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Chapter 4

Qualitative Prediction of

Behaviour

This chapter describes an integrated conceptual framework for qualitative prediction of

behaviour (cf. [20; 15; 17]). In order to clarify the boundaries between prediction and other

related tasks, such as modelling, the �rst section classi�es the tasks relevant to behaviour

prediction according to the criteria proposed by the theory discussed in the previous

chapter. Having set these boundaries the description of the four layer model for qualitative

prediction of behaviour is presented. In particular, the discussion of the framework focuses

on an extended world view for representing partial behaviour models, the representation of

parameter speci�c quantity spaces, an integrated set of parameter relations with additional

functionality for causal value correspondence, and a transformation step between states of

behaviour that encorporates an explicit selection and ordering of possible terminations.

Having described the problem solving roles (meta classes) in detail, the canonical

inferences, from a conceptual point of view, turn out to be relatively straightforward.

However, realising their problem solving potential in a computer program is a complex

matter. The algorithms developed for that purpose are discussed in the next chapter

which describes the design and implementation of the conceptual model.

4.1 Three Basic Tasks

The theory of problem solving, described in the previous chapter, proposes a number of

criteria for distinguishing between problem solving tasks. Tasks can be classi�ed according

to the goal they realise, the input they require, and the output they produce. In addition,

we take into account which tasks can be carried out independently from other tasks by

a single agent. Together these criteria lead to three global tasks that are relevant for

qualitative prediction of behaviour: modelling, prediction, and interpretation.

4.1.1 The Modelling Task

Modelling refers to all the work that must be done by a knowledge engineer in order

to provide a qualitative inference engine with a model of some real-world system that it

can use for behaviour prediction. Realising the goal of the modelling task requires the

following two outputs to be produced:
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� a framework that speci�es the knowledge representation and the related reasoning

techniques that the qualitative reasoner may use, and

� a description of the real-world system, that is going to be the object of the behaviour

prediction, in the language de�ned by the framework.

Developing a prediction model necessarily starts with formulating the overall framework

for representing the knowledge relevant to the prediction task. During this generic mod-

elling step decisions have to be made concerning the knowledge representations and the

corresponding reasoning techniques that will constitute the speci�c approach to qualita-

tive reasoning. Modelling systems from the real-world into the framework can be further

divided into:

� modelling the general knowledge about the physical world, and

� representing the speci�c system that is the object of behaviour prediction.

General knowledge about the physical world is usually related to certain domains, such as

thermodynamics or mechanics. The purpose of the domain modelling is to represent the

general knowledge relevant to such a domain. The case modelling concerns representing

the speci�c system that is input for the prediction task. The three modelling tasks are

depicted in �gure 4.1.
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Figure 4.1: Modelling activities related to qualitative reasoning

The output of generic modelling together with the domain modelling is what Steels

(cf. [123]) de�nes as the domain model, that is a model built of some part of the real-world

that encompasses a certain view on that world.

There is a tradeo� between case and domain modelling in the sense that the complex-

ity of the case modelling depends on how much general knowledge has been represented

during the domain modelling. In the component and process centred approaches a library

is used to store the general domain knowledge that can be applied to partial descriptions

of systems relevant within that domain. The assumption behind this technique is that a

su�cient amount of domain modelling will simplify the complexity of the case modelling

to only providing the qualitative inference engine with a description of the physical objects

and their structural relations (=structural description). The qualitative inference engine

will then derive all the knowledge needed for behaviour prediction from the domain knowl-

edge library. This technique, which has been de�ned as `deriving behaviour of a device
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from a description of its physical structure', must deal with the problem that a single

structure may manifest di�erent behaviours depending on the speci�c context in which it

is situated. The predicted behaviour should only capture those behaviours that are rele-

vant to that context. Reasoning about the behaviour of a refrigerator, for example, focuses

on di�erent properties depending on whether we want to understand the substance-
ow

of the refrigerant, or whether we want to understand how the heat-exchange between the

refrigerator and its environment, e�ects this environment (cf. [61]).

An interesting enhancement in this respect is the composite modelling proposed by

Forbus [67; 68]. This technique generates a behaviour prediction that is speci�c for an-

swering a certain question about the behaviour of a system. Instead of using all the

knowledge that is in principle available (as a result of the domain modelling), the quali-

tative inference engine only considers those parts of the knowledge that are relevant for

answering the question. The question focuses the search for possible behaviours.

However, the problem is a fundamental one: it is not possible to anticipate all be-

haviours that any structure may manifest at any point in time. Therefore the library of

domain knowledge will never be complete. To cope with this problem we could abandon

the notion of modelling general knowledge in a library all together and model all the

knowledge needed for a certain behaviour prediction in the input system. This basically

matches the constraint centred approach where all the knowledge must be presented in

the input system. From our point of view this is an undesired solution to the problem, for

two reasons:

� There exists general knowledge which can be applied for a whole range of predic-

tion problems. Not representing this knowledge unnecessarily introduces redundant

modelling for new problems.

� Representing general domain knowledge provides support for how new problems can

be formulated and solved. Not representing this general knowledge also means that

this support cannot be given.

Modelling is one of the major problems in arti�cial intelligence. An approach that

provides some guidelines for supporting the modelling process should be favoured above

one that gives no support at all. In our framework we therefore use a library that represents

the general knowledge about the entities and processes in the physical domain. However,

additional knowledge, relevant to the behaviour prediction, can be modelled in the input

system. The notion of input system is further discussed in section 4.2.1.13.

4.1.2 The Prediction Task

Prediction of behaviour is the central problem solving task in qualitative reasoning. Given

a partial description of some aspect of the real-world, the goal is to identify qualitative

distinct states of behaviour that the system can reach in the course of time, given the

constraints and laws that govern behaviour in the physical world. The most general

model for qualitative reasoning about the physical world consists of two main reasoning

steps. The �rst step takes as input a partial description of some situation and produces

as output a full description of the physical system in terms of qualitative properties. This

step is similar to the traditional form of solving physics problems where we are given a
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partial description of some situation in the physical world and where the solution consists

of determining one or more values of state variables (cf. [32; 105]). The second reasoning

step determines possible transitions from the computed state to other states that the

system may have. This step constructs the envisionment of the behaviour of the system

in time. Figure 4.2 shows the inference structure of this reasoning process.

Partial state
description

(input system)

Full state
description

Partial state
description (next

input system)
Specify Transform

Framework
for qualitative

reasoning

Figure 4.2: Global inference structure for behaviour analysis

Control of the inference steps can take several forms. Given a partial description of

a system it is possible to generate all instances of states that are consistent with that

input description. Alternatively, one can choose to generate a most plausible full state

description and only consider other states when necessary.

This model of qualitative reasoning not only captures the various approaches to qual-

itative reasoning, but also models reasoning about behaviour of systems based on explicit

causal models. For example, if one wants to predict the development of an illness of a

patient over time, the �rst step is to establish a full account of the current state of the

patient in terms of the causes of the illness and its progression. Subsequently, possible

transitions to new qualitative states of behaviour are determined on the basis of the causal

network. Qualitative reasoning can be viewed as a speci�c case of reasoning about states

and state transitions in complex physical systems. The prediction task is further discussed

in section 4.2.

4.1.3 The Interpretation Task

The interpretation task refers to the work that needs to be done by some agent, after the

prediction task is completed, in order to analyse the output of the qualitative inference

engine and classify the produced output in terms of behaviour classes. Typically, this

agent should identify forms of recursive behaviour, such as oscillation, and point out

paths of causal behaviour propagation. More generally it should classify the output of a

qualitative inference engine in terms of the requirements set by another problem solver

(see also �gure 4.3). Take for example, a diagnostic inference engine that has to �nd

the causes that explain the malfunctioning of a device. The malfunctioning is observed

by comparing the parameter values of the real-world system with those predicted on the

basis of a model of that system [59]. Given a discrepancy between the predicted and the

observed values it is the task of the diagnoser to identify the physical objects that produced

this discrepancy. In order to establish such a diagnosis, the diagnostic inference engine

needs a causal account in terms of which elements from the system contribute to each

of the parameter values. Instead of directly presenting the states of behaviour produced

76



Real-world

Generic
modelling

Generic
modelling

Domain models Input system

Framework
for qualitative

reasoning

Framework
for task

X

Qualitative
prediction of
Behaviour

Behaviour
description

Task X
Output
task X

Domain models Input system

Interpretation
task

(Additional)
input for
Task X

Figure 4.3: Visualising the interpretation task

by the qualitative inference engine to the diagnoser, the interpretation task modi�es the

output of the qualitative inference engine such that for each parameter value it is known

which element from the system contributed to that value.

There is an interaction between the framework used for prediction and the interpreta-

tions that can be derived from the output (cf. [21]). If, for example, the physical objects

are not represented explicitly in the prediction model, then it is impossible to provide the

causal account discussed above.

Special attention in this respect has been given to producing causal interpretations of

the behaviour predicted by a qualitative inference engine. The process centred approach

uses indirect and direct causal dependencies for deriving the behaviour of some system.

A causal account of the predicted behaviour is therefore a relatively straightforward trace

of the in
uences and the proportionality relations that were used. The dependencies

between parameter values in the component centred approach are not directed. Moreover,

a generate and test method is used for deriving new values when the con
uences are

underspeci�ed and are not capable of inferring the next value (see also section 2.2.1.6).

The problem is that there is no knowledge present in the con
uences for determining which

value to focus on. Therefore, a causal account of the produced behaviour is not available.

Solutions, such as, mythical causality [57] and causal ordering [87; 58; 88] have been

proposed to provide causal explanations for this reasoning technique. Mythical causality

uses heuristics for guiding the generation of new values. The causal knowledge is cap-

tured in these heuristics. Causal ordering tries to generate a dependency tree of values

and constraints such that each subset is a necessary requirement for its super set (=self

contained). The subset can be regarded as a precondition for the values derived in the
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superset and therefore the superset values are `caused-by' the subset.

Recently, the use of bond-graphs has been proposed as a further enhancement for

generating causal interpretations [131; 132]. This technique di�ers from the above two in

that it uses knowledge about physics as a guideline for building models. The physical laws

represented in the bond-graphs provide speci�c constraints about how the physical world

must be modelled. A speci�c set of physical mechanisms is used for modelling physical

behaviour and applied to abstractions of the physical world. As a result the approach

does not derive behaviour directly from the physical structure. In comparison with causal

ordering, the causal interpretations that can be derived from bond-graphs provide more

information.

Additional aspects of the interpretation task will be discussed in chapter 7.

4.2 Conceptual Model for Prediction of Behaviour

This section describes an integrated conceptual framework for qualitative prediction of

behaviour, based on the three original approaches to qualitative reasoning (section 2.2).

The theory of problem solving de�ned by the KADS methodology (section 3.1) provides

a framework that distinguishes between domain, inference, task and strategic knowledge.

This four layer knowledge typing, together with the modelling primitives provided at each

layer, is used as a method for integration. In addition it provides the basis for pointing

out similarities and di�erences between the approaches.

The description of the conceptual model starts with the roles that the domain knowl-

edge plays in the reasoning process. We then move on by describing the canonical infer-

ences that can be made on the basis of these knowledge roles. The control of the inference

process, in terms of task and strategic knowledge, is described in the third section.

4.2.1 Meta Classes: Roles Played by the Domain Knowledge

The approaches to qualitative reasoning provide di�erent sets of ontological primitives

for modelling domain speci�c knowledge. Typical examples are: components, qualitative

states, views, processes, in
uences, and qualitative di�erential equations. Each modelling

primitive is used by the qualitative inference engine in a certain way. This use represents

the role that the modelling primitive plays in the reasoning process.

It is unclear how the modelling primitives of the di�erent approaches compare with

each other. In particular, the role of the domain knowledge is often not separated from

the modelling primitive used to represent that knowledge. KADS tackles this problem by

explicitly distinguishing knowledge representation at the domain layer from a description

of how this knowledge is used by the inference layer. In the following section we will

investigate which knowledge roles are relevant to qualitative prediction of behaviour (an

overview of all the knowledge roles can be found in table 4.10). In particular, we will focus

on:

� how the physical world is represented (system elements),

� what is considered as behaviour (parameters, values and relations), and
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� how knowledge about behaviour is represented (partial behaviour models, system

model descriptions and transformation rules)

In addition, we will discuss to what extent each approach to qualitative reasoning uses

these knowledge roles.

4.2.1.1 System Elements

An essential step in qualitative reasoning is to determine

� how objects from the real-world are represented in the prediction model, and

� how these representations are applied to guide the behaviour analysis.

The domain knowledge that is used for this purpose performs the role of system elements.

The representation of the physical reality can provide an important focus for modelling

the real-world behaviour. Two types of abstraction have been proposed:

� modelling the physical world as components connected by conduits, and

� modelling the physical world as physical objects that interact via processes.

Each of these abstractions provides speci�c guidelines according to which the real-world

must be modelled. These guidelines can in addition be used as handles for developing

general purpose libraries. As soon as a model has been constructed of the behaviour of a

certain abstraction from the physical world (system element), this behaviour model can

be stored in a library and used again in new situations. Both the library of component

models and the library of views and processes are based on this principle. A disadvantage

of using a speci�c world view is that the reasoning capabilities are necessarily limited to

the primitives de�ned by the abstraction. A component model, for example, excludes

reasoning about processes. The constraint centred approach has no commitment to a

speci�c abstraction of the physical world.

As mentioned before, modelling is one of the major problems in arti�cial intelligence

and a world view that provides modelling guidelines is important. However, as discussed

in sections 2.3.1 and 2.3.2, the world views underlying the component and process centred

approaches are limited and, depending on the kind of behaviour that has to be analysed,

may turn out to be problematic. We present an alternative abstraction from the physical

reality that overcomes these shortcomings. Similar to the component and process centred

approaches we represent knowledge about real-world entities in small units (partial models)

which must be aggregated into larger models for understanding the behaviour of the system

as a whole. In addition, our world view is based the following requirements:

� It is essential to use both component and process oriented abstractions in a single

prediction model.

� System elements in the prediction model may be functional abstractions of the phys-

ical reality and as such do not have to map directly onto physical objects.

� The no-function-in-structure principle applies to behaviour models of single system

elements. Behaviour models de�ned for aggregates may refer to the behaviour de-

�ned in the models for single system elements that constitute the aggregate.
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The types of (partial) behaviour models that can be constructed on the basis of this world

view are discussed further in section 4.2.1.6. Below we describe the three types of system

elements (see table 4.1) that are needed for representing this integrated and extended

world view.

System element facets Description of problem solving role

Generic concept A hierarchy of generic descriptions used to focus the rea-

soning on certain entities of the real-world.

Instances Instances of concepts from the hierarchy used for speci-

fying the real-world objects that the qualitative inference

engine reasons about.

Relations Relations between instances of concepts used for for spec-

ifying the structural dependencies that exist between the

real-world objects.

Table 4.1: Three types of system elements

A hierarchy of generic concepts, as for example depicted in �gure 4.4, provides the

qualitative inference engine with a description of the entities that are believed to be present

in the real-world. A system that is the object of behaviour prediction consists of a subset
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Figure 4.4: A simple hierarchy of generic concepts

of the entities de�ned in the hierarchy. The hierarchy gives information about which

behaviour models have to be considered for behaviour prediction. If, for example, the

system that is reasoned about consists of liquid then the qualitative inference engine may

look for knowledge about substances and heat-exchangeable-objects. Components are just

another group of elements in the hierarchy. Notice that system elements may also refer to

functional abstractions, such as heat-exchangeable-objects and heat-paths.
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Instances refer to the speci�c entities that constitute the system that is the object of

behaviour prediction. Instances are always related to elements in the hierarchy. They

specify which elements must be used for assembling the partial behaviour models in order

to understand the overall behaviour of the system.

Relations are used for modelling structural dependencies between system elements, for

example: a container containing liquid or two heat-exchangeable objects having a heat-

path connection.1 We do not distinguish between generic relations and instances thereof.

Relations are always `instances' and speci�c for certain instantiated system elements.

4.2.1.2 Parameters

Qualitative prediction of behaviour is particularly concerned with reasoning about the

properties of the physical world that gradually change over time. The domain knowledge

that represents this class of properties plays the role of parameters. Table 4.2 shows which

aspects are relevant for modelling the role of parameters. It is important to distinguish

Parameter facets Description of problem solving role

Generic name A generic name of the parameter referring to a physical quan-

tity. For example: temperature, volume and heat.

System element A reference to the system element whose property is described

by the parameter.

Instance name A unique name for the parameter.

Type Refers to the kind of values a parameter can have. The type

can be discrete, qualitative or quantitative.

Quantity space The values that a parameter can have.

Table 4.2: Modelling the role of parameters

between a parameter and its value, because the possible values that a parameter can have

di�er depending on the type of the parameter.

4.2.1.3 Parameter Values

The role of parameter values is to represent the speci�c value a parameter has. As men-

tioned before, the kind of values that a parameter can have depend on the type of a

parameter. The parameter types represent di�erent views on how parameters re
ect the

properties of system elements in time. They can be de�ned as follows:

Quantitative This type refers to describing the value of a parameter in real time, i.e.

at each moment in time the value of a parameter can be described with a quantita-

tive measure. Di�erential equations can be used for reasoning about the change of

parameter values in time. Traditional physics uses quantitative parameter values.

Qualitative This is how parameter values are usually described in qualitative reasoning.

The quantitative values of a parameter are abstracted into a set of ordered intervals.

1Relations should not be confused with parameters which describe properties of system elements that

continuously change over time. These are discussed in section 4.2.1.2.
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This abstraction corresponds to an abstraction of real time into adjacent intervals.

At each time interval the parameter has a value from this ordered set of intervals.

In addition, the derivative of the parameter represents how the quantitative value of

the parameter changes in real time (decreasing, steady and increasing). For example

the value of parameter volume is plus and increases (see �gure 4.5).

50

plus

derivative

quantitative value

qaulitative value

(increases)

Figure 4.5: Parameter values

Discrete The granularity in representing time for this parameter type is such that the

value of a parameter changes immediately at a certain point in time. In other words,

the parameter does not change continuously, but jumps from one value to another

as the system changes its behaviour. The exact quantitative value may be known,

but the value may also refer to some set of discrete intervals. A typical example is

a switch whose parameter status can have the values on and o�.

Given this classi�cation of parameter types the knowledge required for modelling param-

eter values can be de�ned as shown in table 4.3.

Parameter value facets Description of problem solving role

Parameter reference A reference specifying to which parameter the value be-

longs. This is the instance name of the parameter.

Quantitative value The quantitative value a parameter has.

Qualitative value The qualitative value a parameter has. The actual quan-

titative value is somewhere on this interval (or point).

Derivative The derivative represents how the quantitative value

changes over time. As mentioned before, it can be ei-

ther increasing (plus), steady (zero) or decreasing (min).

Table 4.3: Modelling the role of parameters values

4.2.1.4 Quantity Spaces

The notion of quantity space was introduced by the process centred approach as a lattice

of partially ordered parameter values (see �gure 2.10). The de�nition used by Forbus

states that quantity spaces specify two aspects:

� the values that a parameter can have, and

� how these values are related to values of other parameters.

For the purpose of integration it is relevant to separate these two di�erent types of knowl-

edge and their roles in the problem solving. We therefore rede�ne the term quantity space

82



to refer to the domain knowledge that performs the role of representing an ordered set of

parameter values that a speci�c parameter can have. Relating parameter values of di�erent

parameters is the role of parameter relations and will be discussed in section 4.2.1.5.

A crucial point in qualitative reasoning is to determine how the quantitative values of

a parameter should be abstracted into a set of qualitative values. Two issues have to be

considered here:

� what will be the underlying representation for a quantity space, and

� how can the quantitative values of a speci�c parameter be abstracted into this rep-

resentation.

As mentioned before, the formalism used for representing quantity spaces strongly interacts

with the representation of time. Both in the component and process centred approach

time is represented as intervals (lasting a certain amount of real time) during which the

behaviour of the system is constant, i.e. does not change its qualitative state of behaviour.

This means that real time is abstracted into intervals during which the quantitative value

of each parameter stays within the boundaries of the current qualitative value. Each

change of qualitative value, because the quantitative value crossed the borderline of the

qualitative interval, introduces a new time interval.

The qualitative values of a parameter are divided into intervals and points, for both

the component and the process centred approach. In particular, they are represented

as a sequence of alternating points and intervals. A parameter can therefore, during

a certain period of time (of constant qualitative behaviour), have either a point or an

interval as its value. The intuitive understanding behind this approach is illustrated in

�gure 4.6 for the parameter temperature as it is used to described the characteristics of

a substance. All the quantitative values a substance temperature can have, are divided

Absolute
nil

point

Freeze/
melt
point

Boil/
condense

point

Infinite
  plus
  (∞+)

Solid Liquid Gas

Solid & Liquid Liquid & Gas

Figure 4.6: The quantity space for the temperature of a substance

into six qualitative values, consisting of three intervals and three points. Each value

resembles a characteristic period of constant qualitative behaviour for the substance. If,

for example, the temperature has a quantitative value somewhere between freezing point

and boiling point and this value increases, then the substance shows constant qualitative

behaviour, until it reaches its boiling point, namely `being a liquid'. As soon as it reaches

this boiling point, the substance arrives at a new time interval in which it again shows

constant qualitative behaviour, namely boiling.

Using temperature as an example automatically introduces the issue of how the quan-

titative values of a speci�c parameter can be abstracted into a sequence of alternating

points and intervals. For the temperature of a substance this seems obvious, because

the material that is described by the parameter changes considerably (solid, liquid, gas
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or mixtures) depending on the value of the temperature. However, there are no general

guidelines that can be applied to support the abstraction step. Consider for example the

temperature of the environment (the earth as a whole) that surrounds a refrigerator. The

heat exchange between the refrigerator and this environment may cause the temperature

of the environment to increase, but compared with the behaviour of the refrigerant this

increase in temperature negligible. The temperature of the environment can therefore

be abstracted into a single interval without using freezing point and boiling point, be-

cause this distinction is irrelevant with respect to the behaviour that is being analysed.

If however the refrigerator is placed in an environment consisting of frozen water, then

the quantity space of a single interval will be insu�cient. Forbus [70] refers to this as

the relevance principle: the distinctions made by a quantisation must be relevant to the

reasoning being performed.

The notion of quantity space as rede�ned above, not only generalises the use of param-

eter values in the process and component centred approaches, but also incorporates the

notion of landmarks used in the constraint centred approach. Each approach represents

the values that a speci�c parameter can have as an ordered set of alternating points and

intervals. Kuipers slightly di�ers in his implementation in the sense that he only assigns

names to points (landmarks) (lj) and represents intervals as values in between two points

(lj ; lj+1). There seems to be a conceptual di�erence with respect to how the constraint

centred approach represents time. Kuipers using the notion of time-points: the behaviour

of a system can either be at a certain time-point or in between two time points. Although,

each parameter can have both point or interval values at a time-point or in between two

time-points, it can only change:

� from having a landmark value to having a value in between two landmarks, while

going from a time-point to in between two time-points, and

� from having a value in between two landmarks to having a landmark value, while

going from in between two time-points to a time-point.

Thus, it is not possible for one parameter to go from a point to an interval while at the

same time another parameter goes from an interval to a point. The reason behind this

is that the constraint centred approach requires that all points for which the qualitative

behaviour is going to change, are de�ned in the quantity space. Therefore if one parameter

is going to reach a point, the other parameter necessarily also has to reach a point (or

keep its current value). This requirement also explains the need for generation of new

landmarks. It is very likely that not all relevant points are modelled in the quantity space

of each parameter. Generation of new landmarks allows the creation of these additional

points when the overall behaviour of the system requires it.

In our framework we do not represent this requirement explicitly, although it could

be imposed upon the transformation inference by including additional precedence rules

(section 4.2.1.14). However, there is no need for such a constraint because the inequalities

between parameters allow states of behaviour to be reached that were not anticipated in

the quantity spaces of the parameters.

The integrated de�nition of quantity spaces points out a more detailed understanding

of the ordering between parameter values. For a single parameter the values are always

completely ordered and initially unrelated to values of another parameter. Using parame-
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ter relations, in particular those concerned with inequalities, allows representing a partial

or complete order between the values of di�erent parameters.

An additional advantage of making quantity spaces speci�c for a certain parameter

and not for the system as a whole, is that parameter values can be de�ned independently

from a certain context. We can use the characteristics of the parameters themselves for

de�ning (default) quantity spaces. The values of an amount-of liquid for example, are

always de�ned by the quantity space zero-plus, meaning that there is no liquid, or some

liquid, respectively. The parameter height only exists when the liquid is being contained

by a container of some sort and as such is speci�c for a certain kind of con�guration. Its

quantity space is always de�ned by zero-plus-maximum, referring to the height being zero,

positive, or having its maximum value. This is true for both open and closed containers.

However, this does not necessarily mean that the quantity space of the parameter amount-

of has to change to zero-plus-maximum (although we may do so!). Instead we allow the

parameters to reach a certain (quantitative) value in an (qualitative) interval (plus) and

become steady. In this case the amount of liquid becomes qualitatively equal to the

maximum height of the container and becomes steady (derivative becomes zero), but still

keeps the interval value plus. This approach makes the generation of new landmarks

(points in a quantity space), super
uous. All the landmarks a parameter can reach are

de�ned in its own quantity space. New landmarks (as in the constraint centred approach)

always represent interactions between parameters. Instead of arbitrarily introducing new

landmarks when the parameter has an interval value and does not change (derivative

equals zero), we use inequality relations to explicitly model relevant relations between

parameters.

Summarising, a parameter in our approach can have an interval as value and be steady,

because it becomes `equal' to another parameter which has a point as value and does not

change. This is typically what may happen in the U-tube example. The height of the

liquid column in one container becomes equal to the column height in the other container

(=parameter relation) and thereby the system reaches equilibrium (derivatives become

steady), but the values of both parameters remain in the interval plus. It is not necessary

to create new landmarks for those heights.

It is important to realise that a point value always corresponds to a speci�c quantitative

value (even though the precise value may be unknown). This in contrast to interval values

which correspond to a whole range of quantitative values. This has speci�c e�ects for

reasoning about inequalities as discussed in the next section. Usually, the qualitative

point value zero is regarded as being equal to the quantitative value zero. We therefore

de�ne the value zero to be equal in all quantity spaces. This means that quantity spaces

are partially related as soon as they use the value zero.2

4.2.1.5 Parameter Relations, Qualitative Calculi and Mathematical Models

Parameter relations represent the dependencies between the properties of system elements.

In other words, they specify the constraints that hold between parameters of system

elements. The qualitative calculus de�nes the semantics of a relation, i.e. expresses how

the relation must be used. The parameter relations that are true in a certain state of

2In GARP fmin, zero, plusg is used as the default quantity space (see also chapter 5).

85



behaviour represent the mathematical model of the behaviour of some system in the real-

world.

Each approach has its own particular set of parameter relations, with its own partic-

ular semantics. The component and the constraint centred approach both use di�erent

qualitative relations derived from traditional mathematical equations. The process cen-

tred approach focuses more on directed relations such as in
uences and proportionality

relations. In this section we propose an integrated set of parameter relations, based on

the following requirements:

� Both directed and undirected relations are needed. As pointed out in section 2.3.1.3,

only using undirected relations (such as con
uences) unnecessarily neglects the causal

knowledge that is sometimes available. On the other hand, only using directed

relations can also be troublesome, because the causal dependencies in the domain

may not be known (see section 2.3.2.3).

� The expressiveness of the resulting set of relations must be such that the relations

used by each of the old approaches can be represented.

� Additional expressiveness is required for representing dependencies between quantity

spaces and modelling causal relations between corresponding parameter values.

The di�erent ways in which a parameter relation can be applied in our framework are

summarised in table 4.4 and further discussed in the following paragraphs.

Quantity space Parameter Derivative

Quantity space [-1-] [-2-] [-4-]

Parameter [-3-] [-5-]

Derivative [-6-]

Table 4.4: Di�erent ways of using parameter relations

[-1-] Relations between quantity spaces

In our framework each quantity space is speci�c for a parameter. This implies that values,

apart from zero, from di�erent quantity spaces are unrelated. If we want to provide

the qualitative inference engine with more information about how values from di�erent

quantity spaces are related, additional parameter relations between quantity spaces must

be speci�ed. Take for example the height of each liquid column in the U-tube problem. For

both heights the quantity space zero-plus-maximum can be used. Because zero appears in

both quantity spaces it is known that both the value plus and maximum of each column

are greater than zero, but there is no information concerning the relation between the

maximum values of both heights. It cannot be derived whether these maximum values are

equal or not (see also �gure 4.7). This may lead to ambiguity in the behaviour prediction.

The inequality relations given in table 4.5 can be used for de�ning additional dependencies

between the points from di�erent quantity spaces.

There is no need to specify inequality between intervals from di�erent quantity spaces,

because their ordering is de�ned by the combination of (1) the order of values within

each speci�c quantity space, and (2) the inequality de�ned between points from di�erent
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Figure 4.7: Relating points in quantity spaces

equal

greater-than

greater-than or equal

less-than

less-than or equal

Table 4.5: Standard inequality relations

quantity spaces. In the example of the connected tanks, we can derive that value plus in

one quantity space is less than the value maximum in the other quantity space after the

values maximum have been de�ned equal.

Relations between quantity spaces di�er from relations between parameters (see [-3-])

in the sense that they do not specify what value a certain parameter must have in relation

to the value of another parameter. They only specify inequality relations between quantity

spaces.

[-2-] Relations between parameters and quantity spaces

The inequality relations (table 4.5) can also be used for relating the value of a parameter

to its quantity space. Specifying such a relation does not necessarily imply that the

parameter gets a speci�c qualitative value from its quantity space. It is, for example,

possible to specify that the value of a parameter is greater-than (or less-than) a certain

point in the quantity space, which means that there may still be a number of qualitative

values that the parameter can have. If in the U-tube example we de�ne that the value of

the height parameter is greater-than zero, then we know that its current value is either

plus or maximum.3 If on the other hand the parameter is de�ned as being equal to a

certain point in its quantity space, then the parameter has this speci�c value.

[-3-] Relations between parameters

Relations between parameters di�er from relations between quantity spaces and relations

between parameters and quantity spaces, because they represent behavioural constraints

that one parameter imposes on another parameter. Relations between parameters must

therefore be divided into directed and undirected relations, modelling causal relationships

and non-causal relationships respectively. One way of de�ning undirected relations is to

use the inequality relations. The values of two parameters can be: equal, greater-than,

greater-than or equal, less-than, or less-than or equal.

Reasoning with inequality relations between parameters is complex and sometimes

3In order to give the parameter the (interval) value plus, we have to make the parameter greater-than

zero and less-than maximum.
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confusing. If, for example, two parameters have the `same' interval as value this does not

necessarily imply that they are equal. If the two heights in the U-tube system both have

the value plus, they seem to have the `same' value, but in fact each plus value belongs

to a di�erent instantiated version of the zero-plus-maximum quantity space. For the two

quantity spaces only the value zero is related (see �gure 4.7). In other words the parameter

values are not equal. Adding an equal relation between the values maximum from the two

quantity spaces does not solve the issue, but does specify that the values of the parameters

are now the same qualitative interval (the upper and lower boundary of the intervals are

equal). However, this does not imply that the parameters are now equal. The reason

for this is that the actual quantitative value (somewhere in the interval speci�ed by the

qualitative value) can still be di�erent for the two parameters. Equality in a qualitative

interval must be de�ned explicitly by an equality relation between parameters (or via

equality relations between (1) quantity spaces and (2) quantity spaces and parameters).

The following somewhat counter-intuitive statements are therefore true:

� two parameters can be (quantitatively) equal but still have di�erent qualitative val-

ues (points and/or intervals), and

� two parameters can have the same qualitative value (points and/or intervals) but

still be (quantitatively) unequal.

However, if two parameters both have a point as value and these point values are equal,

then the parameter values and therefore the parameters are equal. Equality between two

interval values can only be derived if:

� both the upper and lower boundary of the intervals are equal, and

� the parameters themselves are equal.

If in the connected tanks system it is known that both heights are equal and that one

height has value plus then we can only derive that the value of the other height is greater-

than zero. If it is also known that the maximum values of the quantity spaces are equal

(so both the lower and the upper boundary of the two plus values are equal), then it can

unambiguously be derived that the value of the second height is also plus (but notice that

the parameters themselves are not necessarily equal).

Because having the same value is not the same as being equal, additional relations

are needed for de�ning `equal' values between parameters. These value correspondence

relations are based on the notion of correspondence as introduced by Forbus [70]. We

have extended this notion resulting in four relations:

� Value correspondence

In general, the relation between two parameters is not known except for speci�c

values that always correspond between the two parameters. In other words the value

of one parameter always goes together with a certain value of the other parameter.

If one of the values (either point or interval) is known the other value (either point

or interval) can immediately be derived. Forbus gives the example of the length of

a spring and the force exerted on the spring. Their values are unrelated except for

the rest-length of the spring which corresponds to the force being zero. There is no

causality between these two corresponding values.
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� Directed value correspondence

We introduce the directed value correspondence. This is a specialised version of the

value correspondence, in the sense that the relation can only be used in one direction.

Only if the value of a speci�c parameter is known (the causing parameter), the value

of the other parameter (the e�ected parameter) can be derived. In real-world systems

a speci�c parameter value often determines the value of another parameter, but the

reverse is not always true. The substance 
ow through a pipe, for example, will be

zero if the 
ow area of the pipe is zero, but if the substance 
ow is zero it does not

necessarily imply that the 
ow area is zero. Absence of a pressure di�erence can also

be the reason why there is no substance 
ow.

� Quantity space correspondence

Another extension of the value correspondence is the quantity space correspondence.

This relation speci�es a value correspondence for all values in the quantity spaces.

The value correspondence speci�es a dependency between two values from two quan-

tity spaces that have been assigned to two di�erent parameters. The quantity space

correspondence extends this notion by representing that for each value in the quan-

tity space of one parameter there is a corresponding value in the quantity space of

the other parameter. An essential precondition for using the quantity space corre-

spondence is that the quantity spaces of the two parameters have an equal number

of alternating points and intervals.

� Directed quantity space correspondence

The directed quantity space correspondence is a further speci�cation of the quantity

space correspondence, in the sense that is directed and that therefore the value of the

e�ected parameter only can be determined when the value of the causing parameter

is known and not the other way around.

Finally, we have the subtraction and addition relations. These can be used to add or

subtract two parameter values or derivatives.

[-4-] Relations between derivatives and the min-zero-plus quantity space

The values that a derivative can have are usually de�ned by the min
�

zero
�

plus quantity

space. The derivative of a parameter can be negative (the parameter value decreases),

zero (the parameter value does not change), or positive (the parameter value increases).

This can respectively be modelled by the following inequality relations: less-than zero,

equal-to zero, and greater-than zero.

[-5-] Relations between parameter values and derivatives

The following set of relations models dependencies between the value of one parameter

and the derivative of another parameter. It can be used to represent how the existence of a

certain parameter (e.g. flow
�

rate) changes the (quantitative) value of another parameter

(e.g. amount
�

of liquid). Again there is a distinction between directed and undirected

relations. Similar to Forbus [70] we de�ne the directed relation as an in
uence (see table

2.8). For determining the e�ect of in
uences it is not su�cient to simply compare the value

of the in
uencing parameter with the derivative of the e�ected parameter. Instead, all the

in
uences e�ecting a parameter have to be summed in order to determine the derivative
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of the e�ected parameter. Adding in
uences should proceed as de�ned in the standard

calculus for addition (see table 2.2).

Kuipers [92; 93] uses the derivative relation in an undirected way. When either the

value or the derivative is known, the other can be derived. In our framework this relation

can be modelled with the implication relation (see also [-7-]).

Also, in QSIM the derivative relation represents a one-to-one relation (two-tuple) be-

tween the interval value and the derivative. If more derivative relations e�ect a particular

parameter, this has to be modelled with the help of the addition constraint.

[-6-] Relations between parameter derivatives

For relating derivates of di�erent parameters the distinction between directed and undi-

rected is again important. For undirected relations between derivatives the inequality

relations as discussed above in [-1-] can be used. However, in most of the systems mod-

elled in our framework we used only the equal relation, representing that two parameters

change in the same way (either decreasing, steady, or increasing).4 By using other in-

equality relations, such as greater-than, it is possible to model order of magnitudes [111]

between derivatives.

The opposite undirected derivative relation (if one parameter increases than another

parameter decreases) can be modelled with the implication relation (see [-7-]).

Similar to Forbus [70] we use proportionality relations to model causality between

derivatives (see table 2.7 for details). Beside the fact that proportionality relations are

directed they also distinguish from equality between derivatives in the sense that they

do not compare the derivative of one parameter with the derivative of another parame-

ter. Instead all the proportionality relations that e�ect a certain parameter have to be

summed according to the qualitative calculus for addition (see table 2.2) and the resulting

qualitative value (often ambiguous) becomes the derivative of the e�ected parameter.

[-7-] The general implication relation

Finally in our framework we distinguish between two types of general implication relations

that can be used to model conditional statements between two relations. All previously

de�ned parameter relations can be used in implication relations. The directed implication

relation speci�es that if the causing relation holds then the implied relation must be true.

The undirected implication relation can be used to specify that if one of the two relations

is true than the other relation must also be true.

4.2.1.6 Partial Behaviour Models

The role of partial models is to represent knowledge about the behaviour of entities from

the real-world in small units (partial behaviour models), which can be assembled into

larger models that represent the behaviour of some real-world system as a whole. The

partial models represent knowledge about physics and the physical world that is relevant

to certain abstractions of that physical world (=system elements). They specify what

features are important for such an abstraction as well as how these features are related

to each other. More speci�cally, they are used to establish a mathematical model that

4Note that the M+ from the constraint centred approach is a combination of both values and derivatives

being equal between two parameters.
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speci�es the behaviour of some system in the real-world.

The constraint centred approach does not use the notion of partial models, but both

the component and process centred approach propose modelling primitives for representing

partial behaviour models: qualitative states, and views and processes. For purposes of

integration the following issues concerning these modelling primitives must be resolved

(these issues are discussed in the following sections):

1. Based on the problem solving roles de�ned in the previous sections, the conceptual

relations between the di�erent modelling primitives must be de�ned.

2. Given this conceptual relation the modelling primitives have to be compared for

similarities and di�erences.

3. We have to decide whether the knowledge that can be presented within these mod-

elling primitives is su�cient for modelling the extended world view that was pre-

sented in section 4.2.1.1.

In order to use partial models the qualitative inference engine must be able to derive

when a particular partial model applies. Partial models are therefore conditional. The

conditions specify what knowledge must be known in order for the partial model to be

applicable. The consequences of a partial model specify the new knowledge that can be

derived and added to the behaviour description of the real-world system when the partial

model is applied. In table 4.6 an example of a partial model is shown that represents a

liquid-
ow process (this description is based on the liquid-
ow process used in the process

centred approach). The knowledge captured in this partial model speci�es that a liquid

IF a contained-liquid L1 exists

and L has pressure P1

and a contained-liquid L2 exists

and L2 has pressure P2

and a 
uid-path between L1 and L2 exists

and P1 is greater-than P2

THEN a liquid-
ow F exists

and F = P1 - P2

and the amount A1 of L1 is negatively in
uenced by F

and the amount A2 of L2 is positively in
uenced by F

Table 4.6: Partial model of the liquid 
ow process


ow is possible between two contained liquids when they are connected by a 
uid path and

the pressure of one contained liquid is greater-than the pressure of the other contained

liquid. The in
uences of this process are a decrease of the amount of liquid with the

highest pressure and an increase in the amount of liquid with the lowest pressure.
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4.2.1.7 Conceptual Relation between Types of Knowledge used in Conditions

As discussed in section 2.3.2 the conditions used in the process centred approach do not

su�ciently separate between type of knowledge and use of knowledge. The individuals in

a process de�nition, for example, not only refer to physical objects that must be present

but sometimes also refer to other processes that must be applicable. Although both

are conditional, they represent di�erent conceptualisations. In particular, for comparison

with other modelling primitives, it is relevant that we distinguish between these di�erent

types of knowledge and separate this from how they are used. In order to realise this

distinction we can use the knowledge roles described in the previous sections. Focusing

on the conditions �rst, the following knowledge types can be identi�ed for the modelling

primitives used in the process centred approach:

Super-type relation A partial model can be a subtype of another partial model. The

subtype inherits the knowledge represented in the super-type (only one super-type

relation, no multiple inheritance).

System elements Each partial model requires certain abstractions from the physical

world (objects/individuals) to be present.5

Parameter relations and values Inequality relations between parameters can be speci-

�ed as conditions. This also implies that the parameters used in the equality relations

have to be de�ned somewhere. How this is done is partly left implicit. Inequality

relations may also refer to speci�c parameter values that must be present. Corre-

spondence relations cannot be used as conditions

Applies-to relation Partial models can require that other partial models are �rst ap-

plied. The relation di�ers from the super-type relation, because the partial model is

not a more speci�c version of the other partial models6 and because multiple models

may be de�ned here.

Conditions for partial models in the component centred approach are less advanced com-

pared with the conditions that may be used for processes and views. Consequently less

knowledge can be modelled in those partial models:

System elements Each partial model refers to a speci�c system element (which is a

component) and describes the behaviour of this single system element.

Parameter relations and values The speci�cations of a qualitative state are simple

inequality relations that must be true in order for the behaviour model to apply.

Although not explicitly represented, the component centred approach claims to be capable

of facilitating a structural decomposition for certain components. However, no additional

behaviour may be de�ned for the overall structure. Also it is not clear how the approach

derives or represents the conduits between the components resulting from a decomposition.

5The notion of preconditions should be interpreted as relations/attributes of system elements.
6It is interesting to see how conceptually di�erent notions may require similar computational techniques.

From a computational point of view both the super-type and applies-to partial models have to be true for
the partial model itself to be applicable, whereas from a conceptual point of view they model completely

di�erent types of knowledge.
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4.2.1.8 Conceptual Relation between Types of Knowledge used in Conse-

quences

Studying the consequences of (applicable) partial models, there is again the problem in the

process centred approach of confusing type of knowledge with use of knowledge. However,

abstracting from this limitation we can identify the following types:

System elements New entities may appear when a certain behaviour model is applicable

(for example gas being generated during boiling).

Parameter relations and values Inequality relations between parameters may be de-

�ned and therefore must hold when the partial model holds. It is also possible to

de�ne new parameters (for example: let generation be a quantity), but the exact

status of this is unclear. Correspondence relations must also be de�ned here.

Proportionality relations may be de�ned in all partial models (relating derivatives),

but a special status is given to in
uences. They may only appear in process de�ni-

tions.

Consequences, similar to conditions, are in the component centred approach less advanced

compared with those used for processes and views:

Parameter relations and values Addition and subtraction relations between parame-

ters and between derivatives (con
uences).

4.2.1.9 Conceptual Similarities between Qualitative States, Views and Pro-

cesses

Comparing the knowledge that can be represented by modelling primitives from the com-

ponent and process centred approaches, it becomes clear that the latter supports a wider

range of possibilities, i.e. more knowledge can be represented. This is true for both the

conditions and the consequences. However, from a conceptual point of view the process

centred approach can be enhanced by introducing more conceptual clarity. It is also in-

teresting to see that, judging from the knowledge that they can represent, views and

component models (qualitative states) are not really di�erent. In particular, from a con-

ceptual point of view, both views and component models represent dependencies between

properties of system elements. We can refer to these as the static dependencies, because

by themselves they do not initiate any changes in the behaviour of the system that they

model. Either processes (in
uences) or additional inputs (parameter increase/decrease)

are required to provide the derivatives of parameters with values.

Of course views do not completely incorporate component models, because the pa-

rameter relations are less restrictive in the component models. Parameter relations in

component models are undirected and as such impose no causal order on the `behaviour'

that is propagated through the parameter relations. However, a distinction must be made

between the kind of knowledge that is represented by a partial model and the degree of

restriction (c.q. causality) that can be imposed on the behaviour. There is no fundamen-

tal reason why the parameter relations used in views and component models cannot be

exchanged. Moreover, as pointed out in section 4.2.1.5, it is essential to use a wider range

of parameter relations than only those proposed by the original approaches. The only
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real di�erence seems to be that component models apply to a speci�c group of system

elements, namely components, but again there is no reason in principle why behaviour of

components cannot be modelled by views.

The similarity between views and qualitative states can be explained by showing the

di�erent partial models that can be de�ned for a substance contained by a closed container.

We can model this as one `component' having �ve qualitative states depending on the value

of the temperature. But we can also model it as a set of views that applies to: substance,

liquid, container, contained-liquid, etc. In both cases we will arrive at �ve qualitatively

distinct states of behaviour depending on the value of the temperature (see �gure 4.8).

T < freezing-point T = freezing-point T > freezing-point
T < boiling-point

T = boiling-point T > boiling-point

State1 State3 State4 State5State2

Figure 4.8: States of behaviour of a contained substance

The contents of views can be brought closer to that of qualitative states (they can

even be made identical) by changing the amount of detail. Fewer views can be de�ned,

by including the features modelled by the more general views (e.g. substance view) as

a part of the more speci�c views (e.g. liquid). Eventually, this will lead to �ve speci�c

views, each one representing a di�erent state of behaviour of the contained-substance as

pictured in �gure 4.8.7 The argument made here is that, apart from implementation details

about how to specify conditions and other such issues, the uses of qualitative states and

views are similar: modelling static features of (sets of) system elements. As a result of the

chosen domain it always appeared as if component models were better suited for modelling

components. But this is a misunderstanding. Components are just as easily modelled by

views (or the other way around). The level of detail is not an inherent characteristic of the

modelling primitives, but a confounding factor introduced by the domain of application.

Of course in some domains, as for example electronics, it is a good heuristic to identify

components (switch, lamp etc.) as the system elements, but this does not change the fact

that they can both be modelled by views or qualitative states.

The real di�erence between the approaches is how they realise the changes in the be-

haviour models. They di�er in how one (or more) derivative(s) can be given an initial

value. In the component centred approach the derivative of a certain parameter is spec-

i�ed as an additional input for the prediction engine. As this derivative is added to the

prediction model from outside, this models the notion of some external agent that enforces

a change upon the system. In the pressure regulator8 example these agents are called sup-

7Instead of reducing the number of views we can also de�ne more qualitative states, in fact one for each

`system element' in the system, and end up with a more detailed description that closely resembles the
initial set of views mentioned above. However, it will be impossible to obey the no function-in-structure

principle.
8One of the best known examples that has been modelled with the component centred approach is the

pressure regulator. The purpose of this device is to ensure a constant pressure at the output, despite a
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ply (input) and load (output) and can be either decreasing, steady, or increasing (see also

�gure 4.9). The changes introduced by these agents propagate through all the parameter

Liquid flowInput Output

Valve (with flow area)

Sensor

Spring

Figure 4.9: The pressure regulator

relations de�ned between derivatives, resulting in a description of a particular state of

behaviour. Next, the transformation inference takes this behaviour as input to �nd out if

the state of behaviour terminates. Among others, this inference imposes constraints (i.e.

parameter relations) on the value of the derivatives in the next state in order to guarantee

a sequence of behaviour descriptions that changes continuously over time.

This technique by itself is not restricted to the component centred approach, but can

also be used in the process centred approach. Namely by �nding all the views that describe

some set of objects, for example of a contained liquid, and specify (as an initial value)

that the temperature increases. The only additional requirement this technique has, is

that the constraint satis�er tries to �nd all the derivatives that match the set of parameter

relations (generate and test). Clearly, as the in
uence relations disappear this also reduces

the amount of causality represented directly in the �nal sequence of behaviour, but that

is a di�erent issue.

The second way to model changes is basically the opposite of the one described above.

It is not based on active manipulations but it is the result of nature's tendency to seek an

equilibrium. These are the type of changes used in the process centred approach. They are

called processes, triggered by inequalities between parameters and in
uence the system

such that a state of equilibrium is likely to be reached. This technique is (again) not

restricted to the process centred approach, but can also be used in the component centred

approach. Instead of specifying the derivatives of the supply and load, we can model an

inequality between the output and the input pressure that triggers a liquid 
ow process

between them, which causes the supply and load to change.

The exchangeability of (1) using either views or qualitative states to model the static

changing load. The device achieves this goal by controlling the substance (material) 
ow from the input

to the output. When the pressure at the output drops it enlarges the 
ow area in order to let more liquid


ow from the input to the output. If, on the other hand, the pressure increases it reduces the 
ow area so

that less liquid can 
ow through. Finally, when the pressure at the output is constant it does not change

the 
ow area.
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features of a system, and (2) introducing a change by either using a process that is triggered

by an inequality or de�ning changes as additional inputs to the prediction engine, must

lead to the conclusion that the distinction between a component centred model versus a

process centred model for qualitative reasoning is not a fundamental one.

There are however two guidelines for developing prediction models that result from

the di�erent use of parameter relations between the two approaches that are worthwhile

taken into account:

� the notion of processes should be favoured over just adding some derivatives to induce

changes, because processes explicitly model which inequality causes the changes, and

� in deciding which parameter relations to use, the most restrictive ones should be

preferred, because they allow a causal interpretation of the produced behaviour

model more easily.

4.2.1.10 Requirements for an Integrated Set of Modelling Primitives

The third question to be addressed concerns the usability of the original modelling primi-

tives for an integrated framework for qualitative prediction of behaviour. Two aspects are

relevant for this question:

� the notion of conceptual clarity (confusing knowledge use with knowledge types),

and

� the amount of knowledge that can be represented by the primitives.

The component models allow only a limited amount of knowledge to be represented and

therefore provide insu�cient 
exibility for modelling the rich behaviour that can be found

in the real-world. They are therefore not well equipped to be the principal modelling

primitives in an integrated framework. However, component models are conceptually

clear and the partial models used in the framework should be such that these types of

partial models can be represented.

The modelling primitives from the process centred approach allow a richer representa-

tion of knowledge and therefore seem to be better candidates for modelling primitives of

an integrated framework. Unfortunately, the conceptual clarity is low and is a drawback

in the utility of these modelling primitives, in particular, with respect to the knowledge

engineer who has to build the prediction models. The modelling primitives of an integrated

framework should not confuse the conceptual notions that have to be represented by a

modelling primitive with how a speci�c implementation of that primitive is realised. More-

over, three additional modelling primitives can be identi�ed which are not distinguished

by the process centred approach. They result from the following questions:

� how can changes be represented that do not originate from inequalities, and

� is it possible (and necessary) to further distinguish between di�erent types of mod-

elling primitives that represent static properties.

There is a hidden notion in the component centred approach with respect to changes that

do not result from inequalities (although the notion as such is not used) namely that some
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changes are forced upon the world by agents. There is, for example, no straightforward

inequality that causes a compressor in a refrigerator to increase the pressure. The com-

pressor is more like an agent that enforces certain changes on the physical world, without

an explicit cause.9

With respect to further distinguishing between modelling primitives for representing

static properties, the solution is relatively simple if we take into account how they apply to

system elements. There are three cases: the modelling primitive describes a single system

element, it describes a combination of system elements, or it decomposes the system

element into its subparts.

4.2.1.11 An Integrated Set of Modelling Primitives

Based on the modelling primitives de�ned by the original approaches and the additional

functionality as described above, we propose the following integrated set of modelling

primitives for representing partial behaviour models:

Static models describe static dependencies between properties of system elements. Both

component models [57] and views [70] fall within this class of partial behaviour

models. Three types can be identi�ed, depending on whether the models are context

dependent or not:

Single description models are context independent, i.e. they obey the no-

function-in-structure principle. They describe (static) properties of one sys-

tem element. For example the properties of a container or the behaviour of a

component.

Composition models are context dependent. They model properties of a con�g-

uration (of or number) of system elements. For instance a contained liquid,

that has three system elements, a container, a liquid and a contain relation be-

tween those two. Usually a composition model requires other single description

models to be active �rst. Given these behaviour descriptions of single system

elements, a composition model adds additional behaviours to the assembly as

a whole. The no-function-in-structure principle is obeyed in the sense that

the behaviour speci�ed for the composition model may not refer to aspects of

system elements outside the assembly.

Decomposition models are modelling primitives that can be used for focusing

on a speci�c system element, i.e. for studying the behaviour of some part of

the system at another level of detail. For example, decomposing a component

into its subparts and reasoning about the behaviour of those subparts. Of

particular importance is the question of how the (input and output) behaviour

of the decomposed system element relates to the behaviour of the subparts.

9Component descriptions are in fact abstractions over a set of processes that are not represented ex-

plicitly in the model [21]. Take for example the compressor of a refrigerator. For understanding the

cooling-behaviour of the refrigerator it is not relevant to know how the compressor works in detail (e.g.
how the piston moves, how its electrical circuit functions, etc). The only relevant aspect of the compressor,

in this case, is that it causes a substance
�

flow from the evaporator to the condensor. A decomposition

model can be used to focus on the compressor and study its behaviour in more detail.
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Process models represent changes in behaviour that happen because a number of sys-

tem elements interact as a result of an inequality between them (with respect to

some quantity). More speci�cally, a process is triggered by an inequality relation

between parameters of these system elements. The descriptions are necessarily con-

text dependent and are similar to the notions of processes in the process centred

approach [70].

Agent models are used to model actors that enforce changes upon a system. These

models are context independent, because they apply to a single system element

(usually a component). An important di�erence between static models and agent

models is that the latter change values of parameters. For example, a compressor,

if it is modelled as a component that causes an increase in the pressure (which is

di�erent from describing the input-output dependencies).10

Next, we have to decide upon the formalism that is needed for representing the partial

behaviour models. Many of the knowledge roles required within such a behaviour model

have already been discussed in the previous sections. In particular, the notions of system

elements, parameters, parameter values and parameter relations as well as the distinction

between conditions and consequences. In addition the di�erent relations between partial

models, such as applies-to and is-supertype-of, have to be taken into account. As a result,

each of the modelling primitives for partial behaviour models must be represented in terms

of the following knowledge representation:

Super type relation The partial model can be a subtype of other partial models (mul-

tiple inheritance). This means that the super behaviour models must be applicable

in order for the subtype to be applicable.

Conditions Each partial model has its own speci�c conditions that must hold before

the knowledge that is speci�ed in the consequences of the model can be used. The

following �ve knowledge types can be conditions:

1. System elements

The abstraction from the physical world to which the partial model applies.

2. Parameters

Properties of system elements used by parameter values and/or relations.

3. Parameter values

Parameter values that must hold.

4. Parameter relations

Relations (constraints) between parameters that must hold.

5. Partial behaviour models

Other partial models that specify certain knowledge about the behaviour of the

real-world system that must be known before the partial model may be used

(=applies-to hierarchy).

10Agent models are related to the notion of exogenous parameters [87] in the sense that an agent model
may represent an exogenous parameter. However, the notion of agent models explicitly refers to a change

being forced upon the system.
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Consequences When a partial model is applicable the consequences specify the addi-

tional knowledge about the behaviour of the real-world system that is derivable.

The following �ve knowledge types can be derived:

1. System elements

For processes it may be the case that new entities in the real-world are created

because of the behaviour of the system (for example: gas when boiling liquid).

2. Parameters

(New) properties that are introduced by the partial model.

3. Parameter values

New values for parameters that hold.

4. Parameter relations

Additional constraints that hold between parameters.

5. Partial behaviour models

(Other) partial models that can be derived.11

The isa hierarchy allows the representation of detailed partial models as subtypes of

more general ones. The general type represents the features that hold for the whole class

whereas the more detailed ones represent features that are speci�c for the subclass. In

contrast with previous approaches we use multiple inheritance which de�nes that each

subtype inherits the features from all its supertypes.

In �gure 4.10 a hierarchy of partial behaviour models for heart diseases is depicted.

The partial behaviour models of this hierarchy are further discussed in section 5.4.2.

The function of the applies-to hierarchy is to de�ne which other partial models have

to be active in order to allow a particular partial model to be active. For example, a

liquid-
ow process (table 4.6) requires two open-contained-liquids to be active before the


ow process itself can be active. Composition models and process models often require

other partial behaviour models to be active.

4.2.1.12 System Model Description

Central to qualitative reasoning is the way in which a system is described during a period of

time in which the behaviour of the system does not change. The notion of change is subtle,

because the actual (real-world) system may change whereas from a qualitative point of

view its behaviour remains constant. During the evaporation of a contained liquid, for

example, the liquid is transformed into a gas and as such the system changes, but from

a qualitative point of view this process is seen as being in a constant state of behaviour,

because none of the qualitative values that describe the system, change. The modelling

primitive that is used for representing a model of the real-world system during a period

of constant behaviour plays the role of system model description.12

11When searching for partial models the qualitative inference engine needs to know which partial models

are applicable. Therefore the partial model itself should be included here as a partial model that is from

now on applicable.
12We deliberately de�ned a new term and did not use the term state, because the latter has connotations

with respect to the situation calculus in which two or more states of equilibrium are related by processes.

This is di�erent from the meaning of a state of behaviour in qualitative reasoning. First, a constant state
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Figure 4.10: A hierarchy of partial behaviour models for heart diseases

Although a system model description should contain all the knowledge relevant to a

certain state of behaviour, there are �ve aspects of special interest. These are used for

referring to domain knowledge that models changeable aspects of the real-world system:

system elements, parameters, parameter values, parameter relations, and partial models.13

If the knowledge referred to by one of these aspects changes, then the system model

description has to change as well, because the current systemmodel description has become

an incompatible model with respect to the changing aspect. In general a new system model

description has to be created if one of the following changes takes place:

� the parameters that describe the behaviour of the system change their interval values,

� the set of inequalities between parameters changes, and

� the set of system elements, describing the structural con�guration of the real-world

system, changes.

Each system model description refers to a speci�c state of behaviour that is manifested

by the real-world system.

System model descriptions di�er between approaches because certain parts of the

knowledge are not explicitly used in the reasoning process. In the constraint centred

approach, for instance, system elements are not part of the system model description.

Although the QSIM constraints refer to a speci�c system in the real-world, the physi-

cal structure of that system is not represented explicitly. In other words, the qualitative

inference engine has no knowledge of the physical structure it reasons about.

of behaviour does not need to be an equilibrium, and second, processes are part of the state of behaviour,
instead of in between two states of behaviour.

13Calculi, for example, do not change when the behaviour of the real-world system changes.
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4.2.1.13 Input System

The input system can be regarded as a speci�c type of system model description. It is

used for representing a partial model of some real-world system. This model is used by

the qualitative inference engine for behaviour prediction. An input system may contain

knowledge about: system elements, parameters, parameter values, parameter relations,

and partial behaviour models.

It is interesting to see how the contents of input systems di�er between approaches.

In the component centred approach the device topology consists only of a number of com-

ponents and conduits between them (system elements). In the process centred approach

a number of physical objects in a certain structure are speci�ed, possibly augmented

with some information concerning inequality relations (parameter relations and/or val-

ues). Finally, in the constraint centred approach the input system consists of constraints

(parameters, relations and values) and landmarks (quantity spaces). The input system

de�ned above can easily model each of these cases.

4.2.1.14 Transformation Rules

Knowledge used for deriving how a certain state of behaviour changes into another state of

behaviour is represented by the original approaches in the form of rules. We will therefore

refer to this knowledge as performing the role of transformation rules.

These sets of rules are 
at, in the sense that they are all of the same type, and are

usually applied as constraints that must hold between states of behaviour. In our approach

we abstract from these speci�c sets and distinguish between three types:

� termination rules

� precedence rules, and

� continuity rules.

Each group of rules refers to a speci�c type of knowledge that is represented and will be

further discussed below.

Termination rules specify the conditions under which a particular state of behaviour

will terminate because the behaviour represented in the system model description is no

longer compatible with the actual behaviour of the real-world system. Termination rules

identify one of the following cases:

� A parameter takes a higher value from its quantity space, because its quantitative

value increased (derivative = plus). For example, the temperature of liquid increases

until it reaches its boiling point.

� A parameter takes a lower value from its quantity space, because its quantitative

value decreased (derivative = min). For example, the temperature of liquid de-

creases until it reaches its freezing point.

� Two parameters which are equal become unequal (greater
�

than or less
�

than) be-

cause they change in opposite (or at least dissimilar) ways.14 For example: two

14In the examples that we modelled there was no need to include the case of two equal parameters
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equal pressures become unequal because one pressure starts increasing and becomes

greater
�

than the other pressure.

� Two unequal (greater
�

than or less
�

than) parameters become equal because they

change towards each other. For example: two unequal pressures become equal be-

cause the lower increases.

Although changes in parameter values and parameter relations are the basis for termi-

nations, other aspects can change as well. For example, the system element `liquid' will

disappear when its amount
�

of becomes zero.

An example of a termination rule is shown in table 4.7. The knowledge in this rule

represents a part of the limit rule [57]. It speci�es that when a parameter has an interval

value in the current state of behaviour and decreases, that it will have the point value

below this interval in the next state of behaviour. In other words, when the quantitative

value of a parameter is somewhere in an interval, decreases, and there is a point below

this interval, then the quantitative value of the parameter will reach this point.

IF a parameter Par has qualitative value V

and Par is decreasing

and Par has quantity space QS

and V is an interval value from QS

and P is the next value in QS below V

THEN in the next state of behaviour SMD

Par has value P

Table 4.7: Termination rule for changing to a point `below'

Having found all possible terminations the precedence rules specify the order in which

changes take place. If, in a particular state of behaviour, more than one termination is

possible then the precedence rules attempt to determine which of these terminations should

be applied �rst. Take for example, two di�erent kinds of liquids in one container. If the

temperature increases then both liquids will reach their boiling temperature, introducing

ambiguity because of two possible terminations. However, if it is known that the boiling

point of one liquid is lower than the boiling point of the other liquid, the ambiguity can

be solved. Only the liquid with the lower boiling point will reach its boiling point in the

next state of behaviour.

It is also possible that two, or more, terminations re
ect aspects of the same change

in behaviour. If, for example, the amount
�

of liquid goes to zero then also its volume

and its pressure will go to zero. Such a similarity can be represented with correspon-

dence relations (both undirected and directed value and quantity space correspondence).

Parameters which are subject to termination and that have a correspondence relation,

should therefore be merged into one termination. This is shown in table 4.8.

becoming di�erent because they behave with di�erent magnitudes in the same direction, but such a rule

could be included.

102



IF a parameter Par1 terminates to interval value V1 below

and a parameter Par2 terminates to interval value V2 below

and Par1 and Par2 have a correspondence relation for V1 and V2

THEN consider the two terminations as one termination (merge)

Table 4.8: Precedence rule for merging corresponding terminations

Finally, continuity rules specify additional conditions that must be satis�ed by the new

state of behaviour in order to be a valid successor state of behaviour. In particular, they

deal with those aspects present in the current state of behaviour that are not part of a

termination. All these aspects should stay constant between the old and the new state of

behaviour. An example is shown in table 4.9 which speci�es that the qualitative value of

a parameter has to be the same in the next state of behaviour, but that the derivative

may change from decreasing in the current state, to decreasing or steady in the next state

of behaviour.

IF a parameter Par has qualitative value V

and Par is decreasing

THEN in the next state of behaviour SMD

Par has qualitative value V

and Par may either decrease or stay constant

Table 4.9: Continuity rule for parameter values

It is interesting to see, that the I- and P-transitions from the constraint centred ap-

proach are implicit combinations of termination and transition rules. Applying the I- and

P-transitions incorporates a kind of catch-all procedure that tries out all possible trans-

formations between two states. The constraint centred approach does not have explicit

relations between parameters and therefore it cannot take the available knowledge about

parameter relations into account.

A relevant feature of applying the rules as described above is that the transformation

between two states of behaviour is not found by satisfying constraints, but by a directed

search which provides a causal account of why a state terminated, how this termination was

ordered with respect to other terminations and how this is used, together with continuity

rules, for deriving the next state of behaviour.

It is important to notice that the examples given above can all be realised with knowl-

edge that is domain independent. However, in some cases it may be worthwhile to add

domain speci�c knowledge in the rule used. For example, the parameter heat is unlikely

to go to zero in the real-world and therefore the termination for that parameter can be

removed. However, in most cases it is possible to solve the problem without using do-
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main dependent knowledge. In the case of the parameter heat, the termination will not

be applied if the parameter is assigned to a quantity space that has only one, positive,

interval.

4.2.1.15 Behaviour Descriptions

The behaviour description is a graph of possible system model descriptions (states of

behaviour), with for each description speci�ed:

� its internal behaviour (in terms of system elements, parameters, parameter values,

parameter relations, and partial models),

� its preceding system model descriptions (from-list), and

� its successor system model descriptions (to-list).

Each system model description has a to-list and a from-list. The to-list speci�es which

terminations (and possibly how they were merged) caused each transformation to the

next system model description. The from-list speci�es which system model description

preceded the current system model description.

4.2.2 Inference Structure

The knowledge at the inference layer abstracts from the domain speci�c modelling primi-

tives by:

� describing the canonical inferences used in the reasoning process, and

� pointing out the role the domain knowledge plays in this reasoning process.

In previous sections the problem solving roles relevant to qualitative prediction of be-

haviour have been described. Table 4.10 gives an overview of these meta-classes. Given

this list of meta-classes, the canonical inferences (knowledge sources) used in qualitative

prediction of behaviour can be described. Figure 4.11 gives an overview of these inferences.

In the following sections each knowledge source is discussed in more detail.

4.2.2.1 Compound Specify

The purpose of the speci�cation inference is to develop a complete15 description of a par-

ticular state of behaviour of a system (=augmented SMD), which means satisfying the

appropriate parameter relations and assigning qualitative values to parameters that are

used to describe the system. More speci�cally, it has to �nd the partial behaviour models

whose conditions satisfy the knowledge represented in the input system. If the conditions

can be satis�ed, the knowledge represented in the partial model becomes part of the sys-

tem model description. This additional knowledge may lead to satisfaction of conditions

of other partial models (which could not be satis�ed before). Finally, there may be partial

models that have conditions which cannot be derived from the knowledge present in the

system model description, but which are consistent with that knowledge. In such cases the

15Complete with respect to the knowledge that is available to the qualitative inference engine.
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Meta-class name Description of the role

System model description A model that describes the real-world system during a pe-

riod of time in which the behaviour of that system does not

change.

System elements Abstractions from the real-world to which partial behaviour

models apply.

Parameters Properties of system elements.

Parameter values Values of parameters.

Quantity spaces An ordered set of values that a speci�c parameter can have.

Parameter relations Dependencies between parameters.

Qualitative calculi Semantics of a parameter relation.

Mathematical models A set of parameter relations that holds during a particular

system model description.

Partial models Small units representing partial behaviours which are assem-

bled into larger models that represent the behaviour of some

real-world system.

Transformation rules Knowledge about how to �nd successive system model de-

scriptions. Three types of rules have been identi�ed: termi-

nation, precedence and continuity.

Behaviour descriptions A set of system model descriptions ordered in time, repre-

senting the potential behaviour of a system.

Table 4.10: Meta-classes in qualitative prediction of behaviour
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Figure 4.11: The inference structure for prediction of behaviour
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compound speci�cation inference should assume that these conditions are derivable, and

add the knowledge of those partial models to the system model description. In the case

of con
icting assumptions, alternative speci�cations must be made for each of these. The

compound speci�cation inference can be decomposed into two other inferences that must

be carried out in order to arrive at such a description, namely assembling a mathematical

model and computing the corresponding qualitative values.

Assemble

Assembling the mathematical model (=partially augmented SMD) is done by �nding all

the partial models that apply to the input system (=partial SMD). In the constraint

centred approach the mathematical model is provided by the user. Consequently, the

qualitative reasoning approach is not concerned with establishing this model, it only com-

putes the qualitative values (see below). In the process and component centred approaches,

on the other hand, the user only provides a partial system description and therefore the

qualitative inference engine must determine the corresponding mathematical model itself.

In both approaches the mathematical model is built by �nding partial models that apply

to the initial input description. Each applicable partial model introduces parameter rela-

tions and parameter values. Together these make up the mathematical model. The partial

models also specify which parameters are going to be used for describing the properties

of the system elements. In the component centred approach, for instance, the con
uences

de�ned in a component model immediately specify the parameters that are considered by

the mathematical model.

Compute

Once the system model description is augmented with a mathematical model, the com-

putation of qualitative values and the consistency checking of parameter relations can be

done. The following outputs are possible:

� contradiction, which means there is no set of parameter values consistent with the

current set of parameter relations and/or there are inconsistent parameter relations,

� solution, which means one or more sets of parameter values are consistent with the

current set of parameter relations and there are no inconsistent parameter relations,

and

� unknown, which means that there are parameter relations and/or parameter values

which cannot be derived from the current parameter relations and parameter values

speci�ed in the system model description.

In the case of an inconsistency the partial model will not be added to the system model

description. If no partial model is consistent with the input system then the input system

cannot be speci�ed. In the case of a solution the partial model can be added to the system

model description. In the case of multiple solutions, or ambiguity, alternative systemmodel

descriptions will be created. Finally, in the unknown case the inference should assume that

the partial model applies. As mentioned before, inconsistent assumptions must lead to

alternative speci�cations.

If there occurs an inconsistency, or any other kind of problem, when a partial model is

being added to a system model description, then the system model description as a whole

106



must be removed. An inconsistency in the consequences of a partial model means that the

knowledge has not been modelled adequately. In other words, there is an inconsistency in

the available domain knowledge.

4.2.2.2 Compound Transform

The transformation inference is concerned with identifying successive states of behaviour.

A current state of behaviour terminates when the behaviour of some part of the system

model description changes and as a result is no longer compatible with the current system

model description. The compound transform can be decomposed into selecting termina-

tions, sorting terminations, and transformation (subsume or specify) to a new state of

behaviour.

Select

Termination rules specify the conditions under which a particular state of behaviour will

terminate and are used to select the possible terminations from the current system model

description.

Sort

Precedence rules specify the order in which changes take place and are used to sort the

possible terminations. There are three steps that must be carried out:

� merge all the terminations that are related and therefore form a single termination,

� remove those terminations that do not take place because of other terminations

happening �rst, and

� assemble the cross-product of all terminations that have not been removed. The

resulting set resembles all terminations that can take place.

Transform (Subsume or Specify)

The continuity rules specify how unchanging aspects in the old system model description

should reappear in the new system model description. They are, together with the ordered

terminations, the input for transforming the current system model description into its

successor. With respect to the new system model description there are two possibilities,

either it has been generated before or it is a new state of behaviour. In the former

case the partial system model description is a subset of an already existing system model

description. In the latter case a new state of behaviour has to be speci�ed.

4.2.3 Task and Strategic Knowledge

The task layer is used to represent typical chains of inferences that experts make in solv-

ing a particular, well-known task. However, in the prevailing approaches to qualitative

reasoning the task layer is only minimally �lled. They distinguish between:

� �nding all states of behaviour (total envisionment), or

� �nding one speci�c trace of behaviour (attainable envisionment).
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In the case of the latter additional input parameter values are taken into account to limit

the number of system model descriptions that can be found.

Strategic knowledge, in the sense of the four layer model, is not present in the orig-

inal approaches to qualitative reasoning. The approaches always execute the same task

structure, are not able to monitor their own inference process, and as such are not able to

modify or change their own reasoning process.16 However, it is likely that the reasoning

process will encounter di�culties, i.e. that the problem solving goal cannot be reached.

Strategic knowledge will be further discussed in the chapters 6 and 7.

4.3 Concluding Remarks

In this chapter we have described a conceptual framework for qualitative prediction of

behaviour, that uni�es the three basic approaches to this problem solving task. The

uni�cation is based on the KADS methodology and extends the previous approaches by

distinguishing between domain, inference, task and strategic knowledge. This presents a

frame of reference for comparing the original approaches on how they use these di�erent

types of knowledge. Of particular interest is the inference layer, because it abstracts from

the domain speci�c notions by describing the canonical inferences (see �gure 4.11) used

in the reasoning process, and pointing out the role (see table 4.10) the domain knowledge

plays in this reasoning process. The three original approaches to qualitative reasoning

can be viewed as using parts of the inference layer described in this thesis for qualitative

prediction of behaviour.

The uni�ed approach presented in this chapter advances each of the original approaches

as a result of the integrated view. The most important contributions can be summarised

as follows:

� The notion of system model description, which is used in di�erent ways in all three

approaches, is extended to include a full description of the elements in the physical

system, the partial behaviour models, the parameters, the parameter values and the

parameter relations.

� The notions of view, qualitative state and process are uni�ed and extended to a

domain ontology for partial behaviour models that discriminates between static,

process and agent models. Static models represent general properties of system

elements. They can be further divided into single description, composition, and

decomposition models, referring to modelling properties of a single system element,

a collection of system elements or to how a system element can be decomposed

into its sub-structure. Processes describe changes that are based on inequalities

between interacting quantities of di�erent system elements. Agent models are used

for modelling changes that are caused by agents.

� The set of parameter relations provided by the integrated framework enables a

broader functionality for specifying dependencies between parameters. In partic-

ular, we can use both directed (causal) and undirected (non-causal) dependencies

16There is some work going on as an extension of the constraint centred approach to �lter (and thereby

reduce) the number of generated states (cf. [95]).
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between derivatives and between parameter values in a single behaviour model. In

addition, the notions of directed and undirected quantity space correspondences and

directed value correspondences are new.

� The transformation inference explicitly distinguishes between termination, prece-

dence and continuity rules. Each of these rules refers to a di�erent type of knowl-

edge used in the transformation inference. In qualitative reasoning the transforma-

tion step, in particular, tends to cause unmanageable branching of possible states

of behaviour. In our approach this ambiguity is reduced by representing precedence

knowledge for merging related transitions or �ltering out undesired transitions. The

distinction between �nding terminations and then explicitly ordering them was not

present in earlier approaches.
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