARP as an object problem solver. The model of GARP ,

Observables Diagnose Repair
Knowledge

conflict

Library
knowledge

Intermediate
P.S. results

P.S. status
Input

systems

Model
of

Problem
Solver

Playes the role of

(Write access)(Read access)

Repaired
observables

Knowledge about
P.S. task

Knowledge about
domain of application

Possible
repairs

Figure 7.4: Reective inference structure

at the domain layer, consists of the following parts:

� intermediate problem solving results,

� library knowledge,

� problem solving status, and

� input systems.

182

The problem solving status refers to what kind of inference is being carried out (recall that

each inference maps onto a knowledge source in the inference structure). All the other

entities refer to di�erent parts of the knowledge that GARP uses for generating behaviour

predictions. Each of these entities refers to a number of meta classes which are used by

the inferences of the object problem solver.

For the reective system, each of the above mentioned entities can play the role of

observables, which are input (=read access) for a diagnostic task.3 This task in addition

uses knowledge about the problem solving task and the domain of application of the object

problem solver, and determines whether there is any knowledge in the object problem

solver that conicts with the goal of the problem solving process (=impasse). In order for

the object system to realise its problem solving goals, these knowledge conicts have to be

repaired. The repair task has a set of possible repairs that it can use for this purpose. The

output of this task is a repaired observable, i.e. one or more modi�cations (=write access)

in the knowledge and/or the reasoning tasks employed by the object problem solver.

The task layer should control the inferences carried out by both the diagnostic and

the repair tasks. For the moment, however, we will simplify this notion to executing a

diagnostic and a repair step. Further research is needed on this matter.

7.4 Knowledge Conicts

One of the important meta classes in reection is the notion of a knowledge conict. It

refers to the type of knowledge bottleneck that is dealt with by the reective reasoning.

In a way, reective reasoning is always concerned with determining to what extent some

piece of knowledge from the object problem solver is inadequate (i.e. conicts with the

problem solving goal) and causes the problem solver to behave in an undesired manner.

Based on experience with human problem solvers (see chapter 6), we distinguish three

types of knowledge conicts, i.e. three ways in which knowledge represented in the object

system can be inadequate with respect to the expected problem solving behaviour.

7.4.1 Inconsistent Knowledge

Knowledge is inconsistent if it contains contradictions. Depending on the scope of the

inconsistency, its e�ect on the problem solving process may range from not proceeding

in particular directions, resulting in fewer, possibly less optimal, solutions, to making

problem solving impossible altogether. In both cases the problem solving process can

only continue in the direction, being blocked by the inconsistency, if the inconsistency is

removed.

There is a speci�c type of inconsistent knowledge that is called overspeci�cation. When

a constraint satisfaction problem is overspeci�ed it means that there are in principle too

many constraints to solve the problem. This is similar to saying that the set of constraints

specifying the problem is inherently inconsistent. The only way to solve the inconsistency

is by reducing the number of constraints.

3Notice, that this realises the knowledge level interaction between the reective system and the model

of the object problem solver.

183

7.4.2 Missing Knowledge

Missing knowledge refers to knowledge that is needed for the problem solving behaviour,

but that is not available to the problem solver. Missing knowledge does not necessarily

prevent the reasoning process from continuing. Instead it leaves open certain aspects in

the problem solving process which may lead to a larger search space, and probably to more

(potential) solutions than wanted, or are actually correct. Remedying missing knowledge

can be achieved by adding the additional knowledge or by making assumptions. More

speci�c assumptions have a stronger e�ect on curtailing the search space.

A notion used in the area of constraint satisfaction that is a good example of missing

knowledge is underspeci�cation. When a problem is underspeci�ed it means that there

are not enough constraints to ensure solvability in practice. In such cases, too many

alternatives can coexist.

We can distinguish between generally missing knowledge, i.e. knowledge that is always

unknown, and accidentally missing knowledge, i.e. knowledge that is unknown for a spe-

ci�c problem solver. Weather forecasting is an example of generally missing knowledge.4

Arriving at an accurate forecast requires extensive amounts of knowledge. However, essen-

tial parts of that knowledge are always unknown, regardless of who is doing the forecast.

Calculating distances between planets can be an example of accidentally missing knowl-

edge. Equations for calculating these distances exist, but a speci�c problem solver may

not know what they are, and therefore not be able to solve these problems. In other words,

the problems are solvable, but not for the particular problem solver.

Both types of missing knowledge can be compensated for by using some form of default

reasoning. However, generally missing knowledge can never be fully acquired whereas

accidentally missing knowledge can. The distinction is therefore relevant, because in the

former case it is of no use to search for the missing pieces of knowledge. Instead the

reasoning process has to be adapted to the uncertainty introduced by the generally missing

knowledge. In the latter case, the problem solver might search for a means for acquiring

the missing knowledge.

7.4.3 Irrelevant Knowledge

Irrelevant knowledge can manifest itself in many forms, but the basic idea behind this

knowledge conict is that too much knowledge is taken into account. As a result of

irrelevant knowledge the problem solving process takes too much detail into account and

may get stuck, because of the complexity, or become incomprehensible because of all the

detail. Abstractions and selections are needed to continue with the problem solving or to

transform the knowledge to an understandable format.

There is a speci�c type of irrelevant knowledge that is called redundant knowledge. The

two di�er in the sense that the latter does not contain additional knowledge, but instead

refers to knowledge that is represented more than once in the problem solver. When

not identi�ed as such, redundant knowledge may lead to similar problems as irrelevant

knowledge.

4In [117] this knowledge conict is sometimes referred to as uncertain knowledge.

184

7.4.4 Exclusivity

Knowledge conicts are not necessarily mutually exclusive. A piece of knowledge can be

part of more than one knowledge conict. For example, a piece of knowledge can be both

inconsistent and irrelevant.

7.5 Two Types of Reective Reasoning

Two typical forms of reective reasoning can be distinguished: competence assessment and

competence improvement [136]. Competence assessment has read access to one or more

parts of the object problem solver, but has no write access to any part of the problem

solver. Competence improvement, on the other hand, not only has read access to one or

more parts of the object problem solver, but also has write access to one or more parts

of the object problem solver. In terms of the inference structure depicted in �gure 7.4,

competence assessment is concerned only with the diagnostic step, whereas improvement

also requires a repair.

7.5.1 Competence Assessment

Competence assessment refers to the process of judging whether a certain problem solver

has the potential for solving a particular problem.5 The �rst question to be addressed

concerns the intelligibility of the problem:

� does the problem solver understand the problem description?

The question of intelligibility involves two other questions:

1. is the problem syntactically intelligible, and

2. is the problem semantically intelligible?

For answering these questions the reective systemmust have a model of the problem solver

that both speci�es its syntax and its semantics, and determines whether the problem �ts

these two. This functionality is realised in GARP by the <assessment of solvability>

function (see also 5.1.2.3).

If a problem solver understands the problem, the next question is concerned with the

solvability itself:

� is the problem solvable by the problem solver?

This question also consists of two other questions:

1. is the problem solvable in principle, and

2. is the problem solvable in practice (i.e. by a speci�c problem solver)?

5Notice that also parts of the library knowledge and/or the intermediate P.S. results, are the object of
the competence assessment analysis.

185

Solvable in practice di�ers from solvable in principle, because it is more restricted. A

problem might be solvable in principle, but a speci�c problem solver might fail because

it lacks an essential reasoning technique or a certain piece of knowledge. Focusing on the

latter, the question of solvability depends on:

� the identi�cation of the potential knowledge conicts, and

� the ability of the problem solver to cope with these knowledge conicts.

Below a number of tentative rules are given for determining the solvability of a problem,

depending on whether the problem solver has the potential for coping with the identi�ed

knowledge conict.

The �rst rule (7.1) is rather straightforward. It speci�es that if there is a knowledge

conict of type inconsistent, then the problem is not solvable, neither in practice nor by a

speci�c problem solver.

IF there is a knowledge conict KC

AND KC is of type inconsistent knowledge

THEN the problem is not solvable

Table 7.1: Inconsistent knowledge

The second rule (7.2) speci�es that if there is a knowledge conict of type generally

missing, then the problem solver needs to be equipped with techniques that allow for

default reasoning concerning the particular type of knowledge that is missing. If such

methods are not available for the problem solver then the problem is unsolvable (for that

problem solver), although it might be solvable in principle.

IF there is a knowledge conict KC

AND KC is of type generally missing knowledge GMK

AND the object problem solver has default reasoning methods DRM

AND the DRM deals with the type of knowledge identi�ed in GMK

THEN the problem is solvable by the object problem solver

Table 7.2: Generally missing knowledge

The third rule (7.3) deals with accidentally missing knowledge. This means that the

knowledge is available somewhere outside the problem solver and that the problem solver

therefore needs to apply knowledge acquisition techniques for obtaining the missing knowl-

edge. If the problem solver does not have these acquisition techniques or if the techniques

are not adequate for the type of knowledge that is missing, then the problem is in principle

solvable, but not solvable by the speci�c problem solver.

186

IF there is a knowledge conict KC

AND KC is of type accidentally missing knowledge AMK

AND the object problem solver has knowledge acquisition methods KAM

AND the KAM deals with the type of knowledge identi�ed in AMK

THEN the problem is solvable by the object problem solver

Table 7.3: Accidentally missing knowledge

Finally, an example of a knowledge conict that has been identi�ed as irrelevant (7.4).

The e�ect of irrelevant knowledge depends on its size. If the amount of irrelevant knowl-

edge increases, then the need for abstraction from irrelevant details, and selection between

pieces of knowledge, becomes greater. If these methods are not available for the problem

solver, then with a certain amount of irrelevant knowledge, the search space becomes too

large for solving the problem in practice.

IF there is a knowledge conict KC

AND KC is of type irrelevant knowledge IK

AND the amount of IK is (too) large

AND the object problem solver has no abstraction methods AM

AND the object problem solver has no selection methods SM

THEN the problem is not solvable by the object problem solver

Table 7.4: Irrelevant knowledge

Having decided that the problem is solvable by the problem solver, the �nal question

concerns the quality of the solution:

� what is the quality of the solution provided by the problem solver?

In more detail this involves questions like:

1. is the solution a correct answer to the problem,

2. is the solution the best solution or are there better ones,

3. what parts of the solution are less reliable (or adequate), and

4. is there something lacking in the solution?

Discussing the quality of the answer is not a part of the research presented here.

187

7.5.2 Competence Improvement

Competence improvement has read and write access to one or more parts of the object

problem solver and takes the competence assessment a step further by suggesting remedies

for problems occurring during the problem solving process. Competence improvement

very much has the avour of controlling the problem solving process of the object problem

solver. Regarded in this way, we can say that competence improvement implements a

strategic layer on top of an object problem solver (see also section 3.1.4).

The �rst problem solving task is monitoring. It involves both the observation of the

problem solving process, performed by the object problem solver, and the identi�cation of

di�erences between what is expected to be observed and what is actually being observed.

Monitoring can be done data-driven, i.e. the data determine to a large extent what is

being taken into account by the monitoring process, or model-driven, i.e. a model (of

what is expected) determines what has to be monitored. The monitoring process should

provide the reective component with an `adequate' description of what is `going on' in

the problem solver. In particular, this task should point out to what extent the object

problem solver deviates from its expected problem solving behaviour.

Monitoring is closely related to diagnosis: the second basic problem solving task rele-

vant for competence improvement. If the monitoring identi�es a discrepancy, it is the task

of the diagnostic inference engine to �nd out what knowledge conict caused the impasse

in the problem solving process.

When the knowledge conict is identi�ed, the next task is to remedy or repair the im-

passe. A distinction can be made between control and repair. They di�er in the sense that

control does not change the contents of the knowledge in the object problem solver, because

it only determines what inference step is to be taken next. Repair, on the other hand, not

only determines what inference step is to be taken, but the selected inference step necessar-

ily introduces changes in the body of knowledge in the object problem solver. Examples of

repair inferences are abstraction, selection and acquisition of additional knowledge. Repair

is, in contrast to control, essentially a non-monotonic action.

7.6 Examples of Reective Control in GARP

In this section we apply the theoretical issues introduced in the previous sections toGARP .

In particular we will focus on how the problem solving behaviour ofGARP can be analysed

and improved by using the notion of knowledge conicts.

7.6.1 Inconsistent Knowledge

Conditions that have to be true before some knowledge may be used, can be `inconsistent'

with respect to what they are applied to. This inconsistency simply means that the

knowledge cannot be used in this particular context, and does not imply that something is

wrong with these conditions. The inconsistency discussed in this section is not concerned

with that type of inconsistency, but refers to inconsistencies that should not be present in

the �rst place.

Many forms of inconsistency may occur. Some of them are relatively simple and some

are very complex. Some of the more complex cases can be found in the partial behaviour

188

models and in the input systems. Between these modelling primitives inconsistencies may

appear in the following cases:

� within the input system

� within a partial model, namely:

{ within the conditions

{ within the consequences

{ between the conditions and the consequences

� between the input system and the consequences of a partial model

� between two partial models, namely:

{ between the consequences of the two partial models

{ between the consequences of one partial model and the conditions of another

(already applicable) partial model (in this case the order may be relevant).

During the reasoning process the input system is further speci�ed by adding applicable

partial models to it. In the above list the input system can therefore be replaced by system

model descriptions, illustrating the inconsistencies that might appear between the system

model description, at a certain point in the inference process, and the partial model that

is a candidate for being added to that description.

Because the input system, the system model descriptions, and the partial models all

incorporate the same type of knowledge (namely about system elements, parameters, pa-

rameter values, parameter relations and partial models) the inconsistencies are basically

the same for all the items mentioned in the list above. For example, inconsistencies

between parameter relations are all based on a contradiction in the set of inequality rela-

tions: greater(P2; zero), greater(P1; P2) and smaller(P1; zero). Although this example

is rather simple, it is easy to see how complex forms of transitivity, distributed over a num-

ber of partial models, can increase the complexity. The main problem in these cases is not

so much to identify the inconsistency that appears during the derivation of the transitive

closure, but to point out exactly what piece of knowledge caused the inconsistency.

7.6.2 Missing Knowledge

Two typical cases of missing knowledge that are relatively easily spotted and that have

a signi�cant e�ect on the search space are concerned with parameter relations, values

and derivatives. If the problem solver cannot determine the truth value of a certain

parameter relation, and the relation is not contradictory to the knowledge derived so far,

it assumes, after a particular point in the reasoning process, that the relation is true

and continues the problem solving process. This may lead to more states of behaviour

being predicted than would have been the case if the parameter value had been properly

speci�ed. Consider, for example, a system consisting of a closed container �lled with a

substance. If the temperature of the substance is not speci�ed, the problem solver will

assume (i.e. if needed and not contradictory to the other knowledge that is derivable

without these assumptions) that it might be either below the freezing point, equal to the

189

freezing point, above the freezing point (etc). Specifying the value of the temperature

reduces the number of assumptions that have to be made and consequently the number

of states that will be generated.

With respect to the derivative of a parameter it is often the case that because of

opposing inuences on the parameter the �nal behaviour of the parameter cannot be

determined unambiguously. The problem solver then assumes that all changes (increasing,

decreasing and steady) are possible, which results in three states of behaviour. The e�ect of

this ambiguity increases signi�cantly when there is more than one independent parameter

with an undetermined derivative. For example in case of three ambiguous parameter

derivatives 27 (3x3x3) states of behaviour are generated, all of them introducing a new

path of behaviour.

Other cases of missing knowledge are much harder to identify. Take for example a

missing partial model. It is almost impossible for the problem solver to spot such missing

knowledge, although some intuitive heuristics can be used (for example, there should be

a partial model for each system element from the isa-hierarchy).

7.6.3 Irrelevant Knowledge

If knowledge is represented too speci�cally, it will result in a behaviour prediction with

more detail than is required, i.e. too many system model descriptions are produced, or

too much knowledge is placed within each system model description (the latter is more

likely).

Below, three forms of irrelevant knowledge are discussed. In each example, the problem

that has to be dealt with is choosing the right level of abstraction to represent and reason

about a system. If too much detail is taken into account the problem solving process gets

unnecessarily complex and abstractions are needed to simplify the reasoning process.

7.6.3.1 Irrelevant Structural Detail

The con�guration of system elements representing a system can be very complex because

of all the detail taken into account. During the reasoning process the whole con�guration

has to be analysed for each state of behaviour which may result in an unnecessarily large

amount of detail. Although the reasoning is in principle correct, it takes more time than

strictly needed and it makes the interpretation of the output for the user more di�cult.

This is particularly true when the con�guration of system elements does not change during

the simulation (see also chapter 6).

7.6.3.2 Removing Irrelevant Parameters

If too many parameters are used for describing the behaviour of some system, there is a

danger that more terminations are found by the problem solver than wanted. This problem

particularly occurs when the parameters represent similar knowledge about the system in

a di�erent way and are insu�ciently related to each other (i.e. they seem independent,

but are in fact related). In addition, a large set of parameter values makes it hard to

interpret the behaviour speci�ed within a speci�c system model description.

In general parameter redundancy may appear in two forms:

190

� Two (or more) parameters are erroneously used for describing the same behaviour

property (this is essentially a modelling error).

� Two (or more) parameters are used for describing di�erent properties, but the prop-

erties represent corresponding behaviour.

With respect to the latter form of redundancy, consider the following example. In

the domain of heart diseases the amount
�

of oxygen contained by the blood represents

a di�erent parameter from the amount
�

of blood itself. However, after assuming that

the amount
�

of oxygen in the blood stays constant, the parameters represent, from a

qualitative point of view, the same information. One of the parameters can therefore be

removed.

The following algorithm can be used for �nding and removing a certain class of irrele-

vant parameter relations:

1. If for each SMD from the behaviour description, there exists:

� a parameter (=Par1) in the list of parameters.

� a parameter (=Par2) in the list of parameters, where Par1 : Par2.

� a correspondence relation between Par1 and Par2 in the list of parameter re-

lations.

� a d
�

equal relation between Par1 and Par2 in the list of parameter relations.

then Par1 and Par2 together represent irrelevant knowledge in the behaviour de-

scription.

2. For each pair of irrelevant parameters (Par1 and Par2) in each SMD from the be-

haviour description, act as follows:

� Remove all the relations between Par1 and Par2 from the list of parameter

relations (also within the partial models).

� Assign (randomly) either Par1 or Par2 as the remaining (=Remain) or to be

removed (=Remove) parameter.

� Remove the parameter value of Remove from the list of parameter values (also

within the partial models).

� Remove the parameter Remove from the list of parameters (also within the

partial models).

� Replace all parameter relations in the list of parameter relations that use pa-

rameter Remove by similar relations but now using parameter Remain (also

within the partial models).

� Remove all duplicated parameter relations from the list of parameter relations

(also within the partial models).

191

7.6.3.3 Removing Irrelevant States of Behaviour

There is a danger of predicting system model descriptions that contain di�erent values for

some parameter, but that do not represent di�erent states of behaviour. This happens

when a quantity space for a parameter has values that do not correspond to some partial

behaviour model in the library. In the domain of the heart diseases (cf. [16]) it turned

out that GARP found a number of angina pectoris states, all containing the same partial

models, but with di�erent values for a parameter.

Angina pectoris refers to a state of behaviour in which the heart has a higher level

of activation than normal and the patient perceives pain in the chest because insu�cient

oxygen is provided by the blood. The conditions for angina pectoris are therefore that the

use
�

of oxygen is greater than the amount
�

of oxygen present:

greater(Use
�

of
�

O2; Amount
�

O2)

and that the use
�

of oxygen must be higher than normal:

greater(Use
�

of
�

O2; normal(Use
�

of
�

O2))

which refers to the person having a higher activation level than normal. The following

quantity space was used for both the amount
�

of and the use
�

of oxygen:

quantity
�

space(zlnh;X; [point(zero); low; point(normal(X)); high]):

Given these de�nitions it is possible that, when the Use
�

of
�

O2 is high, the value for

the Amount
�

O2 varies between low, normal, and high.6 This means that there are three

possible states of behaviour that satisfy the angina pectoris conditions. However, the three

states of behaviour did not di�er on their partial behaviour models. In other words, below

a certain point in the quantity space, the values of the parameters did not introduce any

new behaviour and may just as well be left out. A quantity space with less detail would

still predict the relevant states of behaviour, but with fewer system model descriptions.

There are two possible repairs for this problem, either de�ning a quantity space with

fewer values, or merging the predicted states of behaviour that do not di�er on their partial

models and replace the di�erent values for the parameter by a parameter relation. In the

example above, this relation would be:

greater(Amount
�

O2; zero)

The following algorithm can be used for removing irrelevant system model descriptions:7

1. Find all SMD's that have the same set of:

(a) system elements

(b) parameters

(c) parameter relations

6Notice that high is an interval and that parameters can be `unequal' in the same interval (see section

4.2.1.5).
7If the derivatives of the parameters whose values are being substituted by parameter relations are

di�erent, then this information will be lost after applying this algorithm.

192

(d) partial behaviour models

In words: �nd all the SMD's that only di�er on their parameter values) Set of

irrelevant SMD's.

2. Create a new SMD (=NewSMD)

3. Select a speci�c SMD from the Set of irrelevant SMD's (=CopySMD)

4. Copy from CopySMD into NewSMD:

(a) system elements

(b) parameters

(c) parameter relations

(d) partial behaviour models

5. For each parameter (=Par) from each SMD in the Set of irrelevant SMD's with a

parameter value, act as follows:

(a) If the parameter value is similar in each SMD

then copy the parameter value (once) into the NewSMD

(b) If the parameter value di�ers in two or more SMD's

then

1a Find the lowest parameter value (=LowestValue)

1b Create a parameter relation for the parameter:

greater
�

or
�

equal(Par; LowestV alue)

1c Add the created parameter relation to the NewSMD

2a Find the highest parameter value (=HighestValue)

2b Create a parameter relation for the parameter:

smaller
�

or
�

equal(Par;HighestV alue)

2c add the created parameter relation to the NewSMD

3a Remove the parameter value in each of the partial behaviour models in the

NewSMD

6. For each from
�

relation in each SMD in the Set of irrelevant SMD's, rewrite this

relation as a from
�

relation for the NewSMD.

7. For each to
�

relation in each SMD in the Set of irrelevant SMD's, rewrite this relation

as a to
�

relation for the NewSMD.

7.7 Concluding Remarks

In this chapter we have described a framework for knowledge level reection. Based on

this, we gave a classi�cation of reective behaviour and investigated a knowledge level

theory of reection. In particular, we analysed how the notion of knowledge conicts can

be used as a means for reasoning about the competence assessment and improvement of

knowledge based systems. It turned out that impasses in the problem solving process

193

of object problem solvers can be identi�ed and described with one of the three basic

knowledge conicts. In addition we discussed how remedies can be used to aid competence

improvement.

Although some typical examples have been tried out in experiments (cf. [5]), further

research is needed for realising the presented ideas in an implemented reective problem

solver.

194

