
Expertise in
Qualitative Prediction

of Behaviour

Ph.D. thesis (Chapter 3)

University of Amsterdam
Amsterdam, The Netherlands

1992

Bert Bredeweg

Chapter 3

Modelling Problem Solving

This section describes a theory for modelling problem solving behaviour, based on the

KADS methodology for building Knowledge Based Systems (KBS) [143; 26; 141; 25; 83].

We will use this methodology as a method for integration of the three main approaches

to qualitative reasoning described in the previous section. It is therefore relevant that we

give a detailed account of the important aspects of this methodology.

The KADS methodology is based on a number of principles. Three of these principles

are relevant for the research reported in this thesis. The �rst one is concerned with the

distinction between types of basic problem solving tasks:

� di�erent problem solving tasks can be distinguished by characterising them according

to the properties of the input and the expected output.

KADS distinguishes between analysis, synthesis and modi�cation tasks. The objective of

an analysis task is to determine properties of the system that is object of the reasoning

task. Typical analysis tasks are diagnosis, monitoring, and assessment. The objective of

a synthesis task is to �nd a structural description of a system in terms of some given set

of elements (vocabulary) or formalism. Typical synthesis tasks are design and planning.

The objective of a modi�cation task is to change a certain aspect of the system that is

object of the reasoning task. Typical modi�cations tasks are repair and remedy.

Qualitative prediction of behaviour can be classi�ed as an analysis task during which

new properties of the system, namely those that specify its behaviour, are derived from

a structural description of the system. In addition, this problem solving task is charac-

terised by the fact that the behaviour descriptions have a qualitative nature, instead of a

quantitative nature.

The second principle concerns the notion of using multiple models to bridge the large

gap between the problem solving potential of a human expert and realisation of that

potential in a computer program (see also �gure 3.1):

� a description of problem solving expertise should distinguish between a description

of the problem solving potential (independently of the speci�c implementation) and

a description of how the expertise can be realised in a computer program.

Since Newell [109] introduced the concept of knowledge level, several authors [36; 40;

143] have argued that this is the right level for representing the knowledge needed for

43

performing a certain problem solving task. At the knowledge level a description of a

reasoning process abstracts from the details of a particular implementation and emphasizes

the types of knowledge involved in a reasoning task. In KADS this description is referred

to as the model of expertise.

Human
(expert)
problem
solving

behaviour

Conceptual
model

Design
model

Detailed
design
model

An operational
AI-System

performing the
Expert/Human

problem solving
behaviour

Knowledge engineer
(or human observer)

builds conceptual
model of PS behaviour

Framework

Supports

KBS designer builds
design model for
realising the PS

behaviour on a computer

Supports

AI Techniques

Conventional design
and implementation

into a specific
computer language

Figure 3.1: Intermediate models for knowledge acquisition

The third principle is concerned with how knowledge can be represented in a model of

expertise:

� the knowledge underlying problem solving expertise can be categorised into di�erent

types corresponding to di�erent roles the knowledge plays in the reasoning process.

The model of expertise, and in particular the distinction between di�erent types of knowl-

edge, is further described in section 3.1.

The model of expertise represents knowledge independently from a speci�c implementa-

tion. In order to arrive at an implementation the conceptual model1 has to be transformed

into a design model: a model of the same expertise but orientated towards the artifact that

has to be build. A design model should contain su�cient information for a system builder

to implement a computer program. The design model is further described in section 3.2.

3.1 Conceptual Model of Problem Solving Expertise

Although terminology is di�erent, a common view appears to emerge based on the idea

that di�erent types of knowledge constitute the knowledge level and that these di�erent

types of knowledge play di�erent roles in the reasoning process and have inherently dif-

ferent structuring principles [125]. This knowledge typing varies from separation between

declarative domain and control knowledge, as argued for by Clancey [40], to advanced

frameworks consisting of multiple layers with complicated internal structures.

KADS distinguishes between four types of knowledge (see �gure 3.2). The domain

knowledge refers to the declarative domain speci�c knowledge. The inference knowledge

1There is a distinction between the notion of a conceptualmodel and a model of expertise in the KADS

methodology. The conceptual model further re�nes a model of expertise with respect to task allocation,

i.e. di�erent problem solvers may realise speci�c parts of the model of expertise (see also 3.2).

44

Strategic
knowledge

Task
knowledge

Inference
knowledge

Domain
knowledge

Controls Applies Describes

Figure 3.2: Four layered structure for modelling expertise

speci�es how the domain knowledge can be used for making inferences. The task knowledge

describes how the inference potential can be applied for realising problem solving goals.

The strategic knowledge controls the overall reasoning process.

3.1.1 The Domain Layer

At the domain layer the domain speci�c knowledge is represented. This knowledge is

essentially declarative and task-neutral. In other words, it does not specify what control

regime is needed for making inferences, and it is not represented in a speci�c way to

support a certain reasoning task (cf. [140]). The knowledge represented at the domain

layer can be used for di�erent problem solving tasks, but the domain layer does not specify

how.

3.1.1.1 The Knowledge Representation

For representing domain knowledge KADS uses the following modelling primitives: con-

cepts, relations between concepts, and structures built from relations. Concepts refer to

anything that a mind, or for that matter a knowledge engineer, can distinguish in the ap-

plication domain. Concepts have an internal structure that consists of attributes, values,

and value restrictions belonging to those attributes (cf. [12]). Typical concepts in the

domain of electronics are, for example: transistors, switches, push-buttons, wires, and so

forth.

Relations describe dependencies between concepts and form the basis for making in-

ferences. Typical examples are: causal relations between causes and complaints, part-of

relations between a structure and its subparts, and subsumption2 relations between gen-

eral class descriptions and more speci�c ones, like, for example, a push-button is a kind

of switch. Frequently occurring relations can be classi�ed as follows:

� Grouping/structural relations

These relations describe static dependencies between concepts. Typical examples

are is-a, consists-of, belongs-to and spatial relations.

� Sequence/time relations

These relations describe an ordering in time of events, processes, actions, and other

dynamic aspects. Typical examples are before, after, during, etc. (cf. [102; 1]).

2Alternative names for this relation are kind-of and is-a.

45

� E�ect/dependency relations

These relations describe causal, associational and functional dependencies. Typical

examples are cause, explain and has-function.

Structures are con�gurations of related concepts. Whether some entity from the real-

world must be represented as a concept or as a structure depends on the amount of detail

that is required by the reasoning process. Usually, a structure refers to entities that have

a more complex internal organisation than just a set of attribute/value pairs. Consider,

for example, an audio ampli�er. If the reasoning process requires only knowledge about

the weight and the colour of this object, then it can easily be considered a concept. If

on the other hand, the ampli�er is malfunctioning and therefore subject of a diagnostic

reasoning process, then it is more appropriate to regard it as a complex structure that can

be decomposed into (many) subparts.

3.1.1.2 Two Points of Discussion

Notice that the knowledge representation, as described above, di�ers from what in the

literature is often referred to as the domain ontology. The domain ontology refers to

which type of concepts, relations and structures are used to represent the domain knowledge

present in a speci�c domain. Describing the behaviour of liquids, for example, may require

the notion of processes as an ontological primitive (cf. [80]). In the domain layer these

processes can be represented either as concepts or as structures.

A second point of discussion is whether it is possible to describe domain knowledge

independently from its use (=task neutral). In particular, Chandrasekaran (cf. [36; 27])

opposes this point of view. Rather than trying to separate knowledge from its use, he

favours the position that each knowledge representation should integrate a particular way

of use (=interaction hypothesis).

For the research reported here, the solution to this discussion is not of prime interest,

because we are dealing with one speci�c problem solving task. Moreover, as shown in [19]

it turns out that large parts of the framework for qualitative prediction of behaviour (see

chapter 4) can be reused directly for model based diagnosis.

3.1.1.3 Possible Extensions

The work of Steels [123] encompasses interesting ideas for enhancing the KADS domain

knowledge representation. He distinguishes between domain theory, domain model and

case model as modelling entities for representing the knowledge of a certain domain. A

domain theory is considered to be the principal theory underlying the problem solving in

a domain, i.e. describing all the knowledge that is available for such a domain. There are

two problems that hamper the use of domain theories in knowledge based systems.

� For a number of domains, for example, most medical domains, not all the relevant

knowledge is available and can therefore not be written down as a full domain theory.

� Current arti�cial intelligence techniques do not allow for representing domain theo-

ries to their full extent, because the problem solvers would become too ine�cient.

46

In order to cope with these limitations, a domain model is constructed that represents

the relevant aspects of the domain theory in a su�cient and e�cient way. The domain

knowledge represents a certain view on the domain theory. Some typical examples of

domain models according to Steels are given in table 3.1. There is a tradeo� between

Type of domain model Description

Structural model Various components and their properties.

Behavioural model The behaviour of a system.

Causal model The causal relations between components.

Fault model A hierarchy of possible faults.

Repair model The relations between faults and possible repairs.

Table 3.1: Examples of domain models

su�cient and e�cient. If knowledge is represented in more detail, i.e. closer to the actual

domain theory, and therefore better suited for realising di�erent kinds of problem solving,

then the problem solving process as a whole is likely to become less e�cient.

Domain models cannot be incorporated in KADS without reconsidering the interac-

tion hypothesis. Domain models by de�nition incorporate a certain kind of use and are

therefore not independent of how they are used in the problem solving. However, the in-

teresting aspect of domain models is the potential classi�cation of relations they point out.

Each domain model is characterised by the speci�c relation (or set of relations) used to

describe the dependencies between the concepts and/or the structures within the model.

For example, in the causal model a network of cause-relations between concepts is used.

This classi�cation of relations can be used to enhance the knowledge representation of

KADS with respect to relations.

A second possible extension of KADS concerns the problems that a knowledge based

system has to solve. KADS does not provide a modelling primitive for representing these

problems. It also does not provide a mechanism for representing knowledge that is inferred

during the problem solving process. The notion of case models as introduced by Steels can

be used for this purpose. It captures the following aspects of the problem solving process:

� input,

The problem that has to be solved.

� intermediate knowledge, and

The knowledge that is derived during the reasoning process.

� output.

The solution to the problem.

The notion of case models can be further enhanced by using a meta-level point of view (cf.

[46; 134]). In such a perspective the domain model can be used for imposing constraints

on the input and the output of a problem solving process. In particular, it can be used

for specifying:

� what kind of input problems the problem solver can solve, and

� what the requirements are for a su�cient solution.

This meta-level issue will be further discussed in chapter 7.

47

3.1.2 The Inference Layer

Knowledge at the inference layer concerns the canonical problem solving actions (knowl-

edge sources) that are the basis of reasoning. They represent problem solving competence

and are primitive in the sense that other parts of the problem solver cannot inuence their

internal control.

3.1.2.1 The Knowledge Representation

KADS uses two primitives for representing the knowledge at the inference layer: meta

classes and knowledge sources. Meta classes describe the roles that the domain concepts

and structures play in the reasoning process. In diagnosis, for example, a domain concept

such as (faulty-)transistor may play the role of a hypothesis, or of a diagnosis. Each

role represents a di�erent, domain independent, use of the domain concept for diagnostic

reasoning.

A meta class has no internal structure, it is a slot that can be �lled with a domain entity

(concept, relation, or structure). It is best understood when regarded as a meaningful

placeholder that provides the knowledge sources with references to the domain layer. The

roles that can be distinguished are speci�c to a certain kind of reasoning task, which

makes it di�cult to come up with a single typology of meta classes. For example the

notion of a solution, which is essentially similar in all problem solving processes, can be

given di�erent, more meaningful names, depending on the speci�c reasoning task that is

going on. In diagnostic reasoning it will be called a diagnosis, in design tasks it will be

called a design and in qualitative reasoning it may be a graph of behaviours.

Knowledge sources are functional descriptions of primitive inference making processes.

At the domain layer an inference is concerned with applying some operation (problem

solving method) to concepts, and/or structures, in order to establish the truth value of a

certain relation between those concepts and/or structures. The knowledge source is an

abstract description of this, it records the competence independently from the domain

speci�c relation that is used by the inference making process. In �gure 3.3, for example,

two domains are distinguished. In one domain the knowledge is represented as heuristic

associations between properties and concepts, whereas in the other domain the knowledge

is built into a hierarchy of concepts by using subsumption relations. Both types of domain

relations can be used for the inferencing process needed for implementing the competence

required by the knowledge source classify.

In addition to di�erent domain relations being used for one knowledge source, a speci�c

domain relation can be used for realising the inferencing process that is required by di�er-

ent knowledge sources. For example, the knowledge sources specify and abstract may both

use a subsumption relation to make their inference. In the case of specify the subsump-

tion relation is used to go further down a hierarchy of concepts in order to derive more

speci�c attributes. The knowledge source abstract,3 on the other hand, is used to go up

the subsumption hierarchy and to �nd a less speci�c concept, with less attributes de�ning

its characteristics. In other words di�erent competence requirements can be realised by

using the same domain relation in di�erent ways.

3Abstract is used in the sense of making less detailed. Notice that this is di�erent from abstract in the

sense of making an abstract model, for example, a mathematical model of some system in the real-world.

This latter notion of abstract is referred to as modelling in the research reported here.

48

(Knowledge Source)

(Meta class)

Domain knowledge
represented with an

hierarchy model

Property

Classify

(Meta class)

Concept class

Domain knowledge
represented with an
associational model

Method
for operating

on associations

Method
for operating

on hierarchies

Reference
to domain

entity

Reference
to domain

entity

Reference
to domain

entity

Reference
to domain

entity

Figure 3.3: Classify knowledge source with di�erent domain models

Thus the mapping between knowledge sources and problem solving methods is one of

many-to-many, as depicted in �gure 3.4. The distinction between knowledge sources and

problem solving methods is relevant, because it separates the machine speci�c inference

processes, and their internal control mechanism, from reasoning about how the available

competence can be used for realising a certain problem solving goal. This allows the knowl-

edge at the task layer (see 3.1.3), concerned with applying competence to address problem

solving goals, to be represented independently from how the knowledge is modelled at the

domain layer.

3.1.2.2 Classi�cation of Knowledge Sources

The classi�cation of knowledge sources is based on the epistemological description of se-

mantic networks (KL
�

One) given by Brachman [11; 12]. Recall, that although speci�c

ontologies for representing some amount of domain knowledge may di�er, the knowledge

must always be represented as concepts with attributes/values pairs, relations, structures,

and instances of these generic classes. As a result the classi�cation of knowledge sources

is based on `what can happen to' these entities, except for relations. Relations are not

manipulated by knowledge sources, they are not input to, or output from, knowledge

sources. Instead a relation refers to how the input can be mapped onto the output and

is used to refer to the speci�c problem solving method that is applied to implement the

knowledge source. As a result, the typology of knowledge sources in KADS is based on

how the knowledge sources manipulate the knowledge classes constituting the knowledge

representation, except for the notion of relations.

49

Implemented by

Uses

Knowledge
sources

Problem
solving

methods

Domain
relations

Classify

Backward
chaining

Associational
relations

Table
Look up

Table of
concepts

AbstractSpecify

Subsumption
relations

Ascending
a hierarchy

Decending
a hierarchy

Inference layer

Domain layer

Figure 3.4: Mapping between knowledge sources, methods and relations

The typology of knowledge sources in KADS is not an exhaustive one, in the sense

that not all the transformations between the knowledge classes in the KL
�

One formalism

are considered candidates for knowledge sources. Below we will give a brief summary of

the knowledge source typology as de�ned by KADS (cf. [26]).

� Concept/attribute manipulation

Abstract concept) concept (with fewer attributes)

Abstract is de�ned as removing an attribute from a concept. The abstract

knowledge source makes a concept less speci�c by abstracting away an irrelevant

detail (see also specify). Abstract may also work on an instance.

Classify (set of) attribute(s)) concept

The classify knowledge source takes a number of attributes and classi�es these

as representing a certain concept. In other words, a concept is recognised on

the basis of its attributes. Another term for classify could be identify. Classify

does not distinguish between generic concepts or instances of these concepts,

although it usually will have a generic concept as output.

Generalise (set of) concept(s)) (generic) concept

Generalisation is concerned with �nding the common features in a number of

concepts and trying to map these onto an existing concept or to develop a new

concept. In the former, generalisation is closely related to classify. Developing

a new concept is also known as induction, a reasoning technique often studied

in the context of machine learning (cf. [39; 106]). Generalise can also work on

instances, but will usually produce a generic concept as output.

Instantiate concept (or structure)) instantiated concept (or structure)

This knowledge source creates an instance of a concept or a structure. The

inference competence represented by this knowledge source may seem a bit

trivial, because it involves some form of copying rather than actually inferring

a proper relation. However, the distinction between general classes and speci�c

instances has to be made and that is exactly what this knowledge source does.

Notice that this knowledge source is often an implicit part of other knowledge

sources.

50

Specify concept) concept (with additional attribute/value pair(s))

The competence represented by the specify knowledge source is the inverse of

abstract. It produces a concept with at least one more attribute/value pair

than the input concept. Another term for speci�cation could be re�ne. Assign

value (see below) is often an integrated part of a speci�cation inference. Specify

can also work on an instance.

� Attribute/value manipulation (assignment)

Assign value (concept) attribute) (concept) attribute with value

This knowledge source derives values for attributes of concepts and assigns

them to these attributes, for example, by using default mechanisms. Assign

may sometimes involve complex inference procedures for inferring the value that

must be assigned. In such cases it is better to regard this knowledge source as

a compound knowledge source and decompose it into more primitive inference

steps (see also 3.1.3). The assign knowledge source also includes removing,

changing and overwriting values.

Compute structure) (concept) attribute in structure has value assigned

Compute is similar to assign except that it takes a structure as input and assigns

a value to an attribute of a concept that is part of the structure. The com-

putation of the value is based on the interdependencies between the concepts

that constitute the structure. In most cases the structure refers to a formula

or an arithmetic operation, which makes compute closely related to arithmetic

computation. As a result of this compute is not strictly a primitive knowledge

source, but may involve complex inference procedures.

� Attribute/value manipulation (comparison)

Compare value of X, value of Y) (concept) attribute with di�erence value

This knowledge source compares the values of attributes of concepts and pro-

duces a concept that represents the di�erence between those values. Examples

of such output are: equal, not equal, or a di�erence measure between the values.

Match structure of X, structure of Y) (concept) attribute with di�erence value

Match has the same objective as compare, except that it derives the di�erence

between two structures instead of two concept attributes.

� Structure manipulation

Assemble set of concepts (or partial structures)) structure

Assemble takes a set of concepts or partial structures, and creates a structure in

which these are con�gured in such a way that they obey certain design require-

ments. Another term for this knowledge source could be compose. Assemble

can also operate on instances.

Decompose structure) set of concepts (or partial structures)

The knowledge source decompose represents the inverse competence of assem-

ble, namely decomposing a structure into the concepts, or partial structures,

that constitute the input structure. Decompose can also operate on instances.

51

Transform structure) structure

This knowledge source transforms one structure into another structure. There

are two types of transformation. The �rst type leaves the input structure as it

is and reorders (possibly removes) the elements within the structure (see also

the description of sort below). In the second type of transformation a new

output structure is created in which the elements from the input structure are

assembled. An interesting example of this kind of transformation is the parsing

of natural language sentences, in which case a linear structure of elements is

ordered into a hierarchical structure (often called a parse-tree).4

3.1.2.3 Problems with the Typology of Knowledge Sources

The typology of knowledge sources raises a number of problems. The �rst one concerns the

fact that not all the knowledge sources described above can be expressed in the KL
�

One

language. In particular, knowledge sources working on sets cannot be represented declar-

atively in this formalism. The typology of knowledge sources extends the formalism by

allowing to reason about sets, for example, generalise reasons about a set of concepts.

If we want to reason about sets, the typology introduces a second problem, namely that

it does not include reasoning about all set manipulations. There is, for example, no explicit

knowledge source that reasons about merging two sets. For the sake of completeness the

following group of knowledge sources can therefore be added.5 Each knowledge source

operates on sets of concepts, attributes, values, structures, or instances.

� Set manipulation

Sort set) ordered set

In sort the input elements are ordered into a sequence according to some princi-

ple. Sort can be seen as a subtype of both assemble or transform, depending on

whether the sorted elements are already in a structure before they are sorted,

or not.

Select set) one element

This knowledge source selects, on the basis of some principle, a concept, an

attribute, a value, a structure, or an instance, from a set. Select can be seen as

a subtype of decompose.

Merge set Y (or element), set X (or element)) set

In merge two sets are merged into a single set, possibly according to some prin-

ciple. Merge can be seen as a subtype of assemble or transform, depending on

whether the sorted elements are already in a structure before they are merged,

or not.

4As mentioned before, there may be some confusion with respect to the notion of abstract. What in

this research is de�ned as transformation should not be confused with what in the literature is sometimes
referred to as abstraction, in particular, in mathematics when researchers talk about building an abstract

mathematical model of some system in the real-world. In the research reported here such an activity is

called a modelling task. Modeling is a basic problem solving task of type design.
5The typology as described by KADS includes sort and select, but not merge.

52

It is apparent from the above descriptions that sets can be viewed as certain types of

structures. Therefore set manipulations can be described by the knowledge sources that

manipulate structures. However, having set manipulations as separate knowledge sources

enlarges the expressibility of the knowledge source typology. It is debatable whether set

manipulations are actually proper inferences.

The third problem with the typology concerns the label or name given to each knowl-

edge source. Terminology confusion is very likely to occur. An interesting example is the

notion of abstract as introduced by Clancey [41]. In his heuristic classi�cation paper he

de�nes three types of data abstraction:

� De�nitional abstraction

Abstraction based on essential, or necessary, attributes of a concept. For example:

if the structure is a one-dimensional network, then its shape is a beam.

� Qualitative abstraction

Abstraction of quantitative data into qualitative de�nitions, usually with respect to

some critical value. For example: if the `white blood count' in an adult patient is

less than 2500, then the `white blood count' is low.

� Generalisation

Abstraction based on a subtype hierarchy. For example: if someone is a judge, then

he is an educated person.

The question to be answered here is to what extent Clancey's abstraction di�ers from

the one given by KADS. We can for example try to rewrite the di�erent forms of ab-

straction as de�ned by Clancey into the KADS framework. Both de�nitional abstraction

and generalisation would then be examples of the specify knowledge source (deriving more

attributes of a concept). With respect to the qualitative abstraction it is important to

point out thatKADS uses abstraction for removing irrelevant attributes. Inferring that `a

patient has fever if his temperature is higher than 37 degrees' may be labeled abstraction,

because irrelevant detail (the exact value of the temperature) is replaced by the more gen-

eral notion of fever. However, inferring that `if a patient has fever, the body temperature

must be higher than 37 degrees', may not be labeled abstraction. This type of inference

does not remove irrelevant details, or for that matter irrelevant attributes, but instead

derives additional attributes and should therefore be labeled as speci�cation.

This brings us to the fourth problem, namely that it may be the case that for certain

knowledge representations and/or inference mechanisms it is not possible to rewrite them

in terms of the knowledge sources provided byKADS. For example, techniques underlying

MOLE (cf. [65; 64]) are not easily understood in terms of theKADS approach. Moreover,

the new description of the reasoning competence may lose its expressive power or become

less intuitive with respect to the speci�c characterists of the domain and/or reasoning task.

A well understood inference, such as generating hypotheses in model based diagnosis (cf.

[45; 59; 47; 79]), can be rede�ned as an assemble knowledge source. In particular, in the

GDE approach [59] this generation consists of assembling components that contributed to

the faulty behaviour (discrepancy) into conict sets (=conict generation). Each conict

is supposed to contain at least one component that is a possible diagnosis6 for causing the

6Candidate generation is done by assembling components from the conicts into sets such that the

components in these sets account for all the observed discrepancies.

53

malfunction of the device. Despite the fact that conict generation can easily be rewritten

as an `assemble' knowledge source, the original term is probably better understood by the

community of researchers working on diagnosis.

The underlying problem is that in the KL
�

One formalism only a speci�c set of re-

lations is worked out in detail. These relations belong to what we referred to as the

grouping/structural relations (section 3.1.1). These relations are typically suited for repre-

senting knowledge about subsumption hierarchies. Other relations, such as time/sequence

and e�ect/dependency relations, are not so easily understood in the KL
�

One formal-

ism. The dependencies that these relations represent are not directly, i.e. declaratively,

available in the formalism. It is also not clear if reasoning about these relations actually

requires di�erent knowledge sources, possibly using knowledge classes currently not de-

�ned in the KL
�

One formalism. The essential question to be answered here is whether

such dependencies could be rewritten into the existing ones. It is tempting to argue that

such a rewrite is possible, although the dependencies would probably lose some of their

intuitive appeal (as explained above for GDE), but scienti�c proof for this can currently

not be given.

3.1.2.4 Inference Structure

An inference structure describes the knowledge sources with their input and output depen-

dencies for a certain basic problem solving task. It speci�es the problem solving potential

of such a basic task. In �gure 3.5 an inference structure is presented for the basic problem

solving task monitoring. This example is taken from [26].

There are two select knowledge sources in this inference structure. One of these selects

the observables from the real-world (universe of observables), i.e. it determines what can

be observed in that world. The other one selects parameters from a model, guided by

selection criteria. The output of the selection that is done �rst may be used as additional

input for the other. In other words, the monitoring can be guided by a model that

prescribes what must be observed, or can be guided by the phenomena of the real-world

system. The order in which knowledge sources are used (=control) is not part of the

inference layer. The inference structure only describes the knowledge sources with their

input and output dependencies (see also 3.1.3).

The specify knowledge source determines the norms that are used by the compare

knowledge source for inferring the di�erence between these norms and the obtained �nd-

ings. Finally, the classify knowledge source determines into what discrepancy class the

di�erence can be classi�ed.

It is important to realise that obtain is not a knowledge source (in typical KADS

inference structures it would be left out). Obtain refers to information that must be

gathered from the `outside-world' and not to an inference step that can be carried out (see

also notion of transfer tasks discussed below).

3.1.3 The Task Layer

The knowledge at the task layer is concerned with controlling how the problem solving

competence, represented at the inference layer, can be applied for achieving problem solv-

ing goals.

54

Universum of
Observables

System
model

Select

Select

Selection
criteria

Compare Classify

Obtain

Specify

Observables

Parameters

Findings

Norms

Difference

Historical
data

Discrepancy
class

= Meta class

= Knowledge source

= Input/output
dependency
= Support
knowledge

Figure 3.5: Inference structure for monitoring

3.1.3.1 The Knowledge Representation

The knowledge at this layer is represented by tasks.7 Tasks can be decomposed into

subtasks. Each task itself is characterised by the speci�c input that it requires, the output

that it generates, and the goal that it can realise. In �gure 3.6 a task decomposition

structure is given for solving physics problems (cf. [104; 105]). This example is taken

from Jansweijer [89]. The goal of solve problem is to provide a solution to a certain

physics problem. This task can be decomposed into analysing the problem, solving it,

and evaluating the answer. Three tasks have to be executed to analyse the problem, �rst

read it, then make a sketch and �nally schematise. The sketch task refers to making a

drawing that represents the problem. This drawing is input for schematise. The purpose

of the latter is to arrive at a standard, possibly formalised, description of the problem.

This standard description is not only the output of schematise, but also the output of

analyse, and consequently the input for solve. The solve task consists of two subtasks

assemble and compute. The goal of assemble is to �nd all the equations that are needed

to solve the problem. Such a set of equations is called a mathematical model and is in

this case input for compute. Compute has to �nd the solution to the set of equations.

The output of compute is not only the output of solve, but will also contain the answer

7The notion of tasks at the task layer should not be confused with the notion of basic tasks as described

in the beginning of this chapter. The latter refers to global problem solving tasks, such as, diagnosis,

design and monitoring, whereas the former refers to controlling the order in which knowledge sources are

applied.

55

Analyse Evaluate

Read problem Sketch

Assemble Compute

consists of

consists of consists of

Solve

consists of

Inference layer

Task layer
Schematise

Solve problem

Check answer

= Task

= Knowledge source

Figure 3.6: Task decomposition structure for physics problem solving

to the initial problem solving task (solve problem). Finally, this answer will be given to

evaluate, whose goal it is to check and evaluate the outcome. The problem is solved if

the evaluation turns out to be positive.

The purpose of decomposing tasks into subtasks is to arrive at su�ciently small sub-

tasks, that each of them can be solved by the inference competence available at the in-

ference layer. This means that the leaves of the task decomposition structure will be

knowledge sources. In other words, tasks have to be decomposed into subtasks until the

inference competence needed to execute the task is small enough to be addressed by a

speci�c knowledge source. In the example above this is the case for the two subtasks of

solve, namely assemble and compute. They refer to knowledge sources at the inference

layer.

A task decomposition is the result of strategic reasoning at the strategy layer (see

below). Tasks themselves have no knowledge about how they can be composed or decom-

posed into other tasks. In fact, each task generates a number of new subgoals that have

to be achieved. The strategic layer decides which tasks can be used to realise these goals.

Assigning tasks in this manner results in a speci�c task decomposition.

In case of a routine problem solving process, the task decomposition always proceeds

in the same way. The speci�c decomposition structure is then the result of what can be

de�ned as a �xed strategy.

In KADS the notion of tasks has not been given as much attention as the notion of

knowledge sources. This is understandable as soon as one realises how complex and large

the amount of control knowledge is that needs to be understood before task decomposition

56

structures can be generated on line during problem solving. In particular, if we want to

automate these onto a machine. Consequently, the knowledge modelled at the task layer

in typical KADS models [26] often contains not more than the speci�c way in which the

knowledge sources are ordered to solve the class of problems particular to the problem

solving task. Below, a simple example of this is given for the data-driven and model-

driven approach to monitoring problems. It is based on the competence represented in

the inference structure in �gure 3.5.

In the case of data-driven, the available data are used to focus the monitoring (see

table 3.2), i.e. the monitoring cycle is triggered on the bases of what can be observed.

In the case of model-driven, a model is used to direct the monitoring (see table 3.3), i.e.

Order K. Source Input Output Support

1 Select Universe of observables Observables

2 Obtain Observables Findings

3 Select System model Parameters Selection criteria

Observables

4 Specify Parameters Norms System model

5 Compare Findings Di�erence

Norms

6 Classify Di�erence Discrepancy class Historical data

Table 3.2: Data-driven monitoring

the monitoring cycle is triggered by a model that prescribes what parameters must be

observed.

Order K. Source Input Output Support

1 Select System model Parameters Selection criteria

2 Specify Parameters Norms System model

3 Select Universe of observables Observables Parameters

4 Obtain Observables Findings

5 Compare Findings Di�erence

Norms

6 Classify Di�erence Discrepancy class Historical data

Table 3.3: Model-driven monitoring

Finally notice that in we can distinguish between transfer tasks and problem solving

tasks. Transfer tasks in general refer to communication and information exchange between

two agents. In KADS this is part of the modality of a problem solver [48]. Modality is

also concerned with the task distribution between the artifact and the user. Obtain data

and read problem are examples of transfer tasks. In the research reported here we are

primarily concerned with problem solving tasks.

57

3.1.4 The Strategic Layer

The knowledge represented at the strategic layer is concerned with the overall control of

the reasoning process. It can be seen as a kind of meta level [46; 134] that coordinates

the activities at the other layers. In particular, it is concerned with how tasks (structures)

can be selected and aggregated for realising problem solving goals.

3.1.4.1 The Knowledge Representation

In [143] Wielinga and Breuker present the strategic layer as consisting of a number of basic

problem solving tasks. Their approach is depicted in �gure 3.7. Given a desired problem

Diagnosis

Planning Monitoring

ImpasseCause

Strategy/
Repair

Observables

Task structure

Strategy layer

Task layer

= Basic P.S. task

= Task layer task

Figure 3.7: Structure of the strategic reasoning process

solving goal, the planning task plans a speci�c strategy that should be able to address

the goal. This planning can range from selecting an available task structure from the task

layer, to complex con�guration of individual subtasks. Once the strategy is present it can

be executed. The execution ismonitored to detect possible deviations from the expected

problem solving behaviour. In particular, the monitoring is concerned with recognising

impasses that hamper the ongoing of the reasoning. If an impasse is detected it is given

to the diagnoser which tries to �nd the cause of the impasse. This cause is input for the

planner which can adjust the current strategy such that the impasse is removed and the

problem solving can continue. This adjustment may range from a minor modi�cation in

the current strategy, and its execution, to entirely replacing it by a new one.

3.1.4.2 Characteristics of Tasks

One of the essential issues that should be modelled at the strategic layer is knowledge

about problem solving tasks. For example, what goals can be realised and how they can

58

be decomposed into subtasks. Except for the structure described above KADS says little

about this matter. However, in the components of expertise [123] this is precisely one of

the main topics. Steels sees problem solving as a conglomerate of mutually dependent

tasks, the task-structure, which is the backbone of the problem solving process. In his

view, tasks can be analysed from both a conceptual and a pragmatic point of view. From

a conceptual point of view tasks are characterised in terms of the problem that has to be

solved. This characterisation is based on the properties of the input and output, and the

nature of the operation taking place to facilitate the mapping between them. Examples

of tasks are given in table 3.4.

Task type Input Output Mapping

Diagnosis Observed symptoms Explanation of how the

symptoms came about

Not given

Interpretation Observed data Categorisation of the data See table 3.5

(classi�cation)

Design Speci�cations Object that conforms to

the speci�cations

Not given

Table 3.4: Conceptual view on tasks

The mappings are not given for the diagnostic and design tasks, but the idea is that

task decomposition methods can be found that decompose these tasks into subtasks until

each task is solvable, because there is an inference method that can make the required

inference. This means that not all (sub)tasks have the same status: some of them are

solvable and some of them have to be decomposed. This matches very nicely with the

KADS perspective of tasks versus knowledge sources. The classi�cation task mentioned

above is in fact a knowledge source, i.e. a leaf of the task decomposition structure, whose

inference requirements can be realised by a problem solving method. The other two tasks

are too complex and must �rst be decomposed into subtasks.

The second point of view on tasks, the pragmatic one, focuses, according to Steels,

on the constraints in the task that result from the environment in which the system will

operate or from the limitations that humans (but also computers) have. He de�nes three

categories of limitations:

� Limitation in time and space

Both the time to reach a decision and the memory for storing knowledge, are always

�nite.

� Limitation in observation

The necessary data may not be available or may not have the required degree of

precision.

� Limitation in theory formation

Models must be inductively derived using real-world interaction or communication

with other humans, which often limits the models in their accuracy and scope of

prediction.8

8Another reason why theories can be limited, is simply because they have not yet been fully developed.

59

Steels then goes on by showing the constraints that may follow from these limitations.

He gives the following four examples:

� Need to avoid search

For example: in a diagnostic task the symptoms used as input may have an associated

cost, and part of the problem may be to minimise the costs and therefore restrict

the number of observations.

� Deal with weak inference rules or weakly de�ned concepts (that is, not de�ned in

necessary and su�cient conditions)

For example: in a classi�cation task the categories into which the data must be

classi�ed may not be strict, that is, they may only be de�nable in terms of typical

features and not in terms of necessary and su�cient conditions.

� Handle incomplete, inconsistent, and uncertain data

For example: in an interpretation task the data to be interpreted may show errors

or may be incomplete.9

� Handle explosions of information

For example: in a design task the speci�cations for a design may be incomplete or

inconsistent, or the number of possible combinations may be so large that exhaustive

search is impossible.

Steels uses tasks in a way similar to problems. He does not discriminate between

solving a problem and executing a task. He also does not distinguish between a conceptual

description of the problem solving competence and how this competence can be realised in a

computer program. In our approach we do distinguish between these notions, which can be

used to further discriminate between the limitations mentioned above. Limitations in time

and space clearly di�er for humans and machines. Therefore the constraints that result

from handle explosions of information may be di�erent for humans and computers. An

interesting example in this respect is an experiment in building knowledge based systems

described by Barth�elemy [3; 4]. The purpose of the artifact was to design moulds for

fabricating plastic parts used in the heating system of a car. One of the main problems

was �nding the best way to con�gure as many parts as possible on one mould. As the

number of possible con�gurations was large, the human expert used heuristics to design

the moulds. However, it turned out that these heuristics were quite di�cult to model into

a computer program. Moreover, the computer could easily generate all possible mould

con�gurations, calculate the costs for each con�guration,10 and then select the best design

(the fewer moulds needed to create all the parts, the better the design). In other words,

di�erent problem solving methods were used by human and machine for dealing with the

problem. We consider limitations related to realising competence on a machine part of

the design model. This is discussed in section 3.2.

Typical examples are social sciences, such as, psychology and sociology. Steels does not mention this type
of limitation in theory formation.

9From Steels' work it is not clear how an interpretation task di�ers from either a diagnosis or a classi-

�cation task.
10In the AI literature this method is known as generate and test (cf. [113]).

60

Distinguishing between problems and tasks is also relevant. For example, dealing with

incomplete, inconsistent and uncertain data is a characteristic of the problem, not of the

task that is used to solve the problem. Any task, be it diagnosis, design, or classi�cation,

can in principle be confronted with this constraint. The issue is that each task requires

a certain type and status of input in order to be applicable. If this is not the case, for

example, because of the limitations mentioned above, then additional tasks are needed to

adjust the input accordingly. However, the limitations, and the resulting constraints, are

characteristics, or features, of the problem, not of the tasks.

In section 3.1.1 we discussed the case model as being the domain knowledge modelling

construct for representing input, output and intermediate knowledge. It is interesting to

see that dealing with incomplete, inconsistent and uncertain data are constraints that

result from limitations that apply to the input modelled in the case model (limitation in

observation), whereas limitation in theory formation applies to the knowledge present in

the domain model.

3.2 Design Model for Problem Solving Expertise

In KADS the computer speci�c aspects of realising problem solving behaviour are dealt

with in the design framework [118; 119]. This framework consists of two aspects, the

design process and the design model (see �gure 3.8). The design process speci�es how the

Conceptual model

Modality model

External requirements

Analysis model

Functional units

Problem solving
methods (behaviour)

Modules
(architecture)

Design model

Process
of knowledge
based system

design

Input Output

Figure 3.8: The design framework

conceptual model of expertise can be transformed into the di�erent entities of the design

model. In particular, it is concerned with the knowledge that can be used to support the

construction of the design model. The design model speci�es the functions that an artifact

must be able to address, the machine speci�c behaviours that can be used for realising

these functions, and the architecture that structures the implementation of the artifact.

In the following sections the design process and the di�erent aspects of the design model

are described.

3.2.1 Model of Cooperation and External Requirements

Problem solving requires a certain amount of interaction with an environment. In par-

ticular, for receiving information about which problems to solve and for presenting the

output of the problem solving process. This interaction with the environment imposes

additional constraints on the implementation of the artifact. The model of expertise does

61

not cover these requirements. KADS therefore distinguishes two additional models that

are relevant for designing an artifact:

� a model of cooperation, and

� a model of the external requirements.

The model of cooperation is concerned with interaction between the system and the user

and is also known as the model of modality [48]. It basically describes the task distribution

between the artifact and the user. It speci�es what problem solving tasks are carried

out by the artifact and which ones are left to, or required from, the user. The model

of cooperation can be seen as a kind of interface that encapsulates the artifact. For the

artifact it speci�es what tasks have to be performed by the machine, what input these

tasks may use and what output they have to provide. It is in fact only after the task

distribution has been decided upon, in the modality analysis, that the model of expertise

can be developed adequately.

The second model describes the external requirements [2]. The external requirements

are similar to pragmatic constraints, as de�ned by Steels (section 3.1.4.2), that result from

the environment in which a machine operates and from the limitations computers have.

An example of this emerges when the system as a whole has to run on a relatively small

(personal) computer. In such cases additional constraints on the design of the system

clearly result from the limited amount of space available for storing information. An

example of an environmental constraint may be that the data, needed for the problem

solving process, are stored in a database. The interface with this database forms an

additional constraint on the development of the artifact.

3.2.2 The Functional Decomposition

A crucial activity in the design process is to take the three models resulting from the con-

ceptual analysis and decompose them into a hierarchy of functional blocks (see �gure 3.9).

During this decomposition process the external requirements and the model of cooperation

are integrated with the model of expertise.

Each functional block represents a distinct functional unit of the �nal artifact. It can be

classi�ed according to its function type and the relation it has with other functional blocks.

Typical relations that can exist between functional units are input/output, consists-of,

and control relations. The input/output relations specify the interaction between di�erent

functional units. The consists-of relations specify how a certain functional unit can be

decomposed into other functional units. The control relations are used for modelling

the control dependencies that exist between the functional units, for example, that some

function must be realised before another function. Control dependencies are often closely

related to input/output relations, because required input for an unit may depend on the

output provided by another unit. However, they are not necessarily the same.

Typical functions in the design model are:

� Problem solving functions

Problem solving functions are similar to tasks, and/or knowledge sources, in the

model of expertise. However, it is to be expected that the decomposition into func-

tional units, in the design model, di�ers at some level from the task decomposition,

62

Modality model External requirementsConceptual model

Methods

Design
elements

Algorithms

Analysis model

Functional units

Decomposition

Transformation

(Physical) modules

Composition

=
 M

et
a

cl
as

s

=
 K

no
w

le
dg

e
so

ur
ce

=
 C

om
po

si
te

 m
et

a
cl

as
s

=
 In

pu
t/o

ut
pu

t d
ep

en
de

nc
y

Figure 3.9: Inference structure of the design process

because computer speci�c aspects are introduced by the modality model and the

external requirements.

� Explanation functions

Explanation functions are concerned with explaining answers produced by the arti-

fact. They are typically something that may result from external requirements. The

model of expertise, and in particular, the basic problem solving tasks, only describe

problem solving competence. It is, however, very likely that for solving a problem

di�erent functions are needed for explaining the achieved result. For example, a

problem solver based on shallow knowledge may be very good at solving diagnostic

problems, but perform poorly if it has to explain why the symptoms are caused by

a certain disease, because it lacks the deep knowledge needed to give such an expla-

nation (see section 2.1.4). But also aspects concerned with how the information can

be presented in an understandable manner are issues that should be dealt with here.

� Input and output functions

The input/output functions refer to the speci�c requirements that are imposed upon

the artifact. We already discussed the example of the database consultancy. Other

examples may be graphical interfaces, line command facilities, or advanced forms

of natural language interfaces. Each speci�c type of input/output requirement puts

63

additional constraints on the design of the artifact.

� Information storage functions

The storage functions are concerned with storing information (data and knowledge)

that is relevant for the problem solving process. These functions are also typical for

realising problem solving behaviour on a machine. Speci�c ways of keeping track of

derived results and representing dependencies between intermediate problem solving

knowledge, are issues that require computer speci�c storage functions.

The above set of functions is not necessarily complete, but it illustrates the additional

aspects that come into focus once an artifact has to be designed.

3.2.3 Realising the Problem Solving Behaviour

The second crucial activity in the design process is the construction of machine speci�c

behaviours (=problem solving methods) for realising the functions that the artifact must

perform. In �gure 3.9 this is depicted as a transformation step. Problem solving methods

realise the mapping between human expert problem solving behaviour and an implemen-

tation of that competence in a computer program.

3.2.3.1 Problem Solving Methods: Design Elements and Algorithms

A tentative catalogue of problem solving methods has been provided by Bundy [31]. How-

ever, there is little consensus in the arti�cial intelligence literature on what problem solving

methods are. Typical textbooks, as for example [113; 39; 13], only moderately agree on

standards. The probably best understood area is that of state-space search. Some search

methods in this area are depth-�rst, breadth-�rst, hill-climbing, best-�rst, A* (A-star),

MiniMax, and others.

In KADS a method is de�ned as consisting of three aspects: a name, a set of design

elements and an algorithm (or procedure).11 The name is just a general label that re-

searchers use to refer to the method. Hill-climbing is a typical example of a name. The

design elements are the data structures that the method requires for its inference mak-

ing activity. The algorithm refers to the speci�c way in which these data structures are

manipulated in order to realise the problem solving behaviour.

A simple example of a set of design elements, belonging to the A-star method, is the

following (more examples can be found in [118; 119]):

� Goal state

� Begin state

� Current state

� Set of intermediate states

� Measure of costs

11In KADS (cf. [118]) the algorithm is de�ned as being one of the design elements. We will use the
notion of design elements for referring to data structures only.

64

1. Costs for arriving at current goal

2. Heuristic estimate of (additional) costs for reaching the goal state from the

current state

� State operators

The algorithm that manipulates these design elements is well known and relatively simple.

It proceeds in steps, starting with the begin state. During each step the operator is applied

to the most promising state, expanding it into new states, until one of those states equals

the goal state. Determining the most promising state is achieved by adding the estimated

cost to reach the goal state to the cost already incurred in arriving at the current state.

The intermediate state that has the lowest cost in this respect is the most promising one.

An accurate description of the A-star method can be found in [113].

3.2.3.2 Classi�cation Methods Described by Steels

An interesting enumeration of methods is given by Steels [123]. Each of the six methods he

describes realises machine speci�c behaviour required by the knowledge source classify (see

section 3.1.2.2), i.e. recognising a certain concept on the basis of a set of attributes. How-

ever, all methods have their speci�c set of design elements and corresponding algorithms.

The methods are given in table 3.5.

The di�erentiation method, as described in the above list, does not realise the compe-

tence of the classify knowledge source. It does not classify a set of attributes into a concept,

or class. Instead, it tries to �nd the most di�erentiating attributes between concepts.

3.2.3.3 Relations between Knowledge Sources and Problem Solving Methods

A question may emerge concerning the di�erence between the modelling entities in the

design model and the conceptual model, i.e. the di�erence between the building blocks of

the methods (design elements and algorithms) and the modelling entities of the inference

layer (meta classes and knowledge sources). Knowledge sources di�er from algorithms

in the sense that they are declarative descriptions that represent dependencies between

epistemological classes grounded in the KL
�

One formalism, whereas an algorithm is a

procedure that describes a certain set of operations on data structures. In the case of a

speci�c mapping between the conceptual model and the design model, namely that each

knowledge source maps onto a single method, the algorithm will manipulate the design

elements such that, as a whole, the method implements the competence represented by the

knowledge source. It may however, also be the case that a method realises the competence

required by more than one knowledge source, or for that matter by a complete task

structure. Aspects of transforming the conceptual model into the design model are further

discussed in section 3.2.6.

The di�erence between design elements and meta classes is more complex. Recall

that meta classes are place holders that relate domain knowledge to problem solving roles

(used in human expert problem solving behaviour) whereas design elements are computer

speci�c data structures that must be available to implement a certain algorithm. Steels

argues, along similar lines as McDermott [103], that a problem-solving method has a

set of roles which must be �lled by speci�c domain knowledge. For example, weighted

65

Method name Brief description of the method

Linear search For this simple method each concept has to be represented as a set

of attributes. The method goes through the possible concepts each

time. The concept for which all features match is selected.

Topdown

refinement

association

This method works on a hierarchy of concepts, with the most general

concept being at the top node. While going down the hierarchy

more speci�c attributes are required to hold for the concept. The

method systematically searches the hierarchy (starting at the top)

and establishes the most appropriate concept at a particular level

Association This method uses associational relations between an attribute and

a concept. It assumes that the domain model indicates which at-

tributes are strongly associated with a concept.

Differentiation If only a limited set of concepts remains, the concepts can be com-

pared and their di�erentiating attributes can be computed. These

di�erentiating attributes are good candidates for additional data

gathering, so that discrimination between concepts can take place.

Weighted

evidence

combination

Each attribute (or combination of attributes) may be more or less

essential to a concept. In weighted evidence combination each at-

tribute is given a weight that represents the relevance of the at-

tribute to the concept. The best matching concept is the one with

the highest score on the sum of the weights. This method is used in

Mycin [30], for example, to select the organism causing the infection.

Distance

computation

This method calculates the di�erence between the attributes that

must be classi�ed and each of the target concepts. The target con-

cept with the lowest value on this distance metric is the most ap-

propriate concept.

Table 3.5: Classi�cation methods given by Steels

evidence combination requires that we can elicit weights for representing the importance

of attributes. In the design model of KADS this set of roles is referred to as the design

elements of the method. Thus, in the example of weighted evidence combination, the

design elements directly map into meta classes in the model of expertise.12

This mapping is not always that straightforward. Sometimes the mapping between the

problem solving method and the competence required by the conceptual model, is not a

simple `one to one' relation, but requires a complex transformation process. In addition,

methods may introduce machine speci�c requirements that have to be dealt with. For

example, in a typical search method one has to construct the algorithm such that the

method does not get stuck in a loop (see also section 3.2.6). Steels, and also McDermott,

do not explicitly distinguish between human expert problem solving behaviour versus

computer speci�c aspects of realising such behaviour, which confuses the issue.

12An underlying problem here is that there is a distinction between problem solving methods that humans
use and problem solving methods that realise competence in a computer program. In the research reported

here we reserve the term problem solving method for computational methods that realise problem solving

behaviour in an artifact.

66

3.2.3.4 Visualising the Transformation Activity

As mentioned before, the crucial activity in the design process, with respect to realising the

machine speci�c problem solving behaviour, is concerned with transforming the functional

blocks into design elements and corresponding algorithms. This activity is visualised in

�gure 3.10. KADS assumes that functions can be decomposed into subfunctions until

A

A A B

Function2 Function3 Function4

Function5 Function6

Function1

Consists of

Consists of

A B

Transformation

Composition

Method1 Method2 Method3

Module1 Module6Module5Module4Module3Module2

B

= Design
 elements

= Algorithms

Figure 3.10: Visualising function transformation and module composition

each leaf of the functional decomposition can be implemented by a speci�c method.

3.2.4 Construction of the Architecture

The third activity in the design process concerns the construction of the architecture of

the artifact. This design activity composes the design elements and algorithms, that result

from the transformation activity, into coherent modules that will constitute the artifact

(see also �gure 3.9). Two principles support this activity:

� prevention of knowledge redundancy, and

� minimising coupling and maximising coherence [148].

67

Prevention of knowledge redundancy dictates that the actual implementation of the

artifact should not contain duplications of data structures and inference procedures. If, for

example, some method is used more than once, then it makes sense to write one procedure

that can be used by each of the methods. Minimising coupling refers to distinguishing

between modules in such a way that the interaction between modules is as small as possible.

Maximising coherence simply refers to keeping aspects that are similar as much as possible

in one module. The idea here is that modifying and debugging the artifact is less complex,

when modules are internally coherent and have limited interaction with other modules.

The details of this composition activity are visualised in �gure 3.10.

KADS introduces the notion of environments. An environment is an o�-the-shelf

software system, that incorporates the design elements and algorithm(s) of one or more

problem solving methods. Typical examples are EMYCIN and KEE. Each of these soft-

ware systems is prefabricated to support the problem solving behaviour as it is facilitated

by some speci�c method.

Interesting research in this direction can be found in the Generic Task (GT) approach

(cf. [35; 36; 34; 37]). The generic tasks are associated with o�-the-shelf software systems

that incorporate a number of methods. Each of those con�gurations is supposed to be

suited to implement a certain reasoning task (see also section 3.2.6).

3.2.5 Going Through the Design Process

Although the description of the design framework discusses the activities in a certain order,

there is no prescription in KADS that this is also the order in which the design activities

must be carried out. Figure 3.9 typically depicts the competence that is required to create

a design model and does not specify the control that can be exerted upon these activities.

Consequently, the design process may start with each of the three activities. For example,

by doing the composition step �rst, which means that the designer of the artifact decides

beforehand upon using a particular software environment for building the system. Thus,

before it is known whether that software environment indeed provides the design elements

and inference algorithms that are needed for implementing the competence that is required

by the conceptual model. The design process may also start with the transformation

activity. The designer would then begin by selecting problem solving methods that can

be used for realising problem solving competence.

It is to be expected that the design process turns out to be problematic when the

designer begins with either the composition or the transformation activity. It is very

likely that the entities provided by the shell and/or the methods, provide insu�cient

functionality for realising the required competence. We therefore favour a design process

that starts with the functional decomposition, then proceeds with the transformation into

methods, and �nally completes the composition of modules. In this approach the required

problem solving competence, as described in the analysis model, is fully taken into account

during the search for the machine speci�c realisation of it.

3.2.6 Mapping between Analysis Models and Design Models

KADS distinguishes three forms of how the analysis model can be mapped onto the design

model: isomorphic mapping, non-isomorphic mapping, and semi-isomorphic mapping.

68

These di�er with respect to how the modelling entities in the four layer model are mapped

onto the functions and methods in the design model. In the case of isomorphic-mapping

each entity in the conceptual model maps onto a speci�c entity in the design model. In case

of semi-isomorphic mapping each type of modelling entity in the conceptual model maps

onto a speci�c type of modelling entity in the design model. This kind of mapping di�ers

from the isomorphic version in the sense that the latter has no type matching between

entities from the di�erent models. Finally, in the case of non-isomorphic mapping there is

no speci�c relation between the entities in the conceptual model and entities in the design

model.

Studying this classi�cation of mappings in more detail highlights three problematic as-

pects. Firstly, the modules in the design model are not used in this classi�cation. Secondly,

the two additional models that constitute the analysis model (the external requirements

and the model of modality) are not taken into account. Thirdly, the identi�cation of iso-

morphic mapping does not give much insight in the exact nature of the relation between

the conceptual model and the design model. Instead it only speci�es that each entity

in the conceptual model maps onto some entity in the design model. This is similar to

non-isomorphic mapping, in the sense that there is no speci�c relation between entities in

the conceptual and in the design model.13

More useful distinctions between the di�erent forms of transforming the analysis model

into the design model are the following:

� Type oriented mapping,

� Task oriented mapping, and

� Unconstrained mapping.

In the case of type oriented mapping each type of entity in the analysis model is mapped

onto a speci�c type of entity in the design model. This approach, which is illustrated in

�gure 3.11, is similar to how KADS de�nes semi-isomorphic mapping, i.e. the relation

between the two models is de�ned in terms of how the entity types in both models are

related.

In the case of task oriented mapping, the problem solving task in the conceptual model

is taken as a starting point. Recall that such a task is decomposed into subtasks until

each leaf of the task decomposition bottoms out into a knowledge source. This knowledge

source refers to some inference making action that realises the required competence. In

task oriented mapping all the knowledge entities that contribute to some problem solving

task (= a task at the task layer, or a basic task at the strategic layer) map onto a speci�c

con�guration of functions, possibly with the problem solving methods that realise these

functions in the design model. In other words, vertical slices in the conceptual model

containing related aspects from all three or four layers in the conceptual model, map onto

vertical slices in the design model, the latter being agglomerates of functions and, possibly,

related methods. Notice that the classi�cation of possible mappings as given by KADS

does not include this task oriented option. However, this mapping is relevant because it

clari�es how other approaches to modelling and realising problem solving can be related

13In the case of non-isomorphic mapping two entities in the analysis model may map onto one entity in

the design model, which is not allowed in the case of isomorphic mapping.

69

Strategy layer

Task layer

Task layer

Inference layer

Inference layer

Domain layer

F

FF

A A

F F

MethodMethod

Type-to-type mapping

Type-to-type mapping

Type-to-type mapping

Type-to-type mapping

Type-to-type mapping

Type-to-type mapping

F

F

F

A

= Functional unit

= Method (design elm./algorithm)

= Task

= Control task

= Knowledge source and meta class

= Domain relation

Figure 3.11: Type oriented mapping

to the KADS approach. In particular, the GT approach put forward by Chandrasekaran.

As mentioned previously, this approach tries to identify o�-the-shelf software that can

be used for realising problem solving competence required by a generic task. Such an

o�-the-shelf piece of software is an implementation of machine speci�c behaviour that is

needed to address such competence. The identi�cation process is therefore a task oriented

mapping approach to realising human expert problem solving behaviour on a computer.

The task oriented mapping is depicted in �gure 3.12.

Finally, the unconstrained mapping does not de�ne any speci�c relation between the

entities in the analysis model and those in the design model. Both isomorphic and non-

isomorphic mapping, as de�ned by KADS, fall into this category.

3.3 Concluding Remarks

We have presented an overview of the KADS methodology for building knowledge based

systems and extended it with an interpretation that at some points deviates from other

overviews of the methodology (cf. [144]). In addition, we have pointed out places were

the methodology can be enhanced as well as issues that are currently unresolved.

The KADS approach has proven to be of great use for analysis and interpretation of

verbal data provided by human experts (cf. [145; 142; 23; 24]) and the construction of

knowledge based systems for the related domain of expertise (cf. [118; 116; 90; 133; 110]).

70

Strategy layer

Task layer

Task layer

Inference layer

Inference layer

Domain layer

A

F

The complex method
realises the behaviour
needed to adress the

function as a whloe

F

A

= Functional unit

= Method (design elm./algorithm)

= Task

= Control task

= Knowledge source and meta class

= Domain relation

A task oriented mapping

The function refers
to the entire problem

solving task

Figure 3.12: Task oriented mapping

However, in our research we will use the methodology for a di�erent purpose. Instead of

interpreting verbal data provided by human experts, we will investigate existing computer

programs in order to develop a conceptual model of the competence that is implemented in

these artifacts. By abstracting from the implementation details we will construct a frame-

work for qualitative prediction of behaviour that can be used for comparing the di�erent

approaches. In addition, this framework is used for implementing a computer program

that has a broader problem solving functionality than each of the original artifacts.

71

72

