
Model Based Systems

and

Qualitative Reasoning

for

Intelligent Tutoring

Systems

International workshop at ITS 2002

June 2nd, 2002

San Sebastian, Spain

ii

iii

Preface

This workshop proceedings discusses the use Model Based Systems (MBS) and Qualitative Reasoning
(QR) for Intelligent Tutoring Systems (ITS). The importance of MBS/QR for tutoring and training
systems has been pointed out by many researchers in the area of Artificial Intelligence in Education
(AIED). They agree on the necessity for rich, articulate and indexed simulations to facilitate a
communicative interaction between learners and educational software. MBS/QR turns out to be
important for the implementation of the major functions in intelligent training, help and teaching
environments. An important goal of the workshop is to bring together the researchers interested in this
area and discuss the future of MBS/QR for Educational purposes.

This is the fifth international workshop in a series of workshops dealing with research on how to use
MBS/QR for the construction of educational systems. The first workshop was held during the
international conference on AI in Education (AIED) in August 1995 in Washington DC (USA) and
focused mainly on the use of qualitative reasoning techniques. Other workshops have been held at the
international conference on Intelligent Tutoring Systems (ITS) in June 1996 in Montreal (Canada), at
the European conference on AI in Education in October 1996 in Lisbon (Portugal) and at the European
conference on Artificial Intelligence (ECAI) in August 1998 in Brighton (United Kingdom).

Bert Bredeweg

Amsterdam, May 5th, 2002

MONET (http://monet.aber.ac.uk/) is a European Network of Excellence on Model Based Systems and
Qualitative Reasoning. MONET-2 is the successor of MONET-1 and active since January 2002. Within
MONET-2 a taskforce focuses on the application of MBS/QR for educational purposes. This taskforce
is partly responsible for organising the workshop at the ITS conference on this theme.

iv

v

Programme Committee Members

Bert Bredeweg (chair)
University of Amsterdam (Netherlands)
http://www.swi.psy.uva.nl/usr/bert/home.html

Joost Breuker
University of Amsterdam (Netherlands)
http://lri.jur.uva.nl:80/~breuker/

Keith Brown
Heriot-Watt University (United Kingdom)
http://www.cee.hw.ac.uk/~keb/

Ken Forbus
Institute for the Learning Sciences (USA)
http://www.cs.nwu.edu/~forbus/

Riichiro Mizoguchi
Osaka University (Japan)
http://www.ei.sanken.osaka-u.ac.jp/english/menu.html

Chris Price
University of Wales (United Kingdom)
http://users.aber.ac.uk/cjp/

Paulo Salles
University of Brasilia (Brasil)
http://www.unb.br/

Julie-Ann Sime
Lancaster University (United Kingdom)
http://www.lancs.ac.uk/users/edres/personal/js/js.html

Elio Toppano
University of Udine (Italy)
http://www.dimi.uniud.it/

vi

vii

Contents

Investigating the Model Building Process with HOMER
Bessa Machado, V. and Bredeweg, B.

Aggregation of Qualitative Simulations for Explanation
Bouwer, A. and Bredeweg, B.

Intelligent Agents an Approach to Supporting Multiple Model Based Training Systems
Brown, K., Taylor, N., Jing, Y, and Khan, T.

Object-oriented Patterns for Model-based Reasoning
Khan, T.M.

Model-Based Reasoning for Domain Modelling, Explanation Generation and Animation in an ITS to
help Students Learn C++
Kumar, A.N.

Model-based Reasoning in Mathematical Tutoring Systems – Preliminary Report
Walther Neuper, W. and Wotawa, F.

Model-Based Reasoning for Tutorial Dialogue in Shipboard Damage Control
Owen Bratt, E., Clark, B., Thomsen-Gray, Z., Peters, S., Treeratpituk, P., Pon-Barry, H., Schultz,
K., Wilkins, D.C. and Fried, D.

Moving toward an Interactive Model Based Design Assistor (IMBDA)
Ratcliffe, M. and Price, C.

A Case Study of Collaborative Modelling: Building Qualitative Models in Ecology
Salles, P. and Bredeweg, B.

Learning with Qualitative Models and Cognitive Support Tools: the Learners’ Experiences.
Sime, J.A.

MMforTED: A Cognitive Tool Fostering the Acquisition of Conceptual Knowledge about Artefacts
Toppano, E.

An Approach to Teaching Engineering Design using Multiple Perspective and Integrated product
Models and Simulations
Yan, X.T.

1

15

25

33

45

53

63

71

75

85

96

107

viii

Investigating The Model Building Process with HOMER

Vania Bessa Machado and Bert Bredeweg

Department of social science Informatics (SWI)

University of Amsterdam

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

E-mail: vania, bert@swi.psy.uva.nl

Abstract

An experimental study is presented, which investigates the process of building qualitative simu-

lation models using HOMER, a tool for building qualitative models of systems. HOMER consists of

a number of dedicated editors aiming at decomposing the complexity of the model building process

into more manageable subtasks. The aims of the present study are a) validating the original task

analysis underlying the implemented system and the resulting task decomposition, b) identifying

problems and/or misconceptions users encounter when building simulation models, c) assessing the

tool’s usability in supporting the model building process, and (d) defining possible improvements and

faults of the present version.

Keywords: Qualitative Reasoning, Building Simulation Models.

1 Introduction

This paper presents the results of an analysis regarding the building of qualitative simulation models using

HOMER [1] [2], a modelling tool for building qualitative models of systems, which can be simulated using

GARP[3] . In the experimental study reported here, subjects used HOMER for building a model of a

U-Tube system [4]. The subject’s steps in solving the assignment together with the questions made

during the experiment were recorded on video and subsequently transcribed for a fine-grained analysis.

The protocols were analyzed and problems, misconceptions and modelling patterns were identified and

clustered with regard to the conceptual aspects of the model building activities. Furthermore, problems

encountered by participants due to the User Interface were registered for later improvement.

1.1 Building qualitative simulation models

Building qualitative simulation models is a complex process during which a multitude of aspects have to

be managed by the model builder. At the most general level the problem of building a simulation model

is to specify a set of model ingredients that can be used by a simulation engine to run a simulation in

order to produce some required output (usually a particular graph of qualitatively distinct behaviors)[7].

This situation is sketched in figure 1.

1

Model
(Instantiated

Model
Ingredients)

System

World

Simulation

Assignment
(Model Building

Goal)

Domain
Knowledge

Qualitative
Reasoning

Engine

Assignment
Analysis

Applying or Gathering
knowledge

Setting up the
representations for the
knowledge (Mapping)

Structuring the knowledge
regard to the assignment
(Identification, Selection

and Abstraction)

Model
Building
Process

Influences

Figure 1: Model Building Process

The figure also shows that a building activity is particularly influenced by two aspects, the assignment

and the reasoning engine. The former sets the requirements with respect to what must be captured by

the model, where as the latter sets constraints with respect to how things can be represented in the

model. Thus, when we look into the model building process with more detail, we can identify a cycle

of activities with two main tasks distinguished. Usually, when initializing the model building process, a

modeler analyzes the given assignment (or problem). Next, the modeler applies his (domain) knowledge

in order to get the picture of the problem at hand. Certainly, if the modeler doesn’t possess (domain)

knowledge, s/he must gather knowledge about it before proceeding. Then, the phenomena from the

real-world system must be identified, selected and abstracted into a set of system features that must

be captured in the model. Finally these features must be mapped into model ingredients that obey the

requirements of the simulation engine. Certainly, these activities are not independent.

Following the outline given above, specific aspects can be pointed out as being important for deter-

mining the result of a model building activity.

• Experience in model building in general. A model builder who is experienced in identification,

selection and abstraction of real-world system phenomena, is in general better equipped to build

models (regardless of the particular tool this person has to work with).

• Knowledge of model ingredients. The model building process will be easier, possibly better executed,

when the model builder is more knowledgeable of the kind of ingredients that an engine requires.

• Complexity of the assignment (modelling goal). The complexity of an assignment depends on what

and how many are the modelling ingredients the users have to work with and how users are supposed

to organize/structure these model ingredients. Also, the existing ways of building the model are

relevant: building by selecting, building by modifying and building from scratch. See [5] for a

2

description of these influential aspects.

• Representation of ingredients in a model building tool. Model building tools may differ with respect

to how knowledge about system behavior must be represented. The way this is realized will influence

the ease of model building.

• Knowledge of tool operation (traditional U.I. issues). The way a tool must be operated may be

easy or more complex, for instance because it resembles operations used for other tools (or because

it differs significantly from those known tools). Resemblance to known tools will probably make

the use of the model building tool easier.

1.2 HOMER

HOMER is a tool for building qualitative simulation models. Technically, the HOMER environment

(Figure 2) consists of a set of dedicated editors described as follows:

Figure 2: HOMER Main Window

• Entity Hierarchy: In this Editor the user models the (physical) objects that represent the domain.

The hierarchical relationships between these objects will be modelled here as well, see Figure 3 for

an illustration.

• Attribute definitions: In this Editor the user models the generic attributes that can belong to some

physical object.

• Configuration definitions: In this Editor the user models the generic configuration that will be

applied between two objects (Structural Relations).

• Quantity definitions: Here the user defines the generic quantities that may be applied to an object.

• Quantity Spaces: In this editor the user creates an ordered set of quantity values that quantities

may have. These values are a sequence of alternating points and intervals.

3

Figure 3: HOMER: Entity Hierarchy Editor

• Model Fragments: In this editor the user constructs the knowledge about the behavior of objects.

This includes the specification of features of instances, such as quantities, the values these have,

and the dependencies that exist between the quantities. In this editor, the user will be instantiating

the generic model parts modelled in the previously mentioned editors (See Figure 4).

• Input systems: In this Editor the user defines the situations that can be simulated. Notice that by

definition this can only be a ’selection’(instantiation) of the model parts defined elsewhere in the

model. For instance, there is no point in specifying an entity in a scenario that is not used in any

model fragment.

Figure 4: HOMER:Model Fragment Editor

Figure 5 displays the main sequence of usage of the editors. Notice that model fragments and input

systems use model parts that come from the editors in the first line, which implies that these model

4

parts have to exist (or have to be created) when creating a model fragment or an input system. It turns

out that these model parts are highly interrelated in the context of model fragments and scenarios. For

instance, a quantity always belongs to an instance, an attribute always exists between two instances, a

proportionality always exists between two quantities, etc.

Figure 5: HOMER: Sequence of usage of the Editors

In this experimental study, our aims were a) validation of the original task analysis underlying HOMER

and therefore, the resulting task decomposition, (b) discover what problems and misconceptions users

encounter when building simulation models, (c) assessing the HOMER’s usability in supporting the model

building process, and (d) defining possible improvements and faults of the present version.

2 The Experiment

The experiment consisted of two parts. In the first part, the participants subjects should construct a

simulation model of a U-tube system from scratch. The experimental setup consisted of handing out to

the subjects a documentation containing the assignment, a short explanation of the qualitative modelling

terms employed as well as a brief introduction to the HOMER environment. The second part consisted

of giving specific tasks to the subjects as well as partial model constructs. All participants should start

with the first part of the experiment. After thirty minutes if they didn’t have advanced in the assignment

of the first part the second part should be introduced.

Each session was recorded on video. The camera was pointed at the computer screen with the purpose

of capturing the complete sequence of activities performed by the participants and therewith, gathering

information about common behavior of a typical modeler. During the experiment, participants were

allowed to ask questions, in fact we encouraged them to do so. Also, during the model building process

participants were requested to think aloud. After completing the assignment, the subjects were asked to

5

give a summarizing reflection about the bottlenecks, flaws and possible improvements they encountered

while working with the tool. This last step was recorded as well. Each session lasted approximately one

hour. During the session, participants could use paper and pencil as well.

Participants

The participants were four people from our department (SWI). Two of them are researchers at our

department and the other two are master students. All four participants had had contact with qualitative

modelling.

3 Method

This experiment is about evaluating a model-building tool that supports the construction of simulation

models. Figure 1 gives an overview of all the aspects involved in such a task, while figure 6 focusses just

on those directly influenced by the support provided by the tool.

System

Identification,
Selection and
Abstraction

Mapping
System

Features

Model building tool

Influences

Assignment
(Model building goal)

Domain
Knowledge

Model
(Instantiated

Model
Ingredients)

Figure 6: Model Building Tool

The aspects concerning the Complexity of the assignment and Domain knowledge, which also affect the

model building process are not explored in the experiment. The reason for this is that the assignment is the

same for all participants and each of the participants already possesses the required domain knowledge to

solve the given assignment. These aspects therefore have little relevance in the outcome of the experiment.

For similar reasons, the assignment analysis and applying or gathering knowledge steps of the model

building process cycle(see figure 1) are also left out.

The doted arrow connecting the model-building tool to the process of identification, selection and

abstraction indicates the overall influence that the tool may have on that process. Since the tool is based

on a reasoning engine, which uses a specific modelling language, it is natural to expect that during the

identification, selection and abstraction of the domain knowledge, the users will somehow be influenced

by the possible ways of representing that knowledge.

The arrow connecting the tool to the mapping process represents the strong relation between the two.

Following well-known user interface design patterns, the tool provides support by only making available

correct modelling primitives, thus constraining the mapping of the system features in such a way that

the output always results in a semantically correct model. There are several possible ways in which this

support might be implemented. This experiment has thus also been used to evaluate the specific form of

support proposed in HOMER. With this purpose in mind, we will firstly look at the task analysis and

6

its resulting products (see Figure 5 for an overview). Secondly, the focus of the evaluation turns to the

major point of investigation within this experiment, which is discovering the model building problems

encountered by the user while building a system model. Finally, based on important usability principles,

we evaluate the User Interface. A discussion and extension of these issues is presented in the sections

below.

3.1 Conceptual Aspects of Model Building Activities

3.1.1 Validation of the task analysis

The process of building simulation models involves a series of tasks and subtasks. The end goal of this

process is the identification and representation of sufficient knowledge about a system in order to grasp

its behavior. The objects found relevant for inclusion into the model and the way they are introduced

may differ substantially from modeler to modeler. There are many correct ways of defining a model.

Consequently, a multitude of possibly correct task flows may result, differing in the order in which the

tasks are realized as well as in the hierarchical refinement into subtask.

In the Task Analysis Validation we validate the decomposition of the modelling process into seven

major classes1 (see Figure 5) which reflects the design decisions taken in the implementation of the

evaluated tool. Mainly, we wish to know if the tasks and subtasks, and the order in which they occur,

match the needs of the typical user.

Secondly, we want to sketch a profile of the typical modeler and understand the way in which the

elaboration of a model is usually structured, if the available tasks were correctly interpreted by the

subjects and if essential tasks were missing in the proposed task flow.

3.1.2 Model Building Conceptions

Model Building Conceptions focus on the identification of the participants’ problems in performing the

following (sub)tasks:

1. Scoping the Model: Identification of the knowledge relevant for the system at hand (In this

experiment the U-Tube System). E.g., What are the relevant quantities in the system?

2. Structuring the Model: Organization of the model (the relevant knowledge) into a working

simulation model which can be used to predict the system’s behavior. This step is quite critical. It

reflects the participant’s view of how to represent the desired system. An example of the questions

that might have to be answered at this stage is: How many model fragments are needed to represent

the U-Tube System?

3. Model Building Concepts: Understanding the concepts that constitute the model of a system.

E.g., What is the difference between attributes and quantities?

3.1.3 Representing The Model

Representing the model refers to representing the system’s phenomena in terms of the available ontology

for building simulation models. It may happen, for instance, that the modeler knows what he wants to say
1Entity, Attribute, Configuration, Quantity, Quantity Space, Model Fragment and Input System

7

but he doesn’t know how to say it using the available ontology. Representing the model (Mapping) plays

an important role into the cycle of model building activities. If the user assembled the system features

but still doesn’t know how to represent the features in the ontology for building simulation models they

will not proceed in the cycle. Therefore, a model building tool should help the users in this aspect, such

as, by preventing them to perform erroneous mappings.

3.2 User Interface - Overall Usability

In this experiment the subjects were required to go through the process of building simulation models.

In order to do so, they had to learn to manage a new tool, making the task more complicated. A proper

tool should facilitate the users’ comprehension and interaction regarding the solution of the problem.

Usability thus, plays a crucial role in attaining one of the major goals in a successful interactive system.

The Heuristic Evaluation method is used to describe the problems arising during the subjects interaction

with the interface. By considering Nielsens ten usability heuristics[6] we interpreted the user’s actions in

order to infer in how far these actions are related to usability issues in the interface’s design.

4 Results

The experiment consisted of two parts. However, it turned out that all the subjects performed satisfacto-

rily on the first part of the experiment, so that the realization of second part became unnecessary. Since

the official time to complete the experiment had already past, one participant didn’t complete the task of

creating an input system (scenario). In the following, the main results of the experiment are summarized

and categorized into three main classes: Conceptual Aspects of Model Building Activities (Task analysis,

Model Building Conceptions), Representation of the Model and User Interface Evaluation.

4.1 Task Analysis

Sequence of activities

Despite the fact that the existing activities in the highest level of the tool are concurrent (See figure 5),

the participants started by creating the hierarchy of entities. Just one participant, Raichu, didn’t create

a hierarchy of entities. However, he gave meaningful names to the entities when including them in his

model fragments. By doing so, we may conclude that he was aware about the existing entities in the

U-Tube system but he wasn’t aware that the definition of these entities should be done in a hierarchical

manner and in a dedicated editor.

In summary, examining the data, we can conclude that, essentially, the mainstream sequence of

activities was: Creation of a hierarchy of entities in the first place, followed by the creation of the model

fragments and finally the input system. Together, these three concepts constitute the main building

blocks in GARP and were also the ones, the subject focused on constantly. Other concepts, such as

configurations, quantities and dependencies played a more secondary role as they were more loosely

coupled and appeared only in the context of model fragments and scenarios. Although, in the context

of Model Fragments and Scenarios, the sequence of performed (sub) tasks was determined mainly by the

UI (For instance, the user couldn’t add a quantity to the model fragment if an entity, which the quantity

8

belonged to, was not selected.), still there was a mainstream sequence of activities 1)Add Entities, 2)

Add Configurations, 3) Add Quantities and 4) Add Dependencies.

A significant deviation of this sequence happened when some repair had to be made. Notice that

this sequence of activities partially matches the ideal sequence of activities implicitly suggested by the

tool. Looking at Fig.5, we can see that, at the highest level we have the (sub)tasks of creating entities,

attributes, relations and quantities which matches the sequence in which the participants’ completed the

various tasks. However it is clear that the creation of Quantity Spaces was not seen as an independent

task by any participant as it is suggested by the tool.

Understanding the activity that should be performed

The participant didn’t have problems in understanding the activities.

Missing tasks

Although, these were not the main problem in completing the task, some missing tasks were noticed or

pointed out.

• Two of the subjects made draws before specifying their models. This can be indicative that a

support for this task should be part of the tool

• The subjects pointed out that they missed a complete overview of the model constructed so far.

It was mentioned that if they were modelling a complex system it would be harder to understand

their models (For instance, because of the crossing lines, hierarchy of Model Fragments, etc)

• An interesting aspect noticed was that the subjects were often constructing a mental model of the

behavior of their system, particularly concerning how quantities are causally related. This suggests

that the tool should support the causal model view (editor) constructed so far.

4.2 Model Building Conceptions

Scoping the model

None of the participants had difficulties in specifying the U-Tube system’s entities. Remarkably, our data

analysis shows that all participants experienced difficulties in defining which quantities were relevant for

the model. Also, participants effort were in defining the relevant values for a quantity space, defining rele-

vant model fragments and defining when the model building task was finished (all the relevant knowledge

was specified). E.g.,

• E.g.:”What quantities to define?

Maybe we need pressure!”

”I don’t have any quantity. At least we need (quantity) pressure. I don’t know”.

”Do I need to model pressure and flow? I need flow. Maybe I need pressure”

• ”I am not sure if I need the value max...”

• ”Do I need another Model Fragment to define flow?”

9

• ”Am I ready now?”

”The main problem was in determining when you are finished. You need to be aware of what you

have already done and what you still need to do”.

Structuring the model

The participants were not sure about structuring their models. Sometimes they were unclear about where

to add a knowledge item in the model. For instance, a participant was confused about when to specify a

quantity’s value in a model fragment. Similarly, participants were in doubt about which quantities should

be added in a specific model fragment. Still regard to the quantities, participants were in doubt about

which quantity space should be given to a quantity and, also defining which entity holds a quantity. E.g.,

• ”I didn’t define values in the Model Fragment. Do I need to do it for the model fragment be

applicable?”

• ”I don’t know what QS to give to height and I want to say that one height is bigger than another”

• ”(Looking at the mf) I don’t know if I need the quantity flow in this model fragment.”

• ”I wonder if I need (quantity) Level as properties of the container or the liquid entity”

Model Building Concepts

Sometimes the subjects lacked an understanding of the important model building concepts. A participant

was confused about the meaning of the concepts attribute and quantities. Another time, a participant

wasn’t aware of the difference between the conditions and consequences in a model fragment. A partici-

pant didn’t know the relation between instances in a scenario with the ones in the model fragments. Still,

a participant was confused about the difference between two quantities with the same quantity space

values. E.g.,

• ”Container has height...”

then, the participant selected Attribute definition. Therefore, when he should specify the attribute’

values the following happened: ”Value (?) - I don’t know anything about value. I just want to say

that the height of one container is bigger than the other.” 2

• Difference between two quantities with the same QS Values

E.g.:”Are quantities with the same values-name equals?”

• ”It was not clear to me that conditions in the model fragment include entities”

• ”should the names of entities in the input system match with the names given in the MF?”

4.3 Representing the Model

The results also show that the subjects had problems in specifying the knowledge using the available

ontology. During the experiment, a subject tried to add a configuration (relation) between two quantities.

This shows that there was a confusion of the meaning of configuration once that this can be done just
2At this point the experiment supervisor intervened and explained that what he meant was a quantity

10

between entities. Also, in some cases, subjects did not understand the conceptual difference between an

inequality and a proportionality. Some examples are given below.

• ”How do I say that there is a Flow due to the difference in the amount of water?”

• ”I want to represent that PressureDifference is the difference of the two (quantities) levels.”

• ”Now I expect proportionality. I mean the pressure difference is proportional to the level difference”

4.4 User Interface

This section summarizes the evaluation by emphasizing the more significant usability problems. The

evaluation and judgement of each concern or problem is done in compliance with Nielsens ten usability

heuristics.

4.4.1 Visibility of the system’s status

The ”New” button in the main window mislead two of the subjects. As the system doesn’t show that

the user is working on a new model when it is initialized, the subjects wondered what the status of the

system was.

Inside the Quantity Builder, when intending to create a new quantity, while all subjects typed in the

quantity’s name into the name field, they failed to realize that the quantity would only be created by

pressing on the ”Add” button. It sometimes happened, that the user thought s/he was creating another

quantity, when s/he actually was editing the previous one.

4.4.2 Match between system and the real world

In the main window the menu selections matched the terms commonly used by the subjects. The

”Configuration definitions” option was one exception. This option enables users to specify relations

between entities but it was not clear to the subjects.

Usually, when specifying a correspondence, it should suffice if one says that Quantity A corresponds

to Quantity B. In HOMER, matters are somewhat complicated by the fact that a correspondence has to

be specified by the selection of the associated Quantities’ Quantity Spaces. This feature also was confused

by the participants.

4.4.3 User Control and Freedom

The user must use the system as it is, there is no customization available.

4.4.4 Error Prevention

The Error Message in the creation of a Quantity without an associated QS confused the subjects. Espe-

cially after having invoked the QS Editor from within Quantity Editor in order to create the quantity’s

quantity space. They reckoned it should have been automatically associated to the Quantity that was

being created. Frequently, this misunderstanding lead them not to finish the task or to loose the quantity

entirely.

11

When adding an object to a model fragment or scenario the last added element is always selected by

default, which makes the subjects to add some elements to the wrong font.

4.4.5 Consistency and Standards

Looking at the Editors from the highest level, only in the Quantity Editor the user cannot create an

object per se. In order to create a quantity it must be associated with a Quantity Space. This caused a

confusion among several of the subjects.

In the Entity Editor one of the subjects expected a ”New” button in order to create a new Entity.

There is none. Instead there is the ”Add Child” button. At the same level in the others editors, however,

the subjects noticed that there is a ”New” button. According to them this was not consistent.

4.4.6 Recognition rather than recall

When adding objects (attributes, configurations and quantities) to the Model Fragments or to the Input

System, the user has the option of editing these objects inside their original editors. However, with the

resulting proliferation of windows, the users would get lost and not know exactly at which step of the

creation of their model they were. Also, the distinction between the Editor and the Creator was not

always apparent.

4.4.7 Flexibility and efficiency of use

None of the users realized how to proceed in order to set up a value for a quantity.

4.4.8 Aesthetic and minimalist design

In a Model Fragment and Input System, the option of hiding and showing information wasn’t explored

by the subjects. Therefore, when adding a quantity all information concerning it (Quantity Space and

Derivative) was also added to the window even if it was not relevant. Moreover, two of the subjects

complained about too much information on the screen.

4.4.9 Help users recognize, diagnose, and recover from errors

Most of the errors were solved by repeated trial and error attempts. The system is rather deficient in

providing help at these times. On several occasions the experiment’s supervisor had to intervene in order

for the subjects to continue. A subject selected three objects to add a dependency to. There isn’t any

help in regard to this error.

4.4.10 Help and documentation

A printed version containing Help about the system’s functionality and model building terms was available

to the subjects. However, none of them did consult it.

12

5 Discussion And Future Directions

Our major goal in performing the experiment presented in this paper was in investigating the main

problems users encountered when building simulation models. Additionally, we wanted to validate the

task analysis underlying the implemented system and the resulting task decomposition.

HOMER provides all necessary modelling primitives as well as support to assist the user in the model

building process. Before HOMER, the only way to build simulation models (in the context of GARP

simulation engine) was by using text files. In this way, a lot of expertise is demanded from the builder

not only in formalizing his model correctly but also in taking care of syntactic details such as comas,

parenthesis etc. HOMER allows graphical representation of concepts and their relationships. In addition,

it provides the means of representing knowledge in a simple and intuitive visual form. The results shows

that the visualization tools help users focus on performing a specific task.

Based on the patterns in participants data noted above, two features will be the focus of our future

research. First, the design of a support module that can guide the users through of the model building

process. The support module is intended to reduce the cognitive load as well as to give to the user more

confidence in the process of model construction. To be used in educational settings, the support module

should incorporates support in terms of model content and also knowledge about the system status. It

means, being able to keep track of the users actions, reasoning about them and providing feedback to the

users. Second, the design of a flexible model building tool that can support and maintain intermediate

models for the user and, also providing the user with a global overview of certain model parts. For

instance, showing how all the model fragments that have been created will interact and also, it was

apparent in the results that is helpful to provide the user with a ’causal model viewer’. This would allow

the user to investigate if and how the causal dependencies, that have been defined in the different model

fragments, are related (thus, without running the simulator first). Additionally, all the improvements

related to the user interface usability and functionality should get attention in a new design.

References

[1] Homer 2.0 gebruikers documentatie. Technical report, SWI/UvA, 2001.

[2] Homer 2.0 technische documentatie. Technical report, SWI/UvA, 2001.

[3] B. Bredeweg. Expertise in qualitative prediction of behaviour. PhD thesis, University of Amsterdam,

Amsterdam, The Netherlands, March 1992.

[4] K. D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85–168, 1984.

[5] V. Bessa Machado. Towards understanding model building complexity. Technical report, SWI/UvA,

2001.

[6] J. Nielsen. Usability Engineering. Academic Press, San Diego, 1998.

[7] C. Schut and B. Bredeweg. Supporting qualitative model specification. In Proc. of 2nd International

Conference on Intelligent Systems Engineering, Technical University of Hamburg, Hamburg, Germany,

September 1994.

13

14

 15

Aggregation of Qualitative Simulations for Explanation

Anders Bouwer & Bert Bredeweg

Department of Social Science Informatics, University of Amsterdam
Roetersstraat 15, 1018 WB, Amsterdam, The Netherlands

E-mail: {anders, bert}@swi.psy.uva.nl

Qualitative simulations can be seen as knowledge models that capture insights about system behaviour that
should be acquired by learners. A problem that learners encounter when interacting with qualitative
simulations is the overwhelming amount of knowledge detail represented in such models. As a result, the
discovery space grows too large, which hampers the knowledge construction process of the learner. In this
paper we present an approach to restructure the output of a qualitative reasoning engine in order to make it
better suited for use in interactive learning environments. The approach combines techniques for
simplifying state-graphs with techniques for aggregating causal models within states. The result is an
approach that automatically highlights the main behavioural facts in terms of simulation events and
simplified causal accounts, while leaving the option for the learner to explore the aggregated constructs in
more detail.

Keywords: Qualitative Simulation, Model-Based Reasoning, Automated Abstraction, Explanation
Generation, Intelligent Learning Environments

1. Introduction
This paper addresses the problem of making qualitative simulations of complex systems easier to understand for
learners. The simulations generated by qualitative reasoning engines are often difficult to understand, because
these models capture a lot of detail about the structure and behaviour of a system.

Previously proposed solutions to this problem can be grouped into two classes. One group tries to generate less
complex simulations to begin with, while the other group tries to summarize the results of complex simulations
afterwards. In the case of the former, the idea is to use information needs (such as user questions) as guidance.
For instance, given a particular question about the behaviour of some system, a parsimonious simulation can be
generated that does not necessarily account for all possible behaviours of that system, but that is sufficiently
detailed to address that particular question (e.g. Falkenhainer & Forbus, 1991; Rickel & Porter, 1997). Mallory
et al. (1996) present ideas within the second group of approaches. By analysing the behaviour paths in a state-
graph for certain features, multiple states can be grouped into a ‘single’ state, simplifying the graph as a whole.
De Koning et al. (2000), also within the second group, take a rather different approach when they aggregate the
causal model within a state. Although this approach significantly reduces the complexity of the causal model,
the link with important state-graph features (as discussed by Mallory) is missing, because the aggregation is
always applied within a single state of behaviour.

We view a qualitative simulation as a knowledge model that captures certain insights that a learner should
acquire. This model, made by a teacher or with the help of a teacher, must therefore be treated as a given, it
cannot be reduced beforehand. This implies that we need an approach from the second class, namely one that
takes the output of a reasoning engine and makes it easier to understand for a learner. Specifically, we combine
the ideas from Mallory et al. (1998) and De Koning et al. (2000), and use them not only to construct a simplified
state-graph, but also to create a simplified account of that graph in terms of the underlying causal relationships.
In addition, we provide the learner with the possibility to open up the aggregated constructs, so that the learner
can also explore the simulation results in more detail. Our approach can be regarded as a hierarchically
structured simulation model that simplifies the discovery process for learners by highlighting the important
behavioural facts.

The content of this paper is as follows. Section 2 introduces a taxonomy of events, describing how the behaviour
of a simulated system can be analyzed hierarchically in terms of events. Section 3 explains how the notion of
events on different levels of aggregation can be used to select interesting information while abstracting from the
rest. Section 4 discusses the differences with respect to previous work, as well as directions for further research.

 16

 State Graph Events Value Events Inequality Events Structure Events Model Fragment Events Causal Events

Global Simulation Level Start and end states Different path
behaviours

Different path
behaviours

Different path
behaviours

Different path
behaviours

Input can lead to any
end state

 Reuniting of paths Common behaviour Common behaviour Common behaviour Common behaviour Different path
Behaviours

 Global max/minimum Common behaviour

Path Level Sequence of transitions Sequence of events
below

Sequence of events
below

Sequence of events
below

Sequence of events
below

Begin may lead to end
state

 Recognition of branches Repetition of events
below

Repetition of events
below

Repetition of events
below

Repetition of events
below

Sequence of events
below

 Path max/minimum Repetition of events
below

Path Segment Level Sequence of transitions Sequence of events
below

Sequence of events
below

Sequence of events
below

Sequence of events
below

Begin leads to end state

 Repetition of events
below

Repetition of events
below

Repetition of events
below

Repetition of events
below

Sequence of events
below

 Segment max/minimum Repetition of events
below

Local Level Outgoing branch Reach value and stay Become equal Entity (dis)appears Situation becomes
(in)active

Qx has pos./neg./no
effect on Qy

 Incoming branch Move from value Become greater Entity changes Situation changes dQx has pos./neg./no
effect on Qy

 Cross value Become smaller Attribute (relation)
(dis)appears

Process becomes
(in)active

 Reach extreme value Attribute (relation)
changes

Process changes

State & Transition Level Momentary states Value Equality Entity exists Process is (in)active Pos/neg. influence of
Qx on Qy

 Interval states Derivative Inequality Attribute exists Description view is
(in)active

Pos/neg. proportionality
from Qx to Qy

 Momentary transitions Value transition Inequality transition Attribute relation
exists

(De)composition view is
(in)active

 Interval transitions Qualitative state is
(in)active

Figure 1. Event types at different levels of aggregation.

 17

2. A taxonomy of simulation events
Our goal is to make detailed descriptions of system behaviour easier to understand for learners, by pointing out
patterns, and abstracting information using such patterns. As the basis of our method, we decompose behaviour
into events, which can be causally and temporally related. We distinguish different kinds of events, both in
terms of categories (the type of information) and aggregation level (the degree of abstraction). To this end, we
have devised a taxonomy of events, as shown in figure 1. The contents of the matrix figure will be discussed in
detail in the next two subsections.

2.1. Levels of aggregation
The rows of figure 1 denote the different levels of aggregation, which will be discussed from bottom to top,
because this is the order in which they are derived.

State and transition level: this level contains state descriptions and transition specifications, the representations
used by the simulation program, in our case GARP (Bredeweg, 1992). Each state specifies the structural
elements and relations which hold at that moment or time interval, the quantities along with their values and
derivatives, the mathematical and causal relationships between quantities, and the active model fragments
(representing situations, or processes). Transitions specify essentially which quantity values or inequality
relationships change (in a qualitative sense), but domain-specific rules may be added to introduce structural
changes as well (e.g., the lid of a container may open when the pressure exceeds some threshold). Because the
information at this level is the output from the simulator, it functions as the bottom level for the higher levels of
aggregation.1

Local level: this level comprises two (or three) states and the transition(s) in between. It largely corresponds to
Mallory’s notion of trajectory (1996), although he focuses mostly on value and derivative events, while we
include other types of events as well. Like the transitions on the previous level, this level deals with the
difference between adjacent states, but it does this in a more integrated way. A transition specifies the basic
changes from one state to the next, in terms of quantity values and inequality relationships, but it does not fully
specify the successor state. Hence, not all the differences between adjacent states (like the situation description
changing, or processes becoming active) are included in a transition. On the local level, also these changes are
explicitly represented.

Path segment level: this level aggregates successive events until multiple possibilities arise, i.e., a branch
occurs in the state-transition graph. This level contains the same types of events as the path level (the next
level), but it is interesting as an intermediate level for explanation purposes. When a simulation contains a path
segment (i.e., a state sequence without branches) from sm (possibly via sm+1, sm+2, …) to sn, we can say that the
situation at sm has led to the situation at sn. When we consider a longer path which includes a branching point,
e.g., the path sm to sn+1a, while there is another transition from sn to sn+1b, we can no longer say that sm has led to
sn+1a, because it could have led alternatively to sn+1b (see figure 2).

S
m+1m

n+1a

n

n+1b

S

S

S

S

Figure 2. Path segments vs. paths. The path from Sm to Sn is also a path segment, but the path from Sm to Sn+1a
(or Sn+1b) is not, because it includes a branching point.

1 While calculating the simulation results, the program uses even lower-level internal representations, but these are not
interesting for our purposes.

 18

Path level: this is a generalization from the path segment level, allowing branching points to be included.
However, like the path segment, a path is still a strict sequence of states and transitions, so for every branching
point, only one of its successors is included. About a path, one can say that the begin situation may lead to the
end situation. Also, for a path, one can talk about repetitive, or cyclic behaviour, if present. When the begin and
end of a path are also global begin and end states in the simulation, such a path represents a possible behaviour
of the system simulated.

Global simulation level: this level includes all alternative paths, if there are any. If the simulation results in
only one path, there is only one possible behaviour of the system modeled, given the input to the simulator. In
many cases, however, the input or the model does not fully specify the behaviour in advance, and multiple
possibilities will arise, creating branches in the state-transition graph. At the global simulation level, we can
look at the differences between such alternative paths. In some cases, alternative paths only differ with respect
to the order in which events occur, but in other cases, alternative paths may contain very different events
altogether.

2.2. Event type categories
With these levels of aggregation in mind, we now focus on the different event type categories that we
distinguish in the different columns of figure 1.

State graph events: on the state and transition level, states and transitions can be momentary or take some
interval of time. On the local level, it’s also possible to recognize branching points when there are multiple
transitions from, or to the same state. On the path segment level, there are no branches. On the path level, there
can be branching points, and also cyclic behaviour is recognized. On the global level, paths branching out and
reuniting again can be recognized, as well as global start and end states.

Value events: at the state and transition level, every state specifies the value and derivative of every quantity in
that state. On the local level, Mallory et al. (1996) has introduced some event types in this category. The
information of two states is combined to form events, such as reach value and stay, or move from value. For
some events, it’s necessary to consider three successive states, because they form a more natural whole than any
combination of two, e.g., a maximum requires a state in which a quantity value is increasing, a state in which it
is steady (this may be a momentary state, or a state lasting for an interval of time), and a state in which it is
decreasing again (Mallory et al., 1996). At the path (segment) level, these events can be further aggregated by
chunking continuous or repetitive developments, abstracting where necessary from local maxima and minima to
path (segment) level extremes. At the global simulation level, the differences and commonalities between
different behaviours can be determined, as well as global extremes.

Inequality events: in the individual states, (in)equalities are specified between pairs of quantities, if applicable.
In the state transitions, changes in these (in)equalities are specified. On the local level, these are essentially
preserved, with an exception for the case of a continuous change from Qx < Qy via Qx = Qy to Qx > Qy (or
vice versa): this is chunked to a change from Qx < Qy to Qx > Qy. This kind of chunking may also occur on the
path (segment) level, if the changes are spread out over more than three consecutive states.

Structure events: every state specifies the structural constellation of the system modeled, in terms of entities
and relationships. Whenever an entity or relationship (dis)appears, or changes, this constitutes an event on the
local level. Since our qualitative simulation engine is geared towards representation of change in terms of
varying quantities rather than spatial information, not much further aggregation is possible in this category.

Model fragment events: model fragments specify situations and processes, although the state and transition
level contains a more fine-grained typology. When its conditions are met (specifying structural, value or
(in)equality constraints), a model fragment becomes active in a particular state, potentially introducing more
information. A process model fragment typically introduces a flow quantity influencing other quantities which
are often involved in the triggering condition (e.g., T1 > T2 introduces a heat flow). On the local level,
processes can become active or inactive, and situations may change. Since model fragments are organized in an
is-a hierarchy, subtle changes (e.g., a change in model fragments localized low in the is-a hierarchy) can be
distinguished to some degree from more extensive transformations (i.e., a change in model fragments higher up
in the is-a hierarchy). On the path (segment) level, intermediate model fragments may be abstracted when they
are at the same level in the is-a hierarchy as the ones occurring in the begin and end of the path (segment). On

 19

the global simulation level, an overview is possible of all situations and processes which can occur, highlighting
the commonalities and differences between alternative paths.

Causal events: on the state and transition level, causal relationships are specified between quantities potentially
influencing each other, or when they are proportionally related. However, since causal relationships may be
inactive, and they may have opposing effects, their expected effect does not always occur. It’s necessary to look
at the local level to see which causal relationships did actually have an effect, and which were submissive (De
Koning et al., 2000), i.e., did not have an effect. On the path segment level, some of the local events can be
connected to form a causal chain of events taking place over multiple states, e.g., a temperature difference
introduces a heat flow process, causing the temperature and pressure to rise in statem, the pressure to reach its
maximum in staten, the container to explode in state and the fluid to leak out in statep, the table to get wet in
stateq, etc. Since a path segment does not include branching, we can say that the situation at the begin of the
segment must lead to the situation at the end. On the path level, a path can include a branching point; in that
case we can only say that the begin may lead (instead of must lead) to the end. On the global level, it’s important
to realize that the input to the simulator can lead to any of the end states via any of the possible paths, so we can
only make causal statements about what all end states have in common.

3. Hierarchical abstraction of qualitative simulations
Now that all event types have been introduced, this section will describe their role in the abstraction process to
facilitate the communication of the simulation results and underlying causal explanations. To relate our
discussion more clearly with previous work, we have divided this section in two parts: aggregation of the state-
transition graph, and aggregation of causal models.

3.1. Aggregation of the state-transition graph
The number of states generated in a simulation depends essentially on the scope and level of detail of the model:
the number of independently varying quantities (responsible for branching), the number of qualitative
distinctions in the quantity space of these variables, and the number of causal relationships included in the
model. While any of these distinctions may be considered interesting for future users by the model builder, or
may be necessary to calculate results further along a causal chain, not all of the distinctions matter at the time of
presenting the results. The original state-transition (or behaviour) graph that results from a simulation can
contain many (tens, hundreds or even thousands) behaviours, but as soon as the number is larger than a handful,
it becomes difficult to gain an overview of what happens, especially when the state-transition graph contains
branching. Reduction of the state-transition graph helps learners to gain an overview of the results, while parts
of the graph may be selected by the user for further expansion, thereby giving access to the underlying details.

We distinguish three main methods of graph reduction: (1) abstracting from particular domain structures; (2)
abstracting from particular kinds of events; (3) abstracting from temporal information. The first method,
abstracting from particular domain structures, is very powerful, as shown by the following. Assume we’re only
interested in one of the three subsystems involved in the example simulation; now we can abstract away
everything from our example simulation trace except the information pertaining to that subsystem. Suddenly, of
the 19 original states, only 6 states remain, because the other states did not differ from the remaining states with
respect to the subsystem of interest. Although we acknowledge the importance of this method, it has been
treated in some detail by Mallory et al. (1996), and it requires (user) specification of interests. In this paper, we
therefore focus largely on the second and third method of abstraction.

An overview of the top-level algorithm and the results of the different steps is shown in figure 3. We use two
main principles behind each step in the algorithm: (1) we prefer linear descriptions of what happens, and
abstract from alternative lines of events whenever possible; (2) we focus on begin and end of event sequences, if
the intermediate stages are mostly continuous. In the following subsections, the specific techniques illustrated in
figure 3 will be described in more detail. The example simulation that is used throughout this section is based on
a re-implemented model of the Cerrado Succession Hypothesis model as originally presented in Salles &
Bredeweg (1997).2

2 Due to lack of space, and because we prefer to stress the generality of the approach, we do not go into more detail about the
domain model in this paper.

 20

17

14
19

15
13

16

18

12

1011

5

67

4

9

8

2

3

1

input

The original state-transition graph as
output from the simulator, consisting of
19 states, 43 transitions, and 896
behaviour paths. The first step in the
aggregation process actually adds more
information, namely the differences
between states. The second step is
performing transitive reduction (see text
for details).

17

14
19

15
13

16

18

12

1011

5

67

4

9

8

2

3

1

input

The result after the first two steps,
consisting of 19 states, 25 transitions, and
only 24 distinct behaviours. The next step
reduces the number of paths by
abstracting from alternative orderings.
This is done by comparing the events in
reuniting branches, and creating higher
level transitions when they match.

17

14

1513 18

12

5

61
input

The result after aggregation of alternative
orderings, consisting of 9 states, 7
transitions (of which 2 are aggregated),
and only 2 distinct behaviour paths. The
final step, aggregation of sequence,
compresses the events in a path until a
branching point occurs, thereby reducing
the number of states.

14 181

input

17

The end result at the highest level of
abstraction, consisting of only 4 states,
and 3 aggregated path segments, which
together summarize the two behaviours.
Further abstraction would only leave the
begin and end states.

Figure 3: Steps in the process of aggregating the state-transition graph

Transitive Reduction
Transitive reduction (as expressed by the first condition of algorithm 1) is a well-known technique in graph
theory; it reduces the number of edges, while preserving all information, provided that the edge-relationship is
transitive (e.g., the hierarchical is-a relationship). In our case, the edges represent transitions which can also be
considered transitive in some sense: the information that state 7 can be reached directly from 3 can be
abstracted, because 7 can also be reached via some other path (e.g., 3 → 4 → 7). There is an exception,
however, when the events in the direct transition don’t match the events in the longer path. In that case, the
shortcut involves less, more, or different events than the longer path, and they should be considered as
alternative behaviours. Therefore, the second condition is added to ensure that we only abstract away transitions
in which the same events occur as in the longer path. The only information we lose after transitive reduction is
that events may occur simultaneously.

Algorithm 1. Transitive reduction of the state-transition graph:

Abstract from (i.e., remove) all transitions T (= X → Y) for which holds:

There is a path P from X to Y which does not contain transition T
AND
P contains the same events as T.

 21

Since this technique involves looking at transitions, the events that should be considered in the comparison of P
and T are at the local level. All events can be considered, or a subset of interest. Some events (like local
maxima) may exist only in the longer path because they involve two transitions; in such cases, the second
condition does not hold. Note: in this step, only transitions are abstracted, not states.

Aggregation of alternative orderings
The previous technique abstracted away the occurrence of events simultaneously, if they also occurred in
sequence. We can generalize this idea of abstraction from sequence, by comparing the sets of events in different
branches which reunite again later, e.g., 15 → 16 → 18 and 15 → 19 → 18. If these different paths contain the
same events (in a different order), or when the events can be aggregated to the same events, we can perform
aggregation of alternative orderings, and see them as one aggregated alternatives transition, until the user is
interested in more detail and the order becomes important again. The algorithm is presented here as algorithm 2.

Algorithm 2. Aggregation of alternative orderings in the state-transition graph:

Find a group of paths P1 to Pn with the same begin-point (X) and end-point (Y), for which holds:

P1 to Pn contain the same events, or events which can be abstracted into the same higher level events
(following figure 1),

and do the following:
1. Add a shortcut edge from X to Y, to represent an aggregated transition, containing all (aggregated)

events occurring in paths P1 to Pn.
2. Delete every edge from the original paths P1 to Pn, unless:

a. the edge appears after an incoming branching point, OR
b. the edge appears before an outgoing branching point.

3. Delete states which have no incoming and outcoming edges anymore.
Repeat this process (including step 1, 2 and 3) until no more alternative paths can be found. We assume that the
procedure responsible for finding groups of equivalent paths starts with the shortest paths, so that the abstraction
is done bottom-up. The unless-conditions in step 2 of the algorithm are necessary to prevent deletion of an edge
when this would also cut off other paths than the ones abstracted.
Using this technique, both states and transitions are abstracted, thereby reducing the number of paths, or
apparent ambiguities.

Aggregation of sequence
In this step of the aggregation process, path segments (sequences of states without branching points) are
chunked into one aggregated sequence transition (the algorithm is straightforward, and omitted to save space).
This technique further reduces the number of states and transitions, but not the number of paths.

3.2. Aggregation of causal models
With the term causal model, we mean essentially the set of causal relationships between quantities occurring in
the simulation on the state level, but in a broader sense, also the causal relationships between higher level
events.
On the state level, we have influences and proportionalities between pairs of quantities. Because the network
consisting of these dependencies may be complex (involving tens to hundreds of relationships) it’s useful to
consider meaningful portions of it:

1. A quantity Qx (indirectly) influencing quantity Qy. Special cases of this include feedback loops, and/or
mediating quantities;

2. A quantity Qx directly influencing all quantities Qy1 to Qyn;
3. All quantities Qx1 to Qxn directly influencing one quantity Qy.

These three cases enable highlighting of linear propagation of an influence, an influence spreading in multiple
directions, and multiple influences combining, respectively. In combination, they can be used to explain why
any quantity Qx is increasing, steady, or decreasing.
When besides the dependencies themselves, also the quantities’ values and derivatives are considered, this
creates more potential for abstraction, as demonstrated by the aggregation technique of De Koning et al. (2000).
First of all, the status of each dependency can be labeled dominant, submissive, or balanced. This indicates
whether their effect is as expected, is dominated by other effects, or balanced out, respectively. The distinction
is used to abstract from all submissive dependencies, and focus only on the effects that lead to actual value
events. Second, causal chains are constructed in which non-branching sequences are chunked, and fully

 22

corresponding quantities (i.e., which behave in exactly the same way) are grouped together as one. Third, the
causal chains which do not directly lead to a state transition from the current state, are discarded.
The goal of De Koning’s abstraction method was to facilitate hierarchical diagnosis of learners’ reasoning, but
we believe that this approach is also useful for explanation purposes. However, we propose the following
changes to De Koning’s abstraction method, two minor, and two more important points.
Leaving out submissive relationships simplifies things a lot, but we think this should only be done when a
learner is already familiar with these relationships. Chunking sequences of relationships and grouping of fully
corresponding quantities are both useful, too, but when the aggregated quantities belong to different entities, this
may be a reason for keeping them separate. A more important point, however, regards discarding the causal
chains which do not directly lead to a state transition. This is not desirable for explanation purposes, because it
may disconnect an effect from its ultimate cause, as indicated by the following example. When an influence is
introduced in staten, this causes some amount Q (whose value currently lies in some interval, e.g., low) to
increase. This increase does not directly lead to a state transition, however (e.g., because other quantities reach
another qualitative value first), but it does so three states later, only then reaching the border of the interval low,
and changing to medium. De Koning’s mechanism would only include the causal chain from influence to the
changing quantity in staten+3, although the trend was already started in staten. Instead, we propose that a causal
chain is introduced as soon as the cause occurs, and that it is discarded only when it does not lead to any
transition event later on in the simulation. As De Koning et al. note (2000), humans often make inferences and
claims about events happening at some later point in time, not necessarily the first next state. Our suggestion
addresses this concern.
The second significant change with respect to De Koning’s mechanisms, is that we do not only include state
transitions as events, but also other types of events, most notably derivative changes. This allows us to explain,
on the local level, why a quantity Qx starts to increase, reaches a (local) maximum, or any other such type of
event. Although we include some extra information with respect to De Koning’s mechanism, we also allow
further abstraction, by glossing over continuous developments. For example, in our view, it does not make much
sense to explain why a quantity Qx keeps increasing, when the cause for it to start increasing has been explained
already, as long as the same influences are applicable.

4. Discussion, Conclusion and Further Work
In our work we use qualitative simulations of system behaviour as interactive knowledge models. Such
simulations are constructed by teachers, or with help of teachers, and capture insights that should be acquired by
learners while interacting with these simulations. However, qualitative simulations include so much detail that
learners may be overwhelmed by the amount of information. To fulfil the educational potential of qualitative
reasoning in interactive learning environments, they need to be equipped with abstraction techniques to select
the most interesting information from a qualitative simulation. To this end, we have presented a taxonomy of
simulation events, and hierarchical aggregation methods to determine the most interesting behaviour of the
simulated system. Our approach is more powerful than the work by De Koning et al. and Mallory et al., because
it includes more types of events, and extends to aggregation levels above the local level to include path
segments, paths and global views. It is less rigid than De Koning’s STARlight

 system because, like Mallory’s
work, it transcends the low-level state-transition view to determine which events are interesting. It is also more
flexible than Mallory’s method because (like De Koning’s methods) it does not require specification of user
interests beforehand.

The algorithms described in this paper have all been implemented in SWI-Prolog (Wielemaker & Anjewierden,
1992). The visualisation of the aggregated results is currently being implemented as part of the model inspection
tool VisiGarp (Bouwer & Bredeweg, 2001). Future work will focus on knowledge construction dialogues (e.g.
Aleven et al., 2001) during which the learning environment takes the initiative and uses the hierarchically
structured simulation model to actively support the learner in discovering the important behaviour features
captured in the simulation.

 23

References
Aleven, V., Popescu, O. and Koedinger, K.R. (2001). Towards Tutorial Dialog to Support Self-Explanation:

Adding natural Language Understanding to a Cognitive Tutor. In: Artificial Intelligence in Education
(AIED): in the Wired and Wireless Future. (eds) Moore, J.D., Luckhardt Redfield, R., and Johnson, L.J.
pages 246-255, IOS-Press/Ohmsha, Japan, Osaka

Bouwer, A. and Bredeweg, B. (2001). VisiGarp: Graphical Representation of Qualitative Simulation Models. In

J.D. Moore, G. Luckhardt Redfield, and J.L. Johnson (eds.), Artificial Intelligence in Education: AI-ED in
the Wired and Wireless Future, pp. 294-305, IOS-Press/Ohmsha, Osaka, Japan.

Bredeweg, B. (1992). Expertise in qualitative prediction of behaviour. Ph.D. thesis, University of Amsterdam,

The Netherlands.

Falkenhainer, B.C. & Forbus, K.D. (1991). Compositional Modeling: Finding the Right Model for the Job.

Artificial Intelligence, 51, pp. 95-143.

Koning, K. de, Bredeweg, B., Breuker, J., and Wielinga, B. (2000), Model-based reasoning about learner

behaviour. Artificial Intelligence, 117: pp. 173-229.

Mallory, R. S., & Porter, B. W., & Kuipers, B. J. (1996). Comprehending complex behavior graphs through

abstraction. In Iwasaki, Y., and Farquhar, A., eds., Proceedings of the Tenth International Workshop on
Qualitative Reasoning, 137–146. Menlo Park, CA, USA: AAAI Press.

Rickel, J., & Porter, B.W. (1997). Automated modeling of complex systems to answer prediction questions.

Artificial Intelligence, 93, pp. 201–260.

Salles, P., & Bredeweg, B. (1997). Building Qualitative Models in Ecology. Proceedings of the International

workshop on Qualitative Reasoning, QR'97. Istituto di Analisi Numerica C.N.R. Pavia, Italy, L. Ironi (ed.).
pp. 155-164.

Wielemaker, J. & Anjewierden, A. (1992). Programming in PCE/Prolog. Dept. of Social Science Informatics,

University of Amsterdam, The Netherlands.

24

25

Intelligent Agents an Approach to Supporting Multiple Model
Based Training Systems

Keith Brown, Nick Taylor, Yanguo Jing, Tariq Khan*

Intelligent Systems Lab
Department of Computing & Eletrical Engineering

Heriot-Watt University, Edinburgh, UK
 EH14 4AS

Tel. 00 44 131 451 3351
Fax 00 44 131 451 3327

keb@cee.hw.ac.uk
*Brunel University

Abstract

This paper presents an approach to using an intelligent agent architecture for a training system based on multiple
models. In this architecture, the domain model contains all the domain knowledge of the target application; the
user model contains all users' profiles. A methodology for organising the knowledge available is presented,
along with an approach to explanations, which we believe are central to good training systems. The design of an
intelligent agent based system for communicating this knowledge to various users in a relevant and context
specific way is described.

Keywords

Multiple Models, Agents, Intelligent Training Systems, Explanations

Introduction

Within most industries a large variety of different kinds of knowledge are observable in the activities of different
kinds of workers. The sum of all this knowledge may be described as expertise, which requires a wealth of
different representations. An organisation’s knowledge resource can be described in many ways, all of which
should be integrated into accepted work environments, e.g. with simulations of industrial processes, to get
maximum benefit for the entire organisation. Knowledge, so described, must be managed to prevent it from
decaying or becoming stale. Management of knowledge is the process of understanding an organisation’s
intellect and ensuring measures are in place to maintain access to knowledge. This involves learning, which is
the continual creation, evaluation, refinement and distribution of knowledge resources, and must be supported
through explicit communication and interaction of the workers in an organisation. Agents that can tackle this
problem are likely to form the backbone of many training and decision support systems in the future.

How knowledge may be described in a way that enables computer support for training and decision support is
considered here. The context for describing knowledge is to support communication of this knowledge to
workers through machine generated explanations. The communication process is essential in both decision
support and training; the challenge is to provide access to the organisation’s knowledge resources with relevance
to a particular situation that a worker is working in. Context is essential here, for it dictates the demands on a
worker’s abilities and skills and therefore the usefulness of the information retrieved.

The activities of a worker in industries are varied and can range from straightforward routines to highly complex
and cognitively demanding unique situations (Khan et al, 1997). Demands on a decision support and training
system, therefore, involve requirements to describe all of the following knowledge sources: standard procedures,
rules; basic principles, exemplars; instrumentation, technology. There are close relationships between work in
artificial intelligence on knowledge-based systems (KBS) and modelling and work on information retrieval (IR)
and databases. Whereas KBS are used mainly to solve problems, databases and IR systems are there to be a
repository of knowledge. The position is taken in this project that that knowledge-based techniques and

26

knowledge repositories together can be used effectively for constructing models of knowledge by following a
multiple models methodology in which different aspects of an organisation’s knowledge resources are described
in separate models. These must be supported with simulations that provide a way to activate the static knowledge
descriptions and perform expert reasoning. A modelling methodology has been used to provide the structure for
co-ordinating the various knowledge sources, and a model switching strategy has been produced within the
EXTRAS project (Khan et al 1997) to govern use of this knowledge. Full details of the modelling methodology
are provided in Leitch et al (1995). Here we briefly describe the modelling methodology, which assumes that
knowledge has been identified already in a useable format. This is extended with methods for identifying certain
kinds of knowledge resources for different purposes. Activities associated with the normal operations of a
process plant are focused on, and the procedural, associational and principles type knowledge are included.
Activities related to project work, design, testing, analysis, customer support, personnel, team work, etc., all of
which are equally important, are not modelled explicitly.

We will describe how a multiple models methodology serves an organisation’s on-going processes and helps
preserve and communicate its knowledge: multiple models can contribute to managing knowledge by modelling,
decision support and training. We will define a typology (modelling dimensions) for describing knowledge.
Personal experiences (heuristics) need to be recorded as well as professional knowledge (principles). Therefore,
multiple ways to describe the different elements of knowledge are suitable. A multiple models approach to
describing the well formularised abstract aspects of knowledge is presented.

The field of intelligent interface agents has emerged during the past few years to address the increasing
complexity of current software systems and is particularly suited to support of Intelligent Training Systems.
They can give timely, beneficial assistance to users by extracting and analysing relevant information from the
application domain knowledge and a user's profile. These agents, which each have their own role, can keep the
models up to date and control the interaction with the users. They are sometimes termed personal assistants.
Some of the existing interface agents focus on a user model based on a user's interaction history [Maes,
1994][Lau, 1999][Farrell, 2000]; some focus on user intent ascription [Brown, 1998]; Höök [1996] and
Bomsdorf [1996] try to decompose user tasks to make mappings between tasks and interfaces.

We propose a model based intelligent interface agent architecture, see Figure 1 to support interaction between
trainees, target application domains and interface agents. In this architecture, the Facilitator maintains a
knowledge base of the capabilities of a collection of agents. Agents, including the intelligent interface agent, the
target application and other agents communicate with each other through this Facilitator. The other agents
include a user model management agent, a domain model management agent and an explanation agent.

A domain model (DM) contains an explicit representation of the target application. The intelligent interface
agent (IIA) gets information from the domain model; it infers operations and sends instructions to the target
application. The domain model consists of a task model (TM), a procedural model (PM) and an associational
model (AM). The task model structures tasks in an AND/OR graph. The procedural model is an executable
representation of procedures, which are ordered sets of tasks or actions. The associational model links situations
to tasks or operations. These three components work together to represent the domain model.

0 cm

Figure 1: Model based intelligent interface agent architecture

Domain model

Task Model

Procedural
Model

Associational
Model

User Model

Interaction
Model

User
Profiles

Intelligent
Interface

Agent

Target
Application Users

FacilitatorOther

Interaction

Looking Over
The User's
Shoulder

Interaction
History

27

In order to provide explanations for the users, the intelligent interface agent also need to get the user's personal
profiles. The user model contains the user's information, which consists of an Interaction History (IH), an
interaction model (IM) and a user profile (UP). The user management agent records in the interaction history the
user's interaction with the target application. The interaction model represents a user's interaction habits with the
target application, which is inferred from the interaction history. The user profile contains the static information
about a user such as name, gender, knowledge level, etc. The intelligent interface agent (IIA) keeps track of the
users' interaction with the target application; combines the knowledge from the domain model and the user
model; decides upon assistance.

Modelling Methodology

Practical know-how and professional knowledge all need to be described and modelled in a multiple models
architecture. The view of the modelling process used here consists of several modelling choices which involve
the definition of many model properties. First, the Ontological choices reflect those aspects of knowledge being
modelled, such as where the knowledge comes from. Next, the Representational choices dictate how the selected
knowledge can be best represented. Also inherent in this dimension is Generality which specifies the level of
abstraction of the knowledge. The representational factor suggests that there has to be three fundamental types of
knowledge representation, to describe equations, rules and procedures. In addition to three representations, there
are three kinds of inference mechanism. Finally, the Behavioural choices consider aspects of the variables of a
model. The entire set of modelling dimensions allows a model to be described in an exact manner so that
differences between models are apparent along significant aspects.

Knowledge of an application domain can be segregated on the basis of scope into system, subsystems and
components. Within the same scope, taking into account a different number of parameters can create models
having different resolutions. The resolution of a model is high if the number of parameters considered in the
model is comparatively high, and is low if the number of parameters considered is less. Further, knowledge of
theoretical principles for the domain are best represented using groups of mathematical equations; heuristics
behind the operation of the system, subsystems and components are best represented as sets of IF-THEN rules;
and operating procedures are best represented using a procedural form, e.g., Petri-nets (Taylor 1990). By
adopting the various representational formalisms (equations, rules and procedures), models having different
generality can be created. Equation models are considered to be the most general form of knowledge
representation and procedures the least general as they are specific to situations. The efficiency of a knowledge
representation can be maximised by adopting the appropriate representational formalism.

In addition to scope, resolution and generality, we propose precision, which allows precise, less-precise or least-
precise behaviours to be generated from the models using precise, less-precise or least-precise values for
parameters with suitable quantity spaces.

The separation of knowledge and its encoding using the various representational formalisms has culminated in a
cubical framework, Figure 2, which is useful for organising the multiple models. Model switching involves
switching between the models within this cubical framework based on a strategy that is suitable for explanation
purposes. In most applications the framework would not be fully populated with cubes as some of the knowledge
would not be available. Any algorithms used need to be able to accommodate misssing cubes.

28

PRECISION

G
EN

ER
AL

IT
Y

SCOPE

Figure.2: The model cube

Explanation using EXTRAS concepts for explanation agent

EXTRAS (Khan et al 1997) advances existing explanation systems by using many different descriptions of
knowledge in generating dynamic explanations to recommend actions and justify practice. And by combining
this with an on-line documentation facility that provides frequently requested information, a robust information
retrieval capability is produced. The EXTRAS explanation strategy betters conventional approaches that just
trace the system’s reasoning, or vary presentation from text to graphics. These are insufficient for
communicating the heterogeneous knowledge needed to support different situations encountered by operators of
industrial plants. Changing presentation merely re-presents the same knowledge in a different way and fails to
enrich the information content of an explanation. EXTRAS extends current assumptions of explanation
generation by reducing explanation content to identifiable fragments of the corporate memory, and constructing
explanations by switching between multiple domain models to satisfy the demands of different situations. This
strategy needs a set of heterogeneous domain models from which to retrieve diverse kinds of knowledge
descriptions. Multiple domain models are foundational in the EXTRAS project; without these, and a principled
way of navigating the model space, it is not possible to generate meaningful explanations for the industrial
systems under investigation. There are many benefits for explanation from using multiple descriptive models of
knowledge.

Fundamental Considerations for a Domain System

Explanations can help communicate many kinds of knowledge, which include objective and subjective
professional knowledge described as procedures, associations and principles. Procedures can be compiled from
associations or can be based on basic principles. Often productions are used to represent associations in expert
systems: ‘If A Then B’ type of rules define associations between preconditions and effects. Associations alone
cannot give adequate didactic support, and causal relationships are better for tutoring because they provide
scientific justification for the association (Clancey, 1987). Associations are often deduced from basic scientific
principles, such as those for the laws of thermodynamics. One basic requirement for producing a domain system
is to consider what kind of knowledge is to be provided by the explanation system. Another is to decide how to
represent this knowledge. And a third consideration is how to present it (on-line documentation or dynamic
generation).

To summarise, explanations can be provided at different levels of expressiveness. Each level clarifies tacit
knowledge until the underlying principles for a domain are reached. Intelligent support should present all levels
of explanation to satisfy the requirements of different users. This is achieved by describing different knowledge
in suitable ways, i.e., procedures, rules and equations, although other representations, such as cases, are suitable
for more informal knowledge. With an explanation strategy based on multiple domain models, the main
requirement is to identify which model should be used to generate an explanation. That is, the problem is to
decide which fragment of the domain system is relevant and useful for a given situation. Therefore, EXTRAS

29

provides a prescriptive explanation model that describes situations and maps them onto domain models.
Situations are described using a refined representation of primitive tasks from the QUIC project (Leitch and
Stefanini, 1988). A classification of explanations is produced based on the refined set of tasks, which allows
access to different kinds of knowledge and domain models.

Classification of Explanations

A classification of explanations has been developed in EXTRAS. This classification is derived from well-
established research in the theory of scientific explanation (e.g. Hempel, 1942/1948) and research in multiple
modelling dimensions at Heriot-Watt University (e.g., Leitch et al., 1994). Each explanation type has a distinct
purpose that defines when that explanation is best. This is so that explanation types can be related to situations,
independently of any domain specific descriptions.

The Structure of Explanations

There are several characteristics that an explanation possesses: design, extent, focus, substance and knowledge.
These are examined below.

(1) design: can be either didactic or informational.
(2) extent: can be any of the primitive tasks, e.g., interpretation.
(3) focus: can be any of the stages of problem solving.
(4) substance: can be any of the hypotheses, e.g., causes, effects.
(5) knowledge: can be any of the knowledge kinds, e.g., principles, associations.

Model Switching

Switching between different domain models is useful for dealing with uncertainty and ambiguity during training.
It is realised that in a practical implementation, not all the elements of the domain system will be implemented,
either for time and money constraints or because those aspects of knowledge are not available. Therefore, the
model switching capabilities depends on the knowledge acquisition stage during which the models are
implemented. Another factor, therefore, in designing the domain system, is deciding which kinds of model
switching are suitable. A specific agent will be tasked with controlling the model switching.

Example1: If switching along the generality dimension is required, to alter the basis of problem solving,
there must be models available that represent procedures, associations and principles for the domain.
Without inclusion of these different kinds of knowledge and representations, the full pedagogical
benefits of model switching cannot be obtained.

Example2: If switching along the scope dimension is required, to shift focus onto different parts of the
system, there must be models available that represent different parts of the system. Any part of the
system not represented in a model cannot be explained or simulated within the reasoning process.
Separate models for each complete subsystem or component must be provided and indexed as a unique
model. However, there remains the possibility of generating new models of comparatively complex
systems from simpler atoms.

Example3: When the system is acting in a decision support mode, it must solve problems itself, and
therefore needs to utilise the most appropriate domain model for the problem. Within an application, it
might be decided to defaults to the procedure models level to find a procedure that can directly achieve
a task goal. If no procedures are suitable then switching to the association’s level to identify subgoals
that can be achieved by available procedures is useful. Should this fail to find a procedure then
equations models can be used to provide new facts for the situation, which help to better specify the
problem. With the new facts, the advisory system will return to the associations level to apply new
associations, and hence determine subgoals that can be achieved with available procedures. This entire
sequence relies on each of the models being available, and so the application has the responsibility of
ensuring that the models needed are available.

The intelligent interface agent gets all the knowledge of the target application from the domain model. The
model translation into rules is quite straightforward [detail see Jing 2001a].

30

The User Model Design Method

The user model contains information about the user. It consists three parts - the Interaction History, the
interaction model and the user profile. The interaction history records the user's interaction history with the target
application. The interaction model represents a user's interaction habits inferred from the interaction history. The
user profile contains the relatively static information about a user such as name, gender, knowledge level, etc.
This information is the main knowledge for the user classification, we will mention this in the conclusion
section. The user model management agent manages the user model including modify the interaction history, the
interaction model and the user profile.

As a user interacts with a system, many events are generated and operations undertaken. All these events and
operations constitute this user's interaction history. An interaction history consists of several sequences of
operations, which are called action sequences. An action sequence is made up of a user's actions and system
events. The interaction model is inferred from the interaction history to represents a user's interaction habits. At
the moment, the interaction model inferring method takes into account the order of two actions (or events) in an
operation sequence. There are two reasons, firstly, as the number of the actions whose order is taken into account
increases, the computational effort increases exponentially. Secondly, the order between two actions can be used
to infer the order among several (more than two) actions, as is shown in the prototype and experiments section.

Prototype and Experiments

We implemented this method in a system for age-related macular degeneration (ARMD) for diagnosis of eye
disorders [Jing, 2001] using Java and Jess [Watson, 1997]. The main task of users of this system is to identify
indicators of ARMD. A camera is used to obtain a raw image of a retina. Detailed information about the whole
domain model content can be found in [Jing 2001a]

The user model management agent keeps track of the user's actions and the system's events, modifies the
interaction history with new actions and new events. The interaction model inference is quite straightforward
once the inference algorithms are implemented and the interaction history is provided. As an experiment, we
record 102 action sequences of a user in the interaction history, using the IM inference engine we get the
Interaction Model shown in Figure 3. This has demonstrated that the agent approach to support of a multiple
model based training system is feasible. The different agents can be used for both decision support and training.
In addition the idea of autonomous agents allows extra agents to be used for model maintenance and execution.
The implementation of the agents to generate the explanations, which will be central to a good training system,
remains to be done.

Figure 3 The ARMD System using model based intelligent interface agent architecture

31

Conclusions

In this paper, we have presented a multiple model based intelligent interface agent architecture to provide
beneficial and timely assistance to trainees. A prototype system has been developed. The domain model and the
user model have proved quite functional and helpful enabling the intelligent interface agent to give assistance to
trainees. The methods presented in this paper produce good results according to our experiments. There are still
several issues that need to be investigated.

References

Bomsdorf B, 1996, Christian Geiger, "Task as Agents: prototyping task models", Proceedings of Sixth
Australian Conference on Computer-Human Interaction, IEEE Press, pp. 286-293
Brown S. M., 1998, A decision theoretic approach for interface agent development. PhD thesis, the Air
Force Institute of Technology, Air University, USA.
Cawsey, A. (1993). Planning Interactive Explanations, International Journal of Man-Machine Studies,
38, 169-199.
Clancey, W.J. (1987). Knowledge-Based Tutoring: The GUIDON Program. The MIT Press.
Farrell R, Breimer E, 2000, "A task-based architecture for application-aware adjuncts", Proceeding of
International Conference of Intelligent User Interfaces'2000, pp. 82 - 85.
Hempel, C.G. (1942). The Function of General Laws in History, The Journal of Hempel, C. G. (1948).
Studies in the Logic of Explanation, Philosophy of Science 15 135-75. Reprinted in C.G. Hempel (1965).
Aspects of Scientific Explanation: and other essays in the philosophy of science, The Free Press.
Höök K, Karlgren, Wærn, Dahlbäck, Jansson, Karlgren, and Lemaire, 1996, "A Glass-Box Approach to
Adaptive Hypermedia", In Int. Journal on User Modelling and User-Adaptive Interaction, Vol. 9, pp.
157-184
Jing Y, 2001a, "The Domain Model Design in Model based (AMI2) Architecture", Department of
Computing & Electrical Engineering, Heriot-Watt University, Technical Report, RM/01/4.
Jing Y, 2001b, "The Interaction Model Construction method in Model based Intelligent Interface agent
(AMI2) Architecture", Department of Computing & Electrical Engineering, Heriot-Watt University,
Technical Report, RM/01/5.
Khan, T.M., Brown, K.E. and Leitch, R.R. (1997). Didactic and Informational Explanation in Simulations
with Multiple Models, in B du Boulay and R Mizoguchi (Eds.) Artificial Intelligence in Education,
Knowledge and Media in Learning Systems, 355-363.
Lau TA, Weld DS, 1999, "Programming by demonstration: an inductive learning formulation",
Proceeding of International Conference of Intelligent User Interfaces'1999, pp. 145-152
Leitch, R. and Stefanini, A. (1988). QUIC: a development environment for knowledge based systems in
industrial automation, In Proceedings of Fifth Annual ESPRIT Conference (ESPRIT 88), ed. Commission
of the European Communities, vol. 1, 674-696,
Leitch, R.R. et al. (1995). Modelling Choices in Intelligent Systems, AISB Quarterly No 93, 54-60.
Maes P, 1994, "Agents that reduce work and information overload", CACM, Vol. 37, No. 7, pp. 30-40
Taylor NK, 1990, “An Expert System To Assist Design”, PhD Thesis, University of Nottingham
Watson M, 1997, Intelligent Java Applications for the Internet and Intranets, Morgan Kaufmann, pp.
155-178

32

ITS Workshop on Model based reasoning

33

Object-oriented patterns for model-based reasoning

Tariq M Khan

School of Business and Management, Brunel University, UB8 3PH, UK.

tariq.khan@brunel.ac.uk

Abstract:

An attempt is being made to catalogue the key patterns that recur in the design of model-based

reasoning systems so that reusability and good practice can be capitalised upon. Accordingly, some

object-oriented patterns are presented here for the basic elements of models. These patterns cater for

representing variables and parameters, both qualitative and quantitative, and associating them with the

model elements they define. Further work will investigate relationships among the components of the

patterns, e.g. dependencies between parameters.

Object-oriented patterns, model-based diagnosis.

Introduction

The development of models for use in model-based reasoning (MBR) is a laborious activity that could

be simplified if models were made reusable. To this end, one of the most important recent

developments in software engineering, software patterns, is considered here for potential application to

model-based systems. Since the availability of the first collection of patterns (i.e. Gamma et al, 1995)

the object-oriented community has worked to discover and record new patterns to capture common

good practice in software development. Areas of application that have yielded patterns include design

(Gamma et al, 1995), analysis (Fowler, 1997), architecture (Buschmann et al, 1997) and interface

(Borchers, 2001). Although the exact form of a pattern differs in each of these areas the common

thread is the motivation to provide a resource of proven solutions to common problems so that systems

may be developed to accepted standards using common vocabulary. Reusability is made possible when

developers are able to communicate their designs and systems to one another using familiar vocabulary

and with confidence that reused components meet expected standards and work in expected ways. One

of the most important benefits of patterns is that the learning curve is considerably reduced when

ITS Workshop on Model based reasoning

34

reusing existing components. A component that is claimed to implement a standard pattern can be

understood relatively easily once its surface features are mapped to specific roles in the pattern.

This discussion paper has the intention to stimulate work in identifying and recording patterns

that are applicable in MBR, and in particular, in education systems built upon MBR. A number of

patterns are presented and analysed using object-oriented terminology and the unified modelling

language (UML, Rumbaugh et al, 1999) as a notation. Only a few patterns can be presented here but

there are potentially dozens of patterns that could be profitable for the MBR community. We take a

didactic approach to the presentation following Fowler (1997) by building complex patterns from

simpler ones, while discussing the limitations of the simpler patterns. The work is just begun as part of

the CODIT project (EPSRC funded GR/R51346), which is examining model-based diagnosis in

educational systems. It is expected that as the project progresses many more useful patterns will be

identified and recorded for the MBR community. Some of these patterns may be original to the project

and others may be adapted from previous applications in other domains, though they all will be

presented with example of their use in dealing with core and recurring design issues in MBR.

Software Patterns

There is no agreed definition or format of a pattern so it is useful to provide a working definition first

and then a format that can be easily understood.

Definition

“A pattern is a recurring organisation of objects that achieves required behaviour.”

Format

In this paper a simplified format will be used for a pattern, which consists of a class association

diagram in UML notation. It is common in the pattern’s literature to provide additional textual

description in a stylised form to include such categories as Forces and Motivation but that style is not

immediately useful to this paper so it will not be adopted.

It is convenient to imagine patterns as syntactical structures in a language for communicating insight

and experience about recurring problems and their solutions. Software developers should learn this

ITS Workshop on Model based reasoning

35

language of patterns to increase the quality of their designs by using available patterns wherever a

suitable problem is recognised (i.e. one for which a pattern exists). The task of software design can be

simplified significantly by referring to design patterns, both in the generation and justification of new

designs. In other words, once design abstractions have been defined as patterns and given unique

names, they can be called upon by name to conveniently specify a design and to convincingly justify

the design decisions.

Examples

A few patterns will be presented next by describing their general form and function and how they relate

to MBR. In places where reference to a specific application in MBR is instructive, the area of model-

based diagnosis will be employed as a suitable illustration. The reasons for this choice of area are first,

that cognitive diagnosis is the area of interest in the CODIT project (COGnitive Diagnosis in Intelligent

Training), and second, that many of these patterns were developed from the analysis of the medical

diagnosis domain and so are directly applicable to model-based diagnosis. The example patterns are

deliberately chosen to deal with fundamental elements of a model (e.g. quantities and ranges) since

they will recur often in any model and therefore offer considerable benefit in the process of model

development.

The following patterns are developed from Fowler (1997) in which a series of patterns for Observations

and measurements are described for the domain of medical diagnosis. The common theme is to

provide ways of recording observations and measurements through such constructs as quantities,

protocols and time records. The notion of a type is important and should be clearly understood in order

to make sense of the patterns that follow. Simply stated, a type (abstract data type) is a structure that

has operations which define its behaviour. The set of operations is known as the type’s interface and is

sufficient to distinguish between types. In object-oriented programming types are defined using

interfaces (e.g. in Java) or abstract and concrete classes. Hence, often the terms type and class are used

interchangeably but they are distinct since a class may correspond to several types. In essence a pattern

is composed of several types that collaborate in a small part of the system (informally, a group of

collaborating classes), hence the notation of class-association diagrams is appropriate for representing

ITS Workshop on Model based reasoning

36

many patterns (but not all!). In order to represent a modelling element, such as a quantity, a new type

needs to be defined, which is the approach taken in the patterns described next.

Pattern 1: Quantity

The Quantity type is introduced to provide a flexible and meaningful way to represent measurements

(e.g. temperature or exam result). Instead of merely creating a field called, e.g. “Exam Result” and

associating a number to denote a student’s performance level, a new type is created that integrates both

the numerical value of the field and the units of measurement, plus any operations that can be applied

to the quantity. Note with this approach there is no difference in the way quantitative and qualitative

quantities are treated in the model, however, a different representation for dealing with qualitative

measurements is introduced later.

Figure 1 shows two simple types, Student, which represents the attributes of a student (e.g.

examResult) that would be useful in a user profile, and Quantity, which is a general type that may be

used in many situations to represent any quantity of interest. Quantity has two attributes, a value,

which is a number (or a new type value for qualitative quantities) and a Unit, which is another type

(defined below). The lower compartment shows the set of operations that are applicable on the

quantity type. For example, the addition operator allows quantities to be added easily while ensuring

that the integrity of dimensions is maintained (e.g. percentages are not added to absolute numbers).

Where a conversion is needed, say from absolute to percentages, a new type called ConversionRatio

can be added to qualify the Unit type, as shown in Figure 2 (operations are not shown).

Student

examResult: Quantity

Quantity

value: Number
unit: Unit

+, -, *, /, =, >, <

Figure 1: Two types: Student and Quantity

ITS Workshop on Model based reasoning

37

Figure 2 shows an association between two types: Unit and ConversionRatio, which means that for any

particular Unit, e.g. mile, there can be several ConversionRatios, e.g. ConvertToKm. How this

conversion is performed is dependant on the formula in the ConversionRatio type (Formula would be

another type).

Units can be subtyped in to atomic and compound units. For example, an atomic unit is Second (s) and

a compound unit is Seconds squared (s2). In this way compound units are constructed from collections

of atomic units. Figure 3 below shows this revised pattern.

Unit has two subtypes: AtomicUnit and CompoundUnit (shown as the triangle symbol to denote

generalisation). A CompoundUnit may contain many AtomicUnits (shown as the diamond symbol to

denote aggregation) and the relationships may be direct or inverse. For example, area = metres

squared is a compound unit consisting of two direct atomic units (m X m). In contrast velocity =

metres per second is a compound unit consisting of one direct atomic unit (m) and one inverse atomic

unit (s-1). Acceleration could be produced from either three atomic units, m, s-1, s-1 or from one atomic

unit plus one compound unit, s-1, velocity. By adopting the approach of building compound units from

other compound units, there is the benefit that all operations that are applicable to the aggregated units

(e.g. velocity) will be available to the aggregate compound unit (e.g. acceleration), e.g. the conversion

ratios associated with velocity.

Unit

name: String

. . .

ConversionRatio

value: Formula

. . .

Figure 2: Conversion Ration added to Unit

*

Unit

*
AtomicUnit CompoundUnit

Figure 3: Generalisation structure for Unit types

ITS Workshop on Model based reasoning

38

One useful feature of the use of Quantity and Unit types is that multiple dimensions can be used for any

quantity to be measured provided conversion ratios exist. When dealing with the problem of making

sense of a student’s answer to a probe question for diagnostic purposes, this flexibility in reasoning can

be very beneficial since alternatives are easily handled.

Combining Figures 2 and 3 and adding the Quantity type we get the overall pattern for Quantity in

Figure 4.

Pattern 2: Quantitative

Although Quantity provides a flexible way to deal with individual measurements, a more powerful

approach is to introduce a Quantitative type into which additional information may be added, such as

when a measurement was made and under what circumstances. This is of particular interest in learner

diagnosis since time is a crucial factor in verifying the applicability of any inferences made about the

student’s behaviour. Technically, the Quantitative type is an association class, since it represents the

association between classes, Quantity, and two new types, Entity and Operand (plus additional types to

represent time of measurement etc.). Figure 5 shows this arrangement.

*

Unit

*
AtomicUnit CompoundUnit

Figure 4: Overall Quantity pattern

Quantity Conversion
Ratio

* *

ITS Workshop on Model based reasoning

39

Entity represents the set of elements in the domain that possess measurable attributes (e.g. Tank, with

attribute, volume). Operand represents the set of all measurable attributes of Entities in the domain (i.e.

any variables and parameters).

Example 2.1: Tariq Khan has achieved 78% on test 1 can be represented by a Quantitative object

whose Entity is Student (Tariq Khan), Operand is TestResult and Quantity is 78%.

Example 2.2: Volume of water in tank B is 45 m3 can be represented by a Quantitative object whose

Entity is Tank (Tank B), Operand is Volume and Quantity is 45 m3.

Pattern 3: Observation

When dealing with quantitative measurements either the Quantity or Quantitative patterns are suitable,

but in order to deal with qualitative measurements as well a new type is introduced called Observation.

In fact, Observation is a supertype that envelopes both quantitative and qualitative measurements.

Figure 6 presents the Observation pattern, which is a refinement of the Quantitative pattern.

In the Observation pattern a new type called Qualitative is introduced to cater for qualitative

values, such as “big”, “fast”, “bright”. It is the parallel of Quantitative but has a Category type instead

of a Quantity type. To denote this similarity a new supertype called Observation is created and used as

the association class to associate either Entity with Quantity (for Quantitative) or Entity with Category

(for Qualitative), but not both (indicated by the exclusive-or (xor) constraint). With this pattern it is

possible to cater for both numerical and symbolic values in the model while treating them as distinct at

* *

Quantitative

Entity

Figure 5: Quantitative and Operands

*

Quantity

Operand

ITS Workshop on Model based reasoning

40

one level of the model but similar at another level when considering only their supertype. Due to the

benefits of polymorphism, which arise from the object-oriented programming paradigm, it is possible

to ignore whether we are dealing with quantitative or qualitative data, at least at one level of

abstraction. The Operand type has been subtyped in to Variable, which represents all directly

measured attributes, and Parameter, which represents all calculated attributes.

Example 3.1: Tariq Khan has performed well on test 1 can be represented as a Qualitative object with

Entity Student (Tariq Khan), Operand Test result and Category Well. Compare this qualitative

observation with the quantitative measurement of example 2.1.

Example 3.2: Volume of water in tank B is half full can be represented as a Qualitative with Entity

Tank (Tank b), Operand Volume and Category half full. Compare this qualitative observation with the

quantitative measurement of example 2.2.

We can develop the pattern of Figure 6 further to include the fact that categories are domain specific

(e.g. “grade b”), whereas quantities are more general (e.g. 3ms-1). In order to describe a domain model

the link between the Operand and its categories should be established by placing the association at a

** * *

{xor}

Entity

Figure 6: Observation pattern

*

Quantity

Operand

Observation

Qualitative

Quantitative

Category

Variable Parameter

ITS Workshop on Model based reasoning

41

permanent level, referred to as the domain level. If this were not done and remained at the transient

operational level then the link would only exist once an observation was made (resulting in links

between Category, Entity and Operand). The problem with this approach is that it could be inferred

that the knowledge so described by the Observation exists only when an observation is made even

though it should exist regardless of any observations. For example, a Operand Exam is graded by

“grade A”, “grade B” etc, which is a domain fact that should be stable in the domain model. It does not

depend on there being observations of actual exams and their grades. Hence, it is productive to re-

locate the type Category from the operational level to the domain level in order to establish a stable

domain model.

A change in the pattern of Figure 6 is needed to reflect the relocation of Category. Figure 7

presents the modified pattern. Note that a supertype hierachical structure for Category may be

introduced to enable generality. For instance, “grade A” and “grade B” are all kinds of “grades” and

also kinds of “grade Pass”. This structure is useful in diagnosis for it allows hierarchical reasoning,

e.g. knowing that grade B was achieved, one knows that if it is a kind of grade Pass then it is

reasonable to make the deduction that a grade Pass was achieved. The generality relationship supports

reasoning by abstraction. Similarly, if a student possesses a bug about Kinetic Energy, then it may be

deduced that they possess a bug about Energy via the generalisation relationship.

ITS Workshop on Model based reasoning

42

Following this pattern, an observation may be a Quantitative that links to an Entity, a Quantity, to an

Operand . Alternatively, an observation may be a Qualitative linked to an Entity and a Category,

which in turn is linked to an Operand. The indirection inherent in the Qualitative means that the

Operand is accessible only via the Category, whereas for Quantitative it can be accessed independently

of the Quantity. Thus, emphasising the connection at the domain level between Operands and their

possible qualitative values (Categories). There is no such strong coupling between Operands and their

quantitative values (Quantities) since numbers have universal applicability.

Example 3.3: Student Tariq Khan achieves 98% in test 1 is represented as a Quantitative object Test-1,

linked to a Quantity object 98%, Entity Student (Tariq Khan) and an Operand test-result.

Example 3.4: Student Tariq Khan achieves a grade Pass in test 2 is represented as a Qualitative object

test-2, linked to an Entity Student (Tariq Khan) and a Category, grade-Pass, through which there is a

link to the Operand, test-result.

xor

*

*

*

xor
Entity

Figure 7: Revised observation pattern

*

Quantity

Domain level

Operational level

Observation

Qualitative

Quantitative

CategoryOperand

Presence Absence

ITS Workshop on Model based reasoning

43

A further refinement in Figure 7 is the subtyping of Qualitative in to Absence and Presence, which is

done to differentiate between the presence and absence of a Category. In diagnosis the absence of a

Category can be as important as its presence, for it can help prune candidate hypotheses early.

Compare a misconception (present Category) with a missingconception (absent Category).

Introduction of the subtypes extends the range of observations that can be recorded in the model to

include knowledge components that are known or are missing. Absent Quantitatives would not be

useful since they would merely represent missing data, which would not allow any inferences to be

drawn in the diagnosis. With respect to the generalisation hierarchy of Category, although presence of

a subtype allows conclusions to be drawn about the presence of a supertype but not about the presence

of a subtype, the absence of a subtype does not allow any conclusions to be made about the absence of

a supertype, but only the absence of its subtypes.

Example 3.5: Student Tariq Khan knows the correct relationship between pressure and temperature as

a thermodynamic equation, is represented as a Presence Qualitative, with Entity, Student (Tariq Khan),

Category, Thermodynamic-equation, and Operand, Correct-knowledge.

Example 3.6: Student Tariq Khan does not know the correct relationship between volume and

temperature as a thermodynamic equation, is represented as an Absence Qualitative, with Entity

Student (Tariq Khan), Category, Thermodynamic-equation, and Operand, Correct-knowledge.

Example 3.7: Student Tariq Khan knows an erroneous relationship between volume and temperature

as a thermodynaic equation, is represented as a Presence Qualitative, with Entity, Student (Tariq

Khan), Category, Thermodynamic-equation, and Operand, Erroneous-knowledge.

In this example, Erroneous-knowledge and Correct-knowledge would be subtypes of Knowledge,

which is the Operand. Other hierarchical structures are of course possible.

Conclusion
Some basic elements of models have been introduced and presented as object-oriented patterns. The

motivation was to highlight the benefits of working with patterns so that a common standard for

representing these elements emerges. Only the most basic of elements have been covered here and

ITS Workshop on Model based reasoning

44

there are very many others that need to be addressed. In particular, patterns are being developed for

representing Ranges and Quantity spaces, which are considered essentially the same since they consist

of intervals and points, with the difference being only the type of the point object (i.e. quantitative or

qualitative observation). Furthermore, in object-oriented terms there is conceptually little difference

between quantitative and qualitative observations so they may be treated equivalent in the domain

model. Hence, operations and objects that interact with observations may take advantage of

polymorphism as far as possible to generalise the model. Differences arise when implementation

issues are introduced though and an appropriate pattern to represent this relationship should be used,

e.g. the Bridge pattern (Gamma et al, 1995), which separates out the conceptual concerns from the

implementation ones. It is hoped that some of these other patterns will be sufficiently developed for

presentation and discussion at the workshop.

References
Borchers, J (2001). A pattern approach to interaction design. Wiley, ISBN 0-471-49828-9.

Buschmann, F; Meunier, R; Rohnert, H; Sommerlad, P and Stal, M (1996). Pattern-oriented software

architecture, volume 1: a system of patterns. Wiley, ISBN 0-471-95869-7.

Fowler, M (1997). Analysis patterns. Addison Wesley, ISBN 0-201-89542-0.

Gamma, E; Helm, R; Johnson, R and Vlissides, J (1995). Design patterns eleents of reusable object-

oriented software. Addison Wesley, ISBN 0-201-63361-2.

Rumbaugh, J; Jacobson, I and Booch G (1999). The unified modelling language reference manual.

Addison Wesley, ISBN 0-201-30998-X.

45

Model-Based Reasoning for Domain Modeling, Explanation
Generation and Animation in an ITS to help Students Learn C++

Amruth N. Kumar

Ramapo College of New Jersey
505 Ramapo Valley Road
Mahwah, NJ 07430-1680

amruth@ramapo.edu

We have been developing an Intelligent Tutoring System to teach students to analyze and debug C++ programs
for semantic and run-time errors. In this tutor, we have used Model-Based Reasoning for domain modeling and
explanation generation. In addition, we plan to use it for program animation. In this paper, we will present our
design of the tutor, and results from evaluating one instance of the tutor in several sections of our Computer
Science II course.

Keywords: Domain Modeling, Explanation Generation, Program Animation, Evaluation of Instructional
Systems, Web-based Training Systems.

1. Introduction

We are developing an Intelligent Tutoring System to help students learn the C++ programming language by
analyzing and debugging C++ code segments. Among the six levels of abstraction of educational objectives
proposed by Bloom [3], we target application (use methods in new situations, solve problems using knowledge)
in our ITS, as opposed to program synthesis, which has been the focus of many earlier works (e.g., LISP Tutor
[13], PROUST [7], BRIDGE [4], ELM-ART [5] and Assert [2]). Our work focuses on tutoring programming
constructs rather than the entire programming enterprise. It focuses on semantic and run-time errors in C++
programs as opposed to syntax errors that a compiler would detect.

We have been using Model-Based Reasoning [6] to model the domain for our tutoring system. In Model-Based
Reasoning, a model of the domain is first constructed. In our case, this would be a model of the C++ language.
This model is used to simulate the correct behavior of an artifact in the domain. In our case, the model is used to
simulate the expected behavior of some particular C++ language construct, e.g., C++ pointers. This behavior is
compared with the behavior predicted by the student for that artifact. The discrepancies between these two
behaviors are used to hypothesize structural discrepancies in the mental model of the student for that artifact. In
our case, the behavioral discrepancies are used to generate feedback to tutor the student.
Insofar as the domain model is complete, Model-based reasoning is comprehensive in its coverage of possible
behavioral (and hence, structural) discrepancies. This is not necessarily true of Rule-Based systems (e.g.,
production rules used in ACT-R theory [1]), which cannot address behavioral discrepancies unless they have
been explicitly encoded into the tutoring system. Similarly, Case-Based Reasoning systems are primarily
constrained to the types of cases already entered into the knowledge base [14]

In the next section, we will discuss and analyze the benefits of using Model-Based Reasoning for domain
modeling in a tutoring system. In Section 3, we will describe our domain model and how it is used to generate
feedback in our tutor. In Section 4, we will describe the currently implemented features of the tutoring system,
and present the results of evaluating the tutor in several sections of our Computer Science courses in Section 5.

46

Finally, we will discuss conclusions and future work in Section 6, including our plans to use model-based
reasoning for program animation.

2. Model Based Reasoning for Domain Modeling

There are several advantages to using Model-Based Reasoning for domain modeling in an Intelligent Tutoring
Systems to teach program debugging.

Domain Model is the Expert Module: We need not include the answers to problems in the ITS. The model
knows the correct answer, i.e., it is capable of solving each problem to obtain the correct answer. Therefore, the
domain model doubles as the runnable expert module. Constraint-Based Modeling [12] does not require the
inclusion of a runnable expert module either. However, it targets the knowledge that prescribes user’s actions
whereas Model-Based reasoning targets the knowledge that describes the domain’s behavior. In this sense, the
two could co-exist in an Intelligent Tutoring System. There have been more recent efforts to extend Constraint
Based Modeling to include a runnable expert module [9].

Dynamic Generation of Problems: Limited problem set has been recently recognized as a potential drawback
of encoding a finite number of problems into a tutor [9]. Using Model-Based Reasoning for domain modeling
can easily address this drawback. Since domain models based on Model-Based Reasoning are capable of solving
problems on their own without being told the correct solution, a tutor using such models need not be restricted
to administering only the problems that have been encoded into it. When coupled with a scheme for generating
problems, such a tutor can potentially administer an unlimited number of problems to the learner.

One scheme used in literature to dynamically generate problems is by using BNF-like grammar, e.g., [8]. In this
scheme, problems are generated by randomly instantiating the grammar. Each rule of grammar can be carefully
designed with specific pedagogical objectives in mind. We have used such a generative scheme with our Model-
Based tutor to be able to generate an unlimited number of problems. (Please See Figure 1, where templates are
BNF-like grammar rules).

Figure 1: Generative Architecture of a Model-Based Tutor

Randomizing a template to generate problems is acceptable in the domain of program analysis and debugging,
since the context of the problem is fully captured in the templates. However, this is not necessarily true in all the
domains, e.g., in the legal domain [10], the context is much richer and harder to capture in templates.

One criticism that may be leveled at the process of randomizing a template is that it could generate only trivial
variations of a “typical problem.” In the programming domain, this is not true. Randomizing can yield
sufficiently interesting and non-trivial variations of a problem. E.g., consider the following snippet of correct
C++ code:
{
 int *variablePointer;
 int count = 32;
 variablePointer = &count;
 cout << *variablePointer;
}

47

One random variation of the template from which this code was generated is:
{
 int *variablePointer;
 {
 int count = 32;
 variablePointer = &count;
 }
 cout << *variablePointer;
}
Whereas the original code was correct, the new code suffers a dangling pointer, a rather sophisticated semantic
error in C++ programming.

There are several benefits to coupling a tutor with a problem generator:
• The tutor is capable of administering problems on a particular topic to a student as long as the student

needs, or until the student has mastered the topic.
• In addition to tutoring, the tutor may also be safely used to test students. Using a tutor to test students has

many advantages: since students are already familiar with the interface of the tutor from tutoring sessions,
they feel comfortable taking a test in this environment, with all the concomitant advantages of online
testing. Since the tutor randomly generates problems, tests are individualized, deterring plagiarism.

3. Model-Based Reasoning for a Tutor on C++ Programming

We have been developing a tutor to help students learn C++ by analyzing and debugging C++ programs for
semantic and run-time errors. We have used Model-based Reasoning for domain modeling in this tutor. In this
section, we will describe our domain model and how it is used to generate feedback in our tutor.

3.1 Domain Model for Programming

The model of a domain consists of the structure and behavior of the domain. The structure describes the
components in the domain and how they are interconnected and aggregated. The behavior consists of the
relationships between inputs and outputs of the components and their aggregates.

The components in our domain model for the programming domain are program entities that have state, e.g.,
variables, constants, and functions. Each component is modeled in terms of the various states applicable to it,
e.g., some of the states applicable to a variable include: declaration, allocation, assignment, and de-allocation.
Unlike most other domains, we do not model the interconnections between these components – the
interconnections are specified by control flow and data flow in the program. On the other hand, we model the
hierarchy of composition of components, e.g., the models of all the variables declared in a function are
composed within the model of the function. The hierarchy of composition of components reflects the scope
hierarchy of entities in the program.

The behavior of each component is modeled as a state transition diagram. The state transitions are triggered by
control and data flow in the program. Both valid and invalid states are included in the model. The invalid states
of components correspond to syntax, semantic and run-time errors in the program.

The computation in a program is carried out in terms of expression evaluations and side-effects. In imperative
languages such as C++, computation is primarily through side-effects. These side-effects are conveniently
captured in terms of the state transitions of the components of a program model. Therefore, the simulation of a
program model, corresponding to the execution of a program, is effected by transitions in the states of program
entities. These transitions are themselves choreographed by the flow of control and data in the program.

3.2 Generation of Explanatory Feedback

Our tutor generates explanations about the behavior of a program when it simulates the model of the program.
During the simulation, for each statement in the program, every component in the model that is affected by the
statement contributes to the feedback as follows:

48

• Process Explanation: If the component undergoes a state transition during the execution of the statement,
it appends an explanation of its state transition to the feedback.

• State Explanation: In addition, if the component reaches an invalid state as a result of the state transition,
it appends a diagnostic message that it has reached an invalid state.

Aggregate objects (such as functions) collate the feedback statements contributed by their components (such as
variables). The resulting generic explanation is post-processed based on the student model to produce feedback
at various levels of granularity:
• Simulative Feedback: The feedback includes a complete explanation of the behavior of the program. This

feedback is used for novices, for the first few problems in a tutoring session, and in instructional (as
opposed to problem-solving) mode.

• Diagnostic Feedback: The feedback includes only the diagnostic lines of explanation that correspond to an
error in the program. This feedback is used after the first few problems in a tutoring session, once the
student starts making progress towards the educational objectives of the tutor;

• Customized Feedback: The feedback includes only those lines of explanation reported by the processes
and objects flagged as being deficient in the student model.

To date, we have implemented simulative and diagnostic feedback in our tutor. The elegance of using Model-
Based Reasoning for domain modeling is that the domain model naturally facilitates the generation of feedback,
and no separate rules or constraints have to be encoded for this purpose.

One drawback of using Model-Based Reasoning for domain modeling is that building the domain model is an
expensive task both in terms of time and expertise. However, once such a domain model is built, it will be able
to handle any problem, and not just those previously encoded into the tutor. Unlike Rule-Based Reasoning or
Case-Based Reasoning, Model-Based reasoning is not brittle. An implication of this is that the learner can enter
his/her own problems into the tutor and test/learn from them, e.g., in Figure 1, we replace template by
problem(s) entered by the learner. Such a facility in a tutor would be very powerful in promoting learning. The
following table summarizes some of the ways a Model-Based tutor could be used:

Problems Generated By Problems Solved By Type of Tutor Use
Tutoring System Learner Tutor/Test Learner
Learner Tutoring System Solve for Learner
Tutoring System Tutoring System Demonstrate to Learner

4. Features of Our Tutor

Currently, our tutor for C++ programming knows about variables, scope, pointers, dynamic allocation and
rudiments of function calls. We plan to develop several tutoring modules from this single domain model,
addressing different aspects of C++ programming. One tutoring module that we have tested in several sections
of Computer Science courses deals with pointers in C++. This module contains nearly 40 problem templates,
and addresses dangling pointers and lost objects in C++.

Currently, the tutor provides four types of feedback:
• None – the tutor does not even indicate whether the learner’s answer is correct. This is useful when the

tutor is used for online testing in a class.
• Demand – the tutor provides feedback only on demand from the learner. The feedback provided may be

minimal (states whether the learner’s answer is correct or not), diagnostic (points out where the code has
semantic errors) or simulative (explains the behavior of the code line by line, e.g., See Figure 2).

• Error-Flag – The tutor signals the correctness of the learner’s answer by immediately changing the color of
the learner’s answer, red for incorrect and green for correct. The learner may follow-up by asking for
feedback.

• Immediate – When the learner enters an incorrect answer, the tutor guides the learner through three levels
of hints: abstract (e.g., “Remember, you have a dangling pointer if a pointer is dereferenced before it is
assigned”), concrete (e.g., “Is valuePointer referenced before it is assigned?”) and bottom-out (e.g., “Well,
valuePointer has been assigned before it is referenced. Therefore, it is not a dangling pointer.”).

The interface of the tutor consists of a left panel for the program, and a right panel for the problem, answering
options and feedback provided to the user. The user is led through a clockwise flow of action that is intuitive:

49

from the program to the problem statement, answering options, grading button, feedback, and the button to
generate the next problem (See Figure 2).

5. Evaluation of the Tutor

We have evaluated the tutor on C++ pointers in several sections of Computer Science II course. In this section,
we will discuss the results of these evaluations.

Tutor in Isolation: In Fall 2000, we tested the tutor in two sections (N=19 combined), by administering a
pretest (8 minutes), followed by practice using the tutor (10 minutes), and a post-test (8 minutes). These were
not controlled tests. The author was the instructor in both the sections. The pretest and post-test scores were out
of 40.

(N=19) Pre-Test Post-Test Effect Size
Average 12.21 26.74 2.16
Std-Dev 6.70 8.73

Note that Effect Size is within-group, i.e., (post-test score – pretest-score) / pretest-standard-deviation. An effect
size of 2.16 indicates that the tutor facilitated learning among the students.

Tutor Versus Printed Workbook: In Spring 2001, we again tested the tutor in two sections (N=33 combined),
using the pretest-practice-posttest protocol (8/10/8 minutes). We conducted a controlled test – between the tests,
the control group practiced with printed workbooks, whereas the test group practiced with the tutor. The author
was not the instructor in the sections. The pretest and post-test scores were out of 40.

(N=33) Pre-Test Post-Test Effect Size
Test Group 1.52
Average 13.00 23.06
Std-Dev 6.61 10.12
Control Group 1.33
Average 15.24 24.71
Std-Dev 7.10 10.54

Practicing with the tutor appeared to be slightly better than practicing with the printed workbook, although the
difference is not statistically significant.

Minimal Versus Simulative Demand Feedback in the Tutor: In Fall 2001, we conducted a controlled test of
the tutor in one section (N=16). This time, we tested two versions of demand feedback for the tutor: minimal
versus simulative. In minimal feedback, the tutor corrects the user’s answer, but does not explain the correct
answer. In simulative feedback, in addition, the tutor explains the correct answer. We used the same pretest-
practice-posttest protocol as before, with fixed times for each step. Incorrect answers were penalized. The author
was not the instructor in either class. The pretest and post-test scores were out of 80.

Section 1 (N=16) Pre-Test Post-Test Effect Size
Test Group 1.41
Average 11.00 25.63
Std-Dev 10.35 23.77
Control Group 1.63
Average 8.25 17.38
Std-Dev 5.60 14.62

The results seem to indicate that simulative demand feedback may not be any better than minimal feedback.
Informal comments from the students seemed to suggest that simulative feedback is too verbose. Research

50

indicates that to-the-point feedback is better than verbose feedback for promoting learning [16]. All the same, it
is encouraging to see that using our tutor did help the students improve their performance.

6. Future Work

We plan to extend our domain model for program animation as follows:

• Each object will be in charge of its own visualization, especially local issues such as form and content.

• Aggregate objects will derive their visualization by composing the visualizations of component objects.
Aggregate objects will be in charge of global issues for the visualization of component objects, such as
layout.

• During simulation of the domain model, each object will render itself on to the visualization panel when it
is first created in the program. After this, every event, i.e., action performed on the object will be animated
through a corresponding change in its visualization.

There are several advantages in using model-based reasoning for program animation:
• There is no need to separately script the animation, as is the current practice (e.g., [11]). Since animation is

entrusted to the model of the programming language, it is realized implicitly through message passing
among the domain objects rather than explicitly through calls in the script.

• Since there is no need to write scripts to animate a program, the system can handle any program, without
having to first preprocess it to generate the animation script. The completeness of the animation depends on
the comprehensiveness of the model of the domain built into the system.

• Since the animation is assembled dynamically, this approach is more cost-effective than annotating
programs individually.

For program animation, the actions performed during the simulation of the programs serve as adequate cues for
model-based animation. On the other hand, for algorithm animation, the individual steps in an algorithm may
not be at a sufficiently low level of abstraction to be directly translatable into cues for model-based animation.
Therefore, model-based animation may be more suited for program animation than algorithm animation.

We plan to extend the Model-based domain model of the tutor to handle semantic and run-time errors associated
with storage classes, arrays, structures, loops, nested selection statements, and their applications in C++. We
plan to reify the tutor’s interface by asking the user to not only choose the error in a program but also indicate
the line of code where the user thinks the error has occurred. We also plan to continue to successively refine and
evaluate the tutor in the future semesters.

Acknowledgements

This work was supported in part by a grant from the Ramapo College Foundation.

Partial support for this work was provided by the National Science Foundation's Course, Curriculum and
Laboratory Improvement Program under grant DUE-0088864.

References

[1] Anderson, J.R. Production Systems and the ACT-R Theory. Rules of the Mind. Hillsdale, NJ: Lawrence
Erlbaum & Associates, Inc., 1993, 1-10.

[2] P. Baffes and R. J. Mooney, A Novel Application of Theory Refinement to Student Modeling, Proceedings
of the Thirteenth National Conference on Artificial Intelligence, pp. 403-408, Portland, OR, August, 1996.

[3] Bloom, B.S. and Krathwohl, D.R. Taxonomy of Educational Objectives: The Classification of Educational
Goals, by a committee of college and university examiners. Handbook I: Cognitive Domain, New York,
Longmans, Green, 1956.

[4] Bonar, J. and Cunningham, R., BRIDGE: Tutoring the programming process, in Intelligent tutoring systems:
Lessons learned, J. Psotka, L. Massey, S. Mutter (Eds.), Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

51

[5] Brusilovsky, P., Schwarz, E. and Weber, G. ELM-ART: An intelligent tutoring system on the World Wide
Web, in Proceedings of ITS 96 : Third International Conference on Intelligent Tutoring Systems, Montreal,
Quebec, 12-14 June 1996.

[6] Davis, R. Diagnostic Reasoning Based on Structure and Behavior. Artificial Intelligence, 24 (1984) 347-410.

[7] Johnson, W.L., Intention-based diagnosis of novice programming errors, Morgan Kaufman, Palo Alto CA,
1986.

[8] Koffman, E.B. and Perry, J.M. A Model for Generative CAI and Concept Selection. International Journal of
Man Machine Studies. 8 (1976): 397-410.

[9] Martin, B. and Mitrovic, A. Tailoring Feedback by Correcting Student Answers. Proceedings of Intelligent
Tutoring Systems (ITS) 2000. G. Gauthier, C. Frasson and K. VanLehn (eds.). Springer (2000), 383-392.

[10] Muntjewerff, A.J. and Breuker, J.A. Evaluating PROSA, A System to Train Solving Legal Cases. Artificial
Intelligence in Education: AI-ED in the Wired and Wireless Future. J.D. Moore, C.L. Redfield and W.L
Johnson (ed.), IOS Press, Amsterdam. (2001): 278-285.

[11] Naps, T.L., Eagan, J.R.. and Norton, L.L. Jhave – An Environment to Actively Enhage Students in Web-
Based Algorithm Visualizations. Proceedings of the 31st SIGCSE Technical Symposium, Austin, TX, March
2000, 109-113.

[12] Ohlsson, S. Constraint-based Student Modeling. In J.E. Greer, G. McCalla (eds.) Student Modeling: The
Key to Individualized Knowledge-Based Instruction. (1994): 167-189.

[13] Reiser, B., Anderson, J. and Farrell, R., Dynamic student modeling in an intelligent tutor for LISP
programming, in Proceedings of the Ninth International Joint Conference on Artificial Intelligence, A. Joshi
(Ed.), Los Altos CA, 1985.

[14] Reyes, R.L. and Sison, R. A Case-Based Reasoning Approach to an Internet Agent-Based Tutoring System.
Artificial Intelligence in Education: AI-ED in the Wired and Wireless Future. J.D. Moore, C.L. Redfield and
W.L Johnson (ed.), IOS Press, Amsterdam. (2001): 122-129.

[15] Sack, W., Soloway, E. and Weingrad, P. From PROUST to CHIRON: ITS Design as Iterative
Engineering: Intermediate Results are Important! In J.H. Larkin and R.W. Chabay (Eds.), Computer-Assisted
Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary Approaches. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1992, 239-274.

[16] Winkels, R. Explorations in Intelligent Tutoring and Help. IOS-Press, Amsterdam, Tokyo, 1992.

52

Figure 2: Screen Shot of the Tutor in action with Simulative Demand Feedback

Model-based Reasoning in Mathematical Tutoring
Systems – Preliminary Report

Walther Neuper
Höhere Technische Bundeslehranstalt

Itzlinger Hauptstraße 30,

A-5020 Salzburg, Austria

neuper@cosy.sbg.ac.at

Franz Wotawa
Graz University of Technology

IICM – Software Technology

Inffeldgasse 16b, A-8010 Graz, Austria

wotawa@ist.tu-graz.ac.at

Abstract: This paper deals with the application of model-based reasoning to tutoring sys-
tems for teaching high-school-level mathematics. It presents the current state of such a
tutoring system ISAC that has been developed for this purpose. The shortcomings of the
current system and the question of how model-based reasoning can be used to overcome
this drawbacks is discussed. In particular we introduce a framework for handling the knowl-
edge that has to be dealt with for this purpose.
Keywords: Mathematical tutoring systems, Model-Based reasoning

1 Introduction

Model-based reasoning (MBR) is an old but still very fruitful and import area in artificial
intelligence research. Nowadays MBR is used as a basic technology in several different
application areas, including tutoring systems, software debugging, monitoring and control
of technical system, mobile and autonomous systems, e.g., cars, space probes and robots.
In the domain of tutoring systems Kees de Koning et al. [3, 4] have introduced a tutoring
systems dealing with physics. The underlying MBR system is based on the traditional GDE
approach [2] to model-based diagnosis [13].
In this paper we try to present another approach that should be suitable for mathematical
tutoring systems that are intended to be used for supporting to teach students at the high-
school level. Although, some of the basic ideas can be taken from Kees de Koning et
al. there are some differences because of the different nature of both domains. Whereas
physics is dealing with the relationship of quantities and causalities occurring in the real
world, we have to deal with mathematical formulae and the mathematical calculus. Hence,
means for representing the way of mathematical thinking is required.
Because of the intended application area, i.e., teaching math at high-school, we consider
problems of applied mathematics, i.e. problems which apply knowledge given in a knowl-
edge base (and do not consider the process of extending such a knowledge base). Problems
are usually described by a text and figures. They have to be translated into a formal model
(phase of modeling). The models itself are related to the respective notions of mathematics.
These notations depend on the problem and require specific methods to solve the problem
(phase of specifying). The specified notations of the problem solving methods and re-
lated knowledge can be seen as the background knowledge of mathematics, or the general
mathematical knowledge. This kind of knowledge is different to the formal model of an
example which can be seen as the example-specific knowledge. A good knowledge-based
design would emphasize that the general mathematical knowledge is in a shape that it can
be used to solve a huge class of examples. After modeling and specifying the problem can

be solved by constructing the result(s) (phase of solving). We further require the considered
problems to be decidable, i.e., if the given values are within a certain range specified by a
particular problem.
This paper takes the results of a mathematical tutoring system ISAC [11], identifies weak-
nesses of the underlying concepts, and discusses a promising solution to the open problems.
ISAC is a generalized algebra systems which works stepwise and interactively. As soon
as modeling and specifying have finished successfully, the specified method leads to the
result. ISAC’s method interpreter guides the user nicely step by step through the phase of
solving. However, guidance in the modeling phase is still an issue.
The paper is organized as follows. In the next section we discuss the current implementa-
tion and concept of the ISAC system. We then show some open problems regarding ISAC.
Having the problems in mind we introduce a formal framework that should be capable to
solve the problems. The framework is based on MBR. Afterwards we discuss open issues
and future research direction.

2 The ISAC system

2.1 ISAC’s current way of problem-solving

We explain ISAC’s problem-solving capacity by an example. Problem-solving capacity
means (1) ISAC’s capacity of solving a problem automatically, and (2) ISAC’s capacity to
generate explanations automatically. ISAC’s user is called ‘student’. The example belongs
to a problem concerning the application of calculus, a problem which usually is being
exercised in dozens of examples.

2.1.1 The phase of modeling

The following description is an exact copy from a text book [5].

A coil with a circle-shaped section and radius R should get a cross-shaped kernel
(two equal bars with length v and width u) of iron, see Fig.1. Determine u and v
such that the area A of the kernels section is maximal for a given R.

u v 2R
α

Figure 1: Coil with a cross-shaped kernel to be maximized

This description concerns notions of elementary geometry (circle, radius, cross, etc.) the
student has to use in order to get a formal model of the problem. Such a formal model
finally could look like

given : Constants
���������
	���

where : ��� �

find : Maximum
�

AdditionalValues � �������
relations :

� �
	 ���
����������� �
� ���
����

� � � � �
where the boxed formulae have to be input by the student, while the other information is
provided by the system as a kind of template for this problem. The kind of model above 1

has been introduced by ‘Formal Methods’ in software engineering, see e.g. [8].

Generation of explanations is only possible in the modeling phase, if some author has
prepared a formalization (in this example eventually with three variants ��������� �������!�!�)

� �#" ��$ ���������
	 ��
&% �'$ � �(� ������� % �
$ ��� � � �

� �)$ � �*	 �+�
�,������� � �
� ���
� ��

� � � � � % �
� � �-" ��$ ���������
	 ��
&% �'$ � �(� ������� % �

$ ��� � � �
� �)$ � �*	 �+�.���+�/��� � �

� ���
� ��
� � � � � % �

��� �!� " ��$ ���������
	 ��
&% �'$ � �(� ������� % �
$ ���10 �32� �4$ � �
	 ���.������� � �

� ��5�687 0�� ��
� �,9;:�5 0 % �

and a specification

� � <
��= >@?BA � < �!C �(�8DFE+G �HA �JI � G � D > � �FK L �/=JL�?B=M?NC �O� A �
 �;K L �/=8L;?B=M?NC �

i.e. a triple consisting of a domain, a problem and a method.
In general the formalization and the specification are hidden from the user. This
hidden information allows the system to provide a minimum of help: The problem
�PD!E+G �HA��JI�� G � D > � �;K L ��=JL;?B=Q?NC � provides for the template, and the formalizations allow to re-
ject an input as ‘unknown’. There are not explanations mentioning knowledge about the
elementary geometry involved.

2.1.2 The phase of specifying

This phase makes the domain, the problem and the method explicit. These three kinds of
knowledge can be seen as the axes in the 3D-universe of math [1] which could look like
Fig.2.
W.r.t. our example the domain real numbers contains the definition of �R���
��S etc. together
with the respective algebraic laws. Actually, the knowledge of the domain was already
necessary for parsing the formulae in the modeling phase – without the hidden specification
first of all the student has to specify a domain.
The axis of the problems is a hierarchy, which is indicated by the ��� in the identifier of
a problem: it is a list of keys pointing into the hierarchy, �PD!E�G �HA��JI � G � D > � is the parent of
�PD!E+G �HA��JI�� G � D > � �;K L ��=JL;?B=Q?NC � . The latter matches the above model of the example, whereas
say �8DFE+G �HA �JI � G � D > � = �H>�<
� � � would not match the model. The student can select a problem
in the hierarchy, and get feedback if the model matches the problem. This kind of matching
is described in [11].
In ISAC the axis of methods is still closely related to the problems (and not that independent
as shown in Fig.2): each problem is linked to the solving method(s). Each method has a
guard, which also has to match the model in order to avoid inapproriate application. The
method solving our example is described in the subsequent section.

1The model does not presented the post-condition to student, rather some of the respective sub-terms in the
field ‘relations’.

vectorspace RxRxR

polynomials over R

rational numbers Q

functions over R

vectorspace RxR
matrices over I

complex numbers C
real number R

integer numbers I
natural numbers N

polynomials over I

domains

evaluation
equation

inequation

approximation
interpolation

optimization

factorization
differentiation

integration

problems

methods

reduce

factorize

eliminate

projection

iterate

structural comparison

systematic enumeration

change representation

Figure 2: The three-dimensional universe of mathematics

Generation of explanations is better elaborated in this second phase of problem solving;
the systems feedback is manyfold: due to a ‘too weak’ domain the formulae may not be
parsed, during matching the model with a problem an item may be missing or superfluous,
a pre-condition (in the field ‘where’) may be false, etc.
One remarkable feature of ISAC s problem hierarchy is, that it allows to refine the problem
w.r.t. a model [11]. This feature makes the mechanism explicit which determines for
instance the appropriate type of an equation input to an algebra system, and then applies
the according method in order to solve the equation. The mechanism, made explicit in
ISAC, thus generates structure related explanations.
Such explanations are given by reflection: ISAC just shows its own mechanisms (working
on litterally the same knowledge the user is inspecting) and how they relate the concrete
problem at hand to the general knowledge.

2.1.3 The phase of solving

The phase of solving is entered, if a model matches the guard of a method – thus prohibiting
the application of an inappropriate method.
In this phase the result is acchieved by tactics stepwise constructing a proofstate (consisting
of a prooftree etc.); the proofstate prohibits to apply tactics in an inconsistent way. The
tactics belonging to a method are described in a script. An important tactic is rewriting
the current formula by application of a theorem – this is the basic mechanism for algebraic
formula manipulation. Again, a theorem not appropriate for the current formula is not
being applied.
The student may input a tactic or a formula. The method interpreter locates a tactic, input
by the student, within the text of the method, and proposes the next applicable tactic. If the
student inputs a formula, the script interpreter locates the tactic which would have calcu-
lated this formula (eventually following several intermediate tactics). This mechanism is
covered by a layer for dialog-guidance, which filters and varies the information transferred
to the student (in order not to provide too much help, and not to become boring) [12].
Althoug ISAC prohibits inconsisten application of tactics, the student may apply tactics in
a misleading way – leading to somewhere, but not to the result.
The script of the method max by calculus solving the problem �8DFE+G �HA �JI � G � D > � �FK L �/=JL�?B=M?NC �
is as follows:

Script max by calculus (fix ::bool list) (m ::real) (rs ::bool list)
(v ::real) (itv ::real set) (err ::bool) =

(let
e = (hd o (filter (Testvar m))) rs ;
t = (if #1

�
Length rs

then (Subproblem (Reals,[“make fun”],no met) [m , v , rs])
else (hd rs));

mx = Subproblem (Reals,[“function”,“max of”,“on interval”],
maximum on interval) [t , v , itv]

in (Subproblem (Reals,[“tool”,“find values”],find values)
[mx , (Rhs t), v , m , (dropWhile (ident e), rs])))

The task of this method is to compute and to transfer values to and from three Subproblems.
This means, that the phases of modeling and specifying may occur recursively.
The above method prescribes the sequence of steps. The general case in mathematical
problem solving is, that several steps are possible in parallel. ISAC models this requirement
by quasi-parallel evaluation of parallel expressions in the (functional [9]) description of
methods, and by employing complete (in the sense of [10]) rulesets in rewriting, where the
sequence of rule application is arbitrary.

Generation of explanations relies on reflection again. In the phase of solving the stu-
dents requests for explanations are handled by ISAC, as if the student would have said ‘give
me the details’.
Details might be: Some more intermediate step in algebraic transformations (e.g. if a whole
set of rewrite rules has been applied), the assumptions generated during a calculation, a
(true or false) condition in conditional rewriting, an animation of matching etc. On the
other hand the student has means to get a survey over the whole solving phase: he works
on a sheet with a hierarchical structure, where he can fold in deeper levels of detail.
If a formula is input, the method-interpreter cannot calculate, the student is asked for the
tactics leading to this formula.

3 Open problems of the ISAC system

Although the ISAC system is capable to help students understanding the problems of math-
ematics in an interactive fashion there are some problems with the underlying approach and
its capabilities. Currently ISAC complains on student’s faults as early as possible, rejects
them by reasons of inconsistency of the proofstate, and comments them with rather tech-
nical explanations (‘tactic is not applicable’, ‘formula does not match’ etc.). ‘Real world
problems’ in mathematics education, however, require much more additional knowledge
(e.g. about elementary geometry) in order to solve them. No help can be given in this
respect, and ISAC has no notion about what a human teacher would identify as a ‘miscon-
ception’.
A way to solve the problem and to relax the underlying assumptions of ISAC would be to
allow the student to go through an example as he or she would like. For example, it should
be possible that the student specifies the mathematical problem and provides a solution of
the problem to the system (which is different from going step by step through the solution
process). The math tutor should then check the solution and in case of errors should report
parts of the solution process that are responsible for the erroneous parts of the solution.
Such a system behavior requires means for representing the expected cognitive solution
process of the student for a given example. Because of the fact the the real cognitive
aspects for solving a mathematical problem are hidden (in the brain of the student), finding
a sequence of actions which the student might have in mind when solving the given example
is in principle an unsolvable problem. An approximated solution would be to generate a
formal representation of required actions, i.e., mathematical principles, that are required
in order to come-up with a correct solution. Once the example is not solved accordingly

the system has to search for the principles that are violated. This approximated solution is
sufficient for our purpose. Since we are interested in helping the student to use the correct
mathematical principles for solving examples. Such an approach is very similar to the one
proposed by Kees de Koning et al. [3] and more recently [4].
A particular problem of ISAC is due do its limitation regarding the problem formalization.
The mathematical problem has to be specified in a formal way. Hence, the way from the
textual representation of the problem that is usually given to the student and its formal
representation is currently not supported by ISAC. For many students this is exactly the
problem. Therefore, a system that helps the student to come-up with a formal description,
once a textual description is given, is required. The key to a solution of this problem is
again a more appropriate representation of the knowledge. The required steps are only
loosely coupled with mathematical principles. This is different from our first situation
where the mathematical principles (the teacher or tutoring system wants to teach) are one-
to-one related to the steps of the solving process.
In the following section we introduce a framework that allows to specify the parts of the
cognitive process which are required to construct a mathematical model for a given textual
description.

4 A model-based reasoning framework

The basic element of the model-based reasoning framework is a mathematical concept. A
mathematical concept can be seen as a function that alters the current state only if some pre-
conditions are valid in the state. After the execution the current state becomes the previous
state and the new state becomes the current state. This process stops until the pre-specified
goal state is reached. Hence, the mathematical cognitive process, e.g., find a formal model
for a given textual problem description, is given by an initial state, a set of mathematical
concepts, and one or more final states. Formally, we defined the framework as follows:

Definition 4.1 (Mathematical Cognitive Process) A mathematical cognitive process
(MCP) is a tuple � � ��� ��� �

where
�

is the initial state, i.e., a set of valid logical sentences,
� is a set of mathematical concepts, and � is a set of goal states.

Definition 4.2 (Mathematical Concept) A mathematical concept is a tuple ��� ���4� � �	� �
where � is the identifier, � is a set of pre-conditions, � is a set of post-conditions, and

�
is a an action that describes the behavior of the concept. An action can be composed of
other actions and may refer to other concepts.

We define actions in a recursive manner:

1. A logical sentence (that may refer to a mathematical concept) is an action (basic
action).

2. If
�� ��
�
�
;�	
�� are basic actions, then

(a) the parallel execution
 �����
�
�
 ���
 � ,

(b) the sequential execution
 ���
�
�
 �
 � , and

(c) the alternative execution
 ���
�
�
 �
 �
are actions.

This definition restricts compositional actions to be either actions that are executed in par-
allel or actions that are executed in a sequential order. A mixture of actions is not allowed
for mathematical concepts. This restrictions is due to simplicity and does not restrict the
whole conceptual framework. If a mixture is required, the different parts must be hidden in
new mathematical concepts.

The above framework is similar to STRIPS planning [6] and Qualitative Process Theory
(QPT) [7]. In contrast to planning, the notation of mathematical concept is not equivalent
to actions in planning. In our framework mathematical concepts can be comprised of other
concepts where there is no correspondence in STRIPS planning. The difference between
our framework and QPT lies more in the nature of the domain of usage. QPT is well
designed to fit to the physical world. Our approach provides means for representing the
way of mathematical thinking.
We now show how mathematical concepts can be used to formalize the cognition process
when going from a textual example to the mathematical model. Consider our coil example.
The first step is to define the basic mathematical concept, i.e., concepts that are always
valuable. For example the Pythagoras’ theorem and computing the area of an rectangle.
The pre-condition to apply the Pythagoras’ theorem is that the triangle has to have a rect-
angular angle. The post-condition is the equation that relates the sides of the triangle.

� �������
���	�

���;$�
���� �
����N���
�
 �
��
�������� �
+��� ��� � % �;$ % �;$���� �
 � ��	�� ��
 � ��� � � � � � % �
The equation for the area of an rectangle is only valid for rectangles. Hence, the pre-
condition has to ensure that the given values are for a rectangle.

��
�
��

���� � �;$�
���� � ��
+��� � % ��$ % ��$
�
��
+��
���� � ��
+��� ��� �
 S�� %
Another example of a concept that is required for a large class of examples is how to
build the sum of area values. This can be done by adding the areas and subtracting the
overlapping value.�

!

����"
���� �
������������
$$# � � �%	 ���$
��
 � � �&# � � �%	 � % �'() ��
�
��
���# � � �+* �-,
�
��

���� � ��# � ���

�
�
��
�� � � � � 	 �-,
�
��

���� � � � � ���
�
�
��
���	.��/+��# � � ��� �10 �2, 	 ����
��
 � ��	 ����
���
 � � �&#&� � �%	 ���

3 4
5 �

$
�
��
���	.��/+��# � � ��� � �6* � � 	 � 0R%

79888888
:

The mathematical concept 	 ����
���
 � which is used in the previous concept of sum rectangles
can be defined as follows:

��	 ����
��
 � �;$�	 ����
���
 � ����# � � �	
 � % ��$ % �;$�	.�;/���# � � � ��
�
��
+��	.��/+�&#&� � ��� �
 % �
In the second step, we define the problem itself as a MCP:

�! $$
���� � � ����� � �%
���� �
����N���
�
 �
��
�������� � � � � � � �;
 � ��	 ����
���
 � ����
���� � � ����� � �;
���� � � �&��� � ��� S�� � % �
$ �������
���	�

����
�
��

���� � ������"
���� �
�������������	 ����
���
 � %

$�$���� �
 � ��	�� ��� � �
� � � � � �

� � �
 � � �	
�
��
���	.�;/���
���� � � ����� � �;
���� � � �&��� ����� � � S�� �'� S;� ��� S;� %�%

7:
This MCP obviously does not capture the third model resulting from formalization ���!�!� of
the coil example. For this purpose the MCP has to be re-written and additional concepts
have to be introduced.
A MCP determines a possible sequence of the application of mathematical concepts that
lead to one solution. A sequence is usually not unique. If we assume that no alternative
actions are used, then the all sequences that explain the same goal state comprise the same
set of mathematical concepts. Although, the mathematical concepts are used in a different
order, they are identical with respect to the solution. This is not true if alternative actions
are used. There might be a shorter sequence of mathematical concepts that lead to the same
goal state. In this case the intended meaning of the cognitive process for modeling cannot
be determined without further knowledge. Therefore, we restrict MCPs to well-formed
MCPs which are defined as follows:

Definition 4.3 (Well-formed) A MCP � � �	� �	� �
is well-formed iff no two sequences

�" � ��
�
�
��;" ��� � �;" � ��
�� ��
�
�
�� and
� " �/��
�
�
��;" ��� �/�%" � �����/��
�
�
�� lead to the same goal

state. Note that the mathematical concept " � must have an alternative action.

For well-formed MCPs it is sufficient to consider one mathematical concept sequence for
each goal state in order to get enough knowledge about the (expected) cognitive modeling
process. We use this result to show how such a sequence can be used to find a misunder-
standing of the student during the modeling phase.
Consider again the coil example and its MCP. One concept sequence is:

�
�
��

���� � ��
���� � � ����� ��� �

�
��

���� � �&
���� � � ����� ��� �	 ����
���
 � �&
���� � � ����� � �%
���� � � �&��� ��� �����"
���� �
������������� �
���
���	�

���

In this sequence concepts that call other concepts are written after the called concepts. This
is due to the idea that a concept is understood if its “sub-concepts” (concepts that are called
by the surounding concept) have been understood before.
From the first and second element of the sequence follows that
�
��
+��
���� � � ����� ��� �
� S&� . The third element delivers
�
��
���	.��/+�&
���� � � �&��� � �;
���� � � ����� ����� � �*S�� . By
combining this result (which is done by the fourth element ����"
���� �
���������� we get

�
��
���	.��/+�&
���� � � ����� � �%
���� � � �&��� ����� � � SN� � ��S �-� ��S�� . The last element allows for
deriving the result ��� �
 � ��	�� ����� �

� �.� ����
� � �
 � � . Which perfectly corresponds to the

pre-specified goal state.
Now assume that the student who has to do the modeling answers the the two equations
� � �

� � �-� ��
� � �
 � and

� � � SJ� S 	 (where
�

stands for the area of the cross shape). Whereas
the first equation is correct, the second is not. The question now is, which principle has not
been taken into account? The obvious answers is that the student has ignored the overlap of
the two rectangles. We will now see how our approach is able to provide the student with
the same answer.
For this purpose we first assume that if a concept is understood, then the output of the
concept is specified by the post-conditions (taking the pre-conditions into account). If
a concept is not understood, then the output is not specified. If a concept is comprised of
sub-concepts, then its output maybe a sentence containing variables. For example, consider
the concept ����"
���� �
���������� and assume that the 	 ���$
��
 � concept is not understood. It
follows that no expression for variable

0
can be determined. Therefore, the output value

�
��
���	.��/+�&
���� � � ����� � �%
���� � � �&��� ����� � � S/� �1� S(� � 0
is returned. But now the equation� � �
S � S 	 does not contradict the output of the the MCP because they are equivalent if

0
is equal to 0. The system now can the answer that the concept 	 ����
���
 � was not understood
and its output was assumed to be 0.
What we have used so far is the behavior of the concepts (which correspond to components
in model-based diagnosis), the assumption that a not understood concept does not provide
any information, and the assumption that two equations lead to a contradiction if they
cannot be compared. Two equations can be compared, if there exists a function that maps
one equation to the other.

5 Discussion and conclusion

The explanations ISAC generates so far, are completely related to the structure of mathe-
matics, which is reflected by the mechanisms of ISAC, and by the knowledge, ISAC (and
the student) are working on. This may be acceptable for parts of the specifying phase
and for the solving phase; and it may be appropriate for the algorithmic parts in the nar-
row sense. But it is not satisfactory for the model phase, where the issue is to bridge the

gap from incomplete knowledge, unconcrete notions, unclear concepts represented in the
students mind, to a formal model of the problem.
Therefore, we have introduced a framework that should allow for specifying the math-
ematical concepts and their interaction which are necessary to model and solve a given
example. Having such a model enables us map wrong example solutions to cognitive parts
that build-up the modeling and solving process. Hence, it should be possible to give the
student a more focused feedback about the nature of the fault. I.e., the system can say that
a concept, e.g., overlapping areas of two geometrical objects have to be counted only once,
has not been used for solving the example (which was wrong).
The introduced framework should be understood as a basis for discussion. It has not be
proven that all mathematical examples can really be expressed within this framework.
Moreover, the semantics is currently only an informal one and is based on first order logic.
Hence, future research has to (1) ensure that the framework can be used for as many exam-
ples as possible, (2) define a formal semantics, and (3) give complexity results. However,
considering our mathematical coil example we could show that the framework delivers
promising results.

References

[1] Bruno Buchberger. Algorithmic mathematics: Problem types, data types, algorithm
types. Lecture notes, Research Insitute for Symbolic Computations, Johannes Kepler
University, Linz, Austria, 1982. 320 pages.

[2] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[3] Kees de Koning and Bert Bredeweg. Using GDE in Educational Systems. In Proceed-
ings of the European Conference on Artificial Intelligence (ECAI), pages 279–283,
Brighton, UK, August 1998.

[4] Kees de Koning, Bert Bredeweg, Joost Breuker, and Bob Wielinga. Model-based
reasoning about learner behavior. Artificial Intelligence, 117:173–229, 2000.

[5] Heinz-Christian Schalk et al. Mathematik für Höhere Technische Lehranstalten, vol-
ume 3. Reniets Verlag, Wien, Austria, 1998.

[6] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence, 2:189–208, 1971.

[7] Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85–168,
1984.

[8] Cliff Jones. A Rigorous Approach to Formal Methods. IEEE Computer, 29(4):20–21,
April 1996.

[9] Simon L. Peyton Jones and David R. Lester. Implementing Functional Languages, A
Tutorial. Prentice Hall International Series in Computer Science. Prentice Hall, New
York, London, Toronto, Sydney, Tokyo, Singapore, 1992.

[10] Donald E. Knuth and P.B. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Perg-
amon Press, 1970.

[11] Walther A. Neuper. A ‘calculemus-approach’ to high-school math ? In Steve Linto
and Roberto Sebastiani, editors, Proceedings of the 9th Symposion on the Integration
of Symbolic Computation and Mechanized Reasoning, Siena, Italy, June 2001.

[12] Walther A. Neuper. Reactive Uuser-Guidance by an Autonomous Engine Doing High-
School Math. PhD thesis, TU Graz, IICM – Software Technology, 2001.

[13] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

63

Model-Based Reasoning for Tutorial Dialogue in Shipboard
Damage Control1

Elizabeth Owen Bratt, Brady Clark, Zack Thomsen-Gray, Stanley Peters, Pucktada
Treeratpituk, & Heather Pon-Barry

Center for the Study of Language Information
Stanford University

Stanford CA 94305-4115 USA
phone: 650-725-2319

{ebratt,bzack,peters,ztgray,pucktada, ponbarry}@csli.stanford.edu

Karl Schultz, David C. Wilkins, David Fried
Beckman Institute

University of Illinois
Urbana, Illinois 61801

{kaschult, dcw, fried}@uiuc.edu

ABSTRACT: The intelligent tutoring system based on the DC-TRAIN simulation requires specific information
of various sorts about the student's performance during a session, in order to provide a focussed instructional
review. The flexible dialogue architecture allows for dynamic system adaptation to student performance during
the dialogue.

Keywords: simulation session action and knowledge representation for tutorial dialogue

1. Introduction

In this paper, we describe how our tutorial system extracts and uses information from the model of shipboard
damage control provided by the DC-TRAIN simulation, and its summary of student actions compared to expert
actions. Issues include designing appropriate representations and methods of accessing information from
simulator sessions. We discuss our system architecture, and how our flexible dialogue management and
intelligent tutor module provide effective instructional dialogue that adapts to each student's DC-TRAIN session
and performance within the dialogue.

2. DC-TRAIN for Shipboard Damage Control

The DC-TRAIN system (Bulitko & Wilkins 1999) supports qualitative reasoning in training damage control
assistants (DCA's) to manage shipboard crises appropriately, using general principles of how and where fires
might spread, likely consequences of fires (smoke) and firefighting (floods), and tradeoffs in resource use
involving strategically important compartments such as magazine rooms filled with explosive weapons and
large vs. small compartments.

1 This work is supported by the Department of the Navy under research grant N000140010660, a multi-disciplinary university research
initiative on natural language interaction with intelligent tutoring systems

64

The DC-TRAIN system involves a simulation of a DDG-51 Arleigh Burke destroyer, its firemain, and the
properties of its compartments with respect to fires. Student DCA's can use DC-TRAIN for running through
scenarios to test their ability to handle the fire, flood, smoke, and firemain crises produced by various scenarios,
in reasonable speed and with the most effective containment of the crises. A separate DCX (damage control
expert) agent component can run at the same time as the DC-TRAIN simulation to provide the actions of an
idealized DCA, based on rules for optimal response to each crisis. The DCX agent generates a comparison of
the expert actions with the student's actions, in the form of a database table called the Expert Session Summary
Graph (ESSG).

3. Tutorial System

As a further training component, we are developing a tutorial system to conduct after action review with the
student DCA, based on the ESSG record of each of their sessions with DC-TRAIN. We discuss first some of
the issues in extracting and representing knowledge about the student's DC-TRAIN session, then outline our
overall system architecture, with more detailed discussion of our dialogue management and tutoring module's
structure and strategies.

3.1 Knowledge Representation Issues

Ensuring that the ESSG contains adequate information for the tutorial component to review with the student has
been an important design goal of recent work. Some of the necessary modifications to the ESSG have been:

• providing an explicit representation of the causal link between original crises in a scenario, and resulting
crises caused by fires spreading, fires producing smoke, fire fighting efforts producing flooding, etc. This
allows the tutorial system to present its discussion of related crises in a coherent fashion, and to have a
measure of how severe the results were from a crisis from the scenario.

• for each action or report in the system, providing a representation of the main action or statement, plus
values for each of the possible parameters. This allows the tutorial system to speak about comparisons of
the student's actions with the correct action, as well as to have the means to aggregate related actions,
either of the DCX or the student, for purposes of discussion. The aggregation may be necessary either for
the system's plan of how to conduct the review, or for the system to respond to the student's questions.
The discussion may be of what crises had similar mistakes, similar recommended actions, or similar use of
resources such as the same repair teams being involved.

• providing a representation of the goals which a particular action may serve, from immediate and direct
goals, to higher level ones.

• tolerance to unimportant differences from DCX, such as when the student chooses to start a different fire
pump from the one that the DCX chose, but the student's pump choice meets all applicable constraints.

DC-TRAIN produces the initial representation of the ESSG information in a Microsoft Access database table,
which we translate into a Java class for easy querying by our Tutoring Module (discussed in Section 3.4).

Beyond these issues of representing the ESSG information appropriately, we also are addressing issues of
visualization of information for presentation during the tutorial session. A ShipDisplay lights up compartments
with various colors indicating the type of crisis during DC-TRAIN. The tutorial system aims to use the same
display to highlight items during discussion. This could be especially valuable for discussing items of spatial
reasoning, such as the proper placement of fire boundaries and tracing the spread of a fire or flood and
discussing considerations in managing that crisis at various stages of its development.

3.2 System Architecture

In this section, we discuss some models and techniques we used to deal with the complex structure of fire, flood,
smoke, and firemain crises produced by various DC-TRAIN scenarios.

65

To facilitate the implementation of multi-modal, mixed-initiative interactions, we implemented our system
within the Open Agent Architecture (OAA) (Martin et al. 1999). OAA is a framework for coordinating multiple
asynchronous communicating processes. The core of OAA is a ‘facilitator' which manages message passing
between a number of encapsulated software agents that specialize in certain tasks (e.g., speech recognition).

Our system uses OAA to coordinate agents for the following components of the system:

• Gemini natural language understanding (Dowding et al. 1993). Gemini uses a single unification grammar
both for parsing strings of words into logical forms (LFs) and for generating sentences from LF inputs.
This agent enables us to give precise and reliable meaning representations which allow us to identify the
discourse move types (e.g., a question) given a linguistic input or output; e.g., the question “What
happened next?'“ has the LF: (ask(wh([past,happen]))).

• Nuance speech recognition, which converts spoken utterances to strings of words. Nuance relies on a
language model, which is compiled directly from the Gemini grammar, ensuring that every recognized
utterance is assigned an LF.

• Festival speech synthesis, which ‘speaks' word strings generated by Gemini.

• A Dialogue Manager, which coordinates inputs from the user, interprets the user's dialogue moves, updates
the dialogue context, and delivers speech and graphical outputs to the user. This agent is discussed in detail
in Section 3.3.

• A Tutoring Module, which identifies appropriate tutorial strategies (positive or negative feedback,
follow-up questions, hints) in response to user input. This agent is discussed in detail in Section 3.4.

Agents 1-3 are ‘off-the-shelf' dialogue system components (apart from the Gemini grammar, which must be
modified for each application). We implemented agents 4 and 5 in Java specifically for this application. This
OAA/Gemini/Nuance/Festival architecture has been deployed successfully in an unmanned helicopter interface
(Lemon et al. 2001).

3.3 Dialogue Manager

3.3.1 Dialogue Management Architecture

The Dialogue Manager makes use of several recent ideas in dialogue modeling, described in detail in Lemon et
al. (2001). It creates and updates an Information State, corresponding to a notion of dialogue context. Dialogue
moves (e.g., an assertion) update the information state and are mixed-initiative. A dialogue move might send a
response to the tutoring system, elicit feedback from the tutoring system, or prompt a follow-up question.

Figure 1 provides a sample of the type of tutorial interaction our system aims to support.

T=tutor,
S=student
T There were two fires, and you put out both of them. You also handled one flood. The first

fire was in the officer's baggage room. For a fire, what's the first thing you should do?
S Send a repair team to set fire boundaries on the compartment.
T No, you missed a step. What comes before setting fire boundaries?

S I'm not sure.
T Okay. First send a team to investigate. For the second fire, you also forgot to send a team to

investigate. Okay. After setting fire boundaries, what should you do?

S Order a repair team to fight the fire.

T No, you missed a step. What should you do before sending a repair team to fight the fire?

66

S Isolate the space.
T Yes. Always electrically and mechanically isolate a space before

fighting a fire. For the second fire, you also forgot to isolate the space.

Figure 1: Sample Dialogue

The Dialogue Manager includes two types of declarative knowledge: dialogue move types and the activity
model. Dialogue move types are Java classes and include assertion, wh-query, yes-no-query, yes-no-response,
etc.

The Activity Model is a hierarchical and temporal decomposition of tutorial activity. Unlike other aspects of the
dialogue management architecture, only the Activity Model is specific to tutorial activity. The Activity Model
includes activity types. Activity types are Java classes and include EXPAND_ONLY, SUMMARY (i.e, a
statement that does not require a response), YN_QUERY (e.g., a question like “Ready to begin reviewing your
session?”), and WH_QUERY (e.g., “What comes before setting fire boundaries?”). EXPAND_ONLY activities
are more like placeholders for scripted sets of actions the tutor plans to perform. For example, the
EXPAND_ONLY activity type ‘start' corresponds to a sequence of actions: a YN_QUERY ‘ready to begin', an
EXPAND_ONLY node ‘review session', and a SUMMARY ('goodbye'). Aside from EXPAND_ONLY, activity
types represent primitive actions like asking a yes-no question.

The Dialogue Manager includes the following dynamically updated components:

• A Dialogue Move Tree: a structured history of dialogue moves and ‘threads', plus a list of ‘active nodes'.
• An Activity Tree: a temporal and hierarchical structure of activities initiated by the system or the user,

plus their execution status.
• A System Agenda: the issues to be raised by the system
• Salience Groups: the objects referenced in the dialogue thus far, ordered by recency (Fry et al. 1998)
• Pending List: the questions asked but not yet answered
• Modality Buffer: stores gestures for later resolution

In the Dialogue Move Tree, each node is of a particular dialogue move type. Each node in the tree is a dialogue
move, either by the tutor or by the student. Nodes in a dominance relation correspond to sub-dialogues; e.g.,
when the tutor asks a follow-up question in response to the student's answer to a question like What should you
do in response to a fire alarm?

In the Activity Tree, each node is of a particular activity type. Nodes are constructed and added to the tree by
the Tutoring Module (see Section 3.4 below). At the initial part of the session, the system creates a single
EXPAND_ONLY node called ‘start' and adds it to the tree. It then begins executing tasks. The activity ‘start' is
passed to a hashtable which returns the corresponding sequence of actions: a YN_QUERY ‘ready to begin', an
EXPAND_ONLY node ‘review session', and a SUMMARY ‘goodbye'. These nodes are all added to the tree
and the YN_QUERY is asked. The tutor then waits for a response from the student. Based on that response, the
tutor adds a new action to the tree and executes again or simply executes the next task.

3.3.2 Benefits

There are several benefits to our dialogue management architecture:

• The dialogue management architecture is reusable across domains. As mentioned, the same architecture
has been successful implemented in an unmanned helicopter interface (Lemon et al. 2001). The activity
model--- e.g., the properties of the relevant activities--- will have to be changed across domains.

• The Dialogue Tree/Activity Tree distinction allows one to capture the notion that dialogue works in service
of the activity the participants are engaged in. That is, the structure of the dialogue, as reflected in the
Dialogue Move Tree, is a by-product of other aspects of the dialogue management architecture; e.g., the
Activity Model and the Tutoring Module. The Dialogue Tree/Activity Tree distinction is supported by
recent theories of dialogue; e.g., Clark's (1996) joint activity theory of dialogue.

67

• The dialogue move types are domain-general, and thus reusable in other domains.

• The architecture supports multi-modality with the Modality Buffer. For example, we are able, in principle,
to coordinate linguistic input and output (e.g., speech) with non-linguistic input and output (e.g., the user
can indicate a point on a map with a mouse click or the system can illuminate a point on a map).

3.4 The Tutoring Module

3.4.1 Tutoring Module Components

The Tutoring Module processes the ESSG in order to discuss the student's DC-TRAIN session based upon the
structure, causality, and behavior of its components (i.e., crises and actions). This information is used both to
construct an overall tutoring strategy and to determine appropriate reactions to student input.

Before any tutor-student interaction takes place, the Tutoring Module devises the aforementioned tutoring
strategy. This strategy composes the EXPAND_ONLY node 'review_session' which is added to the Activity
Tree as a part of the 'start' node. This node defines which crises (out of the total set in the session) the tutor will
discuss with the student. Crises are eliminated if the student performed perfectly in response to that crisis, or if
a crisis with similar errors has been chosen for discussion. A given scenario may have many of the same type of
crisis, so this preprocessing of the ESSG into a tutoring strategy seeks to avoid redundancy and keep the student
interested.

The Tutoring Module must thus perform an analysis of the ESSG while constructing this strategy. Similar crisis
types must be identified, as well as similar student errors. It is important to note that repeat errors are not only
relevant in the strategy construction; they are also important to mention to the student during the tutoring
dialogue itself (as seen in Figure 1). We hope to identify “exemplar” crises in the session. These are those
crises that represent the poorest student performance on that given crisis type. These crises will make for the
most interesting dialogues and provide the student with the most opportunity for learning. It may be the case
that a student performs perfectly on all of a given crisis type save one and we may need to take this into account
when evaluating the students performance.

As noted above, the Tutoring Module identifies appropriate strategies in response to user input. The Tutoring
Module includes one type of declarative knowledge: a library of tutoring strategies. Figure 2 illustrates a
tutoring strategy. For legibility, the key elements are presented in English rather than Java. Figure 3 formats the
strategy in Figure 2 as a dialogue.

def_strategy discuss_error_of_omission_answer_incorrect

: goal (did_discuss_error_of_omission_answer_incorrect)

: preconditions
(i) the student's answer is incorrect
(ii) the student's actions in response to the damage event included an error of omission

: recipe
(i) provide negative feedback to the student
(ii) give the student a hint
(iii) ask a follow-up question
(iv) classify the student's response
(v) provide feedback to the student
(vi) tell the student the rule
(vii) tell the student that the topic is changing

Figure 2: Sample tutorial strategy

T The first fire was in the chemical warfare defense equipment storeroom No. 2. What is the first thing
you should do in response to this crisis?

68

S Send a team to isolate the compartment.
T No, that incorrect. You missed a step. What should you do before isolating the compartment?
S I don't know.
T You should investigate the compartment. Let's move on.

Figure 3: Sample tutorial strategy dialogue

To initiate a tutoring strategy, the student invokes the Tutoring Module by responding to a question from the
tutor; e.g., “What should you do in response to a fire alarm?” The system searches the library of a tutoring
strategies to find all strategies whose preconditions are satisfied in the current context. Like the plan operators
in other systems (e.g., Atlas/Andes; Freedman 2000), each tutorial strategy has a multi-step recipe (Wilkins
1988) composed of a sequence of actions. Actions in a recipe can be primitive actions like providing feedback
or complex actions like embedded tutorial strategies.

The Tutoring Module utilizes information in the ESSG to decide which tutorial strategy is appropriate with
respect to a student's response to a particular question. For example, in Figure 2, the Tutoring Module uses, in
the preconditions on the application of the tutoring strategy, the information in the ESSG which classifies the
relevant action as an error of omission, in addition to the classification of the student's response as an incorrect
answer. The preconditions on other tutoring strategies will involve different combinations of action and
response classification. Hence, it is the combination of the classification of a student's response (as correct,
incorrect, etc.) and action in a DC-TRAIN session (as an error of omission, error of commission, etc.) which
determine which tutoring strategy the Tutoring Module uses to teach the student.

The response classification mentioned above is not trivial. The student response to the tutor's query and the
ideal student response as stored in the ESSG are in dissimilar forms. They are both translated into Command
objects which represent the actions in question. The two objects can then be easily compared. Comparisons are
made based on each relevant field of the object - the order type (e.g., setting flood boundaries), the agent (e.g.,
repair team 5), and the location (e.g., the laundry room). Student responses that do not match the ideal response
in one field will be dealt with differently than student responses that do not match the ideal response in other
fields. For example, a response with the wrong order type is a more serious error than a response with only the
wrong agent.

The Tutoring Module makes uses of other aspects of the ESSG when tutoring the student; e.g., the causal
structure of the model. Some actions in DC-TRAIN are steps in sequences of actions. For example, when
fighting a fire the DCA must send a repair team to investigate the compartment, isolate the compartment, set
fire boundaries, and fight the fire, in that order. If the student incorrectly omits one of these steps, while still
succeeding in completing the other actions in the sequence, this is an error of omission. Students may also fail
to identify the correct step in a causal sequence when responding to a tutor's question. The Tutoring Module
uses this type of causal information contained in the ESSG to determine the appropriate type of hint (e.g., “You
missed a step”) to give to a student.

4. 0 Conclusion

Tutoring sessions use a complex representation of student DC-TRAIN performance, and structure it to provide
an effective, focused review. The flexible dialogue architecture allows for the system to adapt to student
performance during the dialogue, taking patterns of action from the DC-TRAIN session into account, both in
formulating dialogue responses and in creating dialogue structure.

References

 Bulitko, V.V. and D.C. Wilkins. 1999. Automated instructor assistant for ship damage control. Proceedings of
AAAI-99

 Clark, H.H. 1996. Using Language. Cambridge University Press.

69

 Dowding, J., J. Gawron, D. Appelt, J. Bear, L. Cherny, R.C. Moore and D. Moran. 1993. Gemini: A natural
language system for spoken-language understanding. Proceedings of the ARPA Workshop on Human Language
Technology.

 Freedman, Reva. 2000. Plan-Based Dialogue Management in a Physics Tutor.
Proceedings of the Sixth Applied Natural Language Processing Conference (ANLP '00).

 Fry, J., H. Asoh and T. Matsui. 1998. Natural Dialogue with the Jijo-2 Office Robot. Proceedings of IROS-98 :
1278-1283.

 Lemon, O., A. Bracy, A. Gruenstein and S. Peters. 2001. Proceedings Bi-Dialog, 5th Workshop on Formal
Semantics and Pragmatics of Dialogue:57-67.

Martin, D., A. Cheyer and D. Moran. 1999. The Open Agent Architecture: a framework for building distributed
software systems. Applied Artificial Intelligence 13, 1-2.

 Wilkins, D. 1988. Practical Planning: Extending the Classical AI Planning Paradigm . San Mateo, CA: Morgan
Kaufmann.

70

71

Moving toward an Interactive Model Based Design Assistor
(IMBDA)

Dr Mark Ratcliffe
Professor Chris Price

Department of Computer Science, UW Aberystwyth

This paper describes a proposed system to capture the design processes of novice students with an interactive,
collaborative design tool to develop a case based diagnosis system capable of interpreting the students’ work,
modelling the design process and responding with useful advice.

Pedagogy, CBR, Design Processes

Overview
The Department of Computer Science at the University of Wales, Aberystwyth has been building a tool to
produce a fully interactive, collaborative design capture and feedback system. Once complete it will be used to
capture the design process of cooperating novice designers in order to refine our knowledge of the way in which
the design learning process works. It will enable us to acquire a much better understanding of the student’s
perception of design and the learning process it involves.

The knowledge gained from working on a specified set of case studies will then be used to develop a case-based
system capable of assisting novice engineers to develop higher quality designs.
The longer term aim is to develop a more generalised second-level system which has an underlying model of the
design learning process and can thus break free of the captured cases and be capable of advising students in the
general development of their designs.

The final system will be able to simulate other group players to give individuals experience of designing within a
team, even if one is not present. It will be applicable to paradigms of software development other than that for
which it was originally developed in particular to more general engineering projects that utilise computer aided
design.

Background
Current teaching is less effective than it should be
Software development is a relatively young engineering discipline, yet there have been many fundamental
changes in the techniques employed for the basic development of software systems. The latest paradigm, that of
Object Oriented Design, has become increasingly popular and is now commonplace in most courses on software
development. Object Oriented Development is claimed to be one of the most natural forms of development,
modelling closely the way in which systems exist in the real world, yet there are still problems in teaching the
technique. At a recent conference of the Learning and Teaching Support Network for Information and Computer
Sciences [1], there was wide consensus that the success rate of this teaching is very poor. A similar international
review of first year students’ programming skills reached the same conclusion [2].

Many different approaches are used to assist novice programmers in their attempts to learn the design process.
Unfortunately, as demonstrated by a recent paper [3], they all require experience in order to be truly successful:
“The first step in actual class design is to find the primary objects” [4]
“Identify the classes and objects at a given level of abstraction”[5]
“The content of an object model is a matter of judgement …” [6]
“As analysts experienced in [design…], we recognise certain patterns” [7]

72

and the list goes on. It is a chicken and egg problem. How are students supposed to apply judgement in the
absence of experience?

Tutors’ experience is a barrier to student learning
Whilst novice programmers might be able to recite the techniques necessary to approach the design process,
there is no real substitute for experience, but therein lies a problem. Most instructors of design naturally base
their tuition techniques on their understanding of the design process. This is based on years of valuable
experience and it is the key element that the students lack. Unfortunately, although the tutor’s experience is the
key to their own success, it is also a complicating factor. The lack of experience on the students’ part puts up a
significant barrier between the tutor and student. It is often the very reason why the tutor cannot appreciate the
real difficultly that the students face.
Cooperative Design is a good thing.

One helpful idea appears to be allowing students to cooperate. Work undertaken at the German National
Research Centre for IT demonstrates the benefits of cooperative learning in design [8].

Cooperative design has the added advantage of causing students to justify their design decisions and reflect upon
them. Research has shown that knowledge alone is not sufficient for successful problem solving in a domain:
the student must also choose to use that knowledge, and to monitor the progress being made [9]. The learning
and construction of new knowledge structures requires similar self-awareness and reflection.

The prototype system that we are developing at Aberystwyth supports cooperative design and keeps a log of
students’ design decisions. Whilst it is more likely that in a team of students, there will be someone who can
make good design decisions, the lack of experience still applies.

What IMBDA will achieve
This project will help us better understand the learning processes involved in designing software. It will deliver
software capable of enhancing the learning process for beginning software engineers and to do this will
incorporate elements of both cooperative design and focused and relevant tuition.

The current developments being undertaken are timely, as many academics and industrialists are beginning to
realise that they way we are educating software engineers is flawed. Ratcliffe coordinated a session on this in the
USA early in 2002 [10].

At first, there seems to be little that can be done to substitute for real experience, other than one-to-one tuition
that points out where a student is going wrong at the critical time (and determining the critical time is itself of
course a tricky pedagogical issue). With the IMBDA system, however, we hope to provide the equivalent of this
one-to-one tuition in the form of a software system. Thus we will maintain personalised advice while providing
savings in terms of time and money.

Similar work to this project is already underway in the UK through the AESOP [11] project though this only
records information; it is not applying the case based or model-based technology to solve students’ problems.
This is where IMBDA excels.

The Approach taken by IMBDA
The general approach in IMBDA is a multi phase development that can be broken down into four distinct stages.

Implementation of capture tool.
Wherever possible IMBDA has been designed to make use of existing software. It is expected to complete this
phase of development within the next 12 months though it will be ongoing as it is extended to support the other
phases of development.

73

Preparation of case studies and deployment of tool to work with them.
At the same time as developing the software, it is necessary to investigate suitable problem specifications to be
given to at least 150 students to test and enhance their design skills. Once a worksheet has been assigned,
IMBDA will be used to capture as much information as possible on how the students’ design evolves. The case
studies will be chosen to encourage team working to enhance communication and make it easier to capture the
feedback loop fundamental to the learning process.

Capture of design learning process and development of case-based system
Each individual problem specification should produce a large set of captured designs. These case studies will be
structured into a database to enable the tool to be developed into a case-based design assistor. This is a
challenging task, involving representation of designs and of the decisions behind those designs. This must be
combined with the ability to diagnose and repair the student’s understanding of how to proceed with their design
solution.

While a case-based system of such sophistication has not been attempted in the past, it should be achievable by
use of case-based representation of designs, representing differences between designs as adaptations [12]. The
monitoring, diagnosis and repair of student understanding using the case-base will require modelling of the
student design process, and ground-breaking work in this area (although in a much simpler domain) has been
carried out [13]. We will use that work as a starting point for developing appropriate modelling of students
designing software.

New students will be able to work through the example sets using IMBDA as an intelligent advisor guiding them
through the design process. Unlike a traditional student-tutor set up, IMBDA will be advising based on
information gained from students working with similar experience to that of the user but with refinements gained
through trial and error. It is hoped that the really significant factor is that the feedback will be at the same level
as that of the student. It is expected that this will be a major step forward in the pedagogy.

Creation of model based system based on these experiences.
Once the case based system has been implemented, IMBDA will move into the final most adventurous phase,
which is to take the design cases and factor out a more generalised model of the software design learning process
thereby breaking out of the confines of the original case studies. This stage aims to develop and refine a
generalised model of the learning process facing novice designers and identify effective techniques that can be
used to overcome them.

Generalisation of the case-based IMBDA working on specific cases studies to an IMBDA capable of assisting
novice programmers with a wider range of design problems is the most ambitious phase of the project. We
expect to be able to abstract a set of general causal mechanisms appropriate to novice programmers from the
case studies and from the experience with the case based system. We will then apply these to new case studies to
generate for unseen problems the kind of support that the case-based system provides for the original case study
problems. Stroulia does similar abstraction and reuse of design principles, albeit in a simpler domain [14].
Conclusion

We hope that the initial case-based system for software designers will prove a real asset in teaching software
development by improving the quality of the educational experience. Most Computer Science Departments are
only too aware of the low success in helping novice programmers develop their programming and design skills.
This system will assist in speeding up the learning process for the learner by helping them gain knowledge that is
usually only developed through extensive experience.

The model based system will prove a more general resource in the education and retraining of software
developers ultimately enhancing the supply of good quality engineers to the software industry. This could prove
particularly significant since the relative youth of software development and its enormous rate of growth
inevitably means that over the next few decades there will be a significant amount of retraining required.
Migrating to new development techniques is not easy. As the final system will be applicable to paradigms of
software development other than that for which it was generally developed, the work undertaken through

74

IMBDA will assist in the retraining of these software engineers. The system will also be of use to other more
general engineering projects that utilise computer aided design.

Bibliography
[1] 2nd Annual LTSN-ICS Conference, University of London, August 2001.
[2] M. McCracken et al., “A multi-national, multi-institutional study of assessment of programming skills of
first-year CS students”, report of an ITiCSE 2001 Workshop, SIGCSE Bulletin, December 2001.
[3] J.M. Maris & C. VanLangen, A Design Tool for Novice Programmers, Working Paper Series 00-01-
April2000, http://www.cba.nau.edu/working_papers/papers&abstracts/ MarisVanLanLucy/
Novice.htm
[4] D. Arnow & G. Weiss, Introduction to Programming Using Java: An Object Oriented Approach, Addison
Wesley, Menlo Park, California, 2000, p.142.
[5] G. Booch, Object Oriented Design with Applications, Benjamin/Cummings, Colorado, 1991, p. 190.
[6] J. Rumbough et al., Object Oriented Modelling and Design, Prentice Hall, Englewood Cliffs, New Jersey,
1991, p47.
[7] P. Coad & E. Yourdon, Object Oriented Analysis, 2nd edition, Yourdon Press, Englewood Cliffs, New Jersey,
1991, p48.
[8] T. Holmer & I. Schummer, A Tool for Co-operative Program Exploration, ECOOP 2000 Workshop, Tools
and Environments for Understanding Object-Oriented Concepts, June 12, 2000
[9] E.A S ilv er , “Fo un datio ns of cog n itiv e theor y and resear ch fo r m athem atics p ro blem so lving in stru ction ” in A.
H . S ch oenf eld (Ed.), Cog nitive scien ce a n d ma thema tics ed u ca tion (p p. 3 3 -6 1) . H ills d ale, NJ : Law rence Erlbaum ,
1 98 7
[10] M.B. Ratcliffe “Improving the Teaching of Introductory Programming by Assisting the Strugglers”, The
33rd ACM Technical Symposium on Computer Science Education, Cincinnati, USA, February 27 - March 3,
2002.
[11] M. MacGregor, Pete Thomas and Mark Woodman, AESOP (An Electronic Student Observatory Project):
ITiCSE 2001, Innovation & Technology in Computer Science Education, Canterbury, Kent.
[12] T.R. Hinrichs & J. Kolodner, “The role of adaptation in case-based design” Proceedings AAAI-91, 1991
[13] K. de Koning, B. Bredeweg, J. Breuker and B. Wielinga, “Model-Based Reasoning about Learner
Behaviour”, Artificial Intelligence, Vol 117, No. 2, pp173-229, 2000.
[14] A. Goel and E. Stroulia, “Functional Device Models and Model-Based Diagnosis in Adaptive Design”,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol 10, pp355-370, 1996.

75

A case study of collaborative modelling:

building qualitative models in ecology

Paulo Salles

Universidade de Brasilia, Instituto de Ciências Biológicas

Campus Darcy Ribeiro, Brasilia - DF, 70.910-900, Brasil

E-mail: paulo.bretas@uol.com.br

Bert Bredeweg

University of Amsterdam, Department of Social Science Informatics

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

E-mail: bert@swi.psy.uva.nl

Keywords
Collaborative Model Building, Qualitative Modelling/Reasoning, Distance Learning, Ecology

Abstract
Modelling is seen as a learning activity in itself and qualitative modelling environments start to play

a role in this respect. However, building (qualitative) models is not an easy task. It is therefore necessary
to develop support for teachers and students. This paper describes an experience in which Artificial
Intelligence (AI) undergraduate students from the University of Amsterdam and graduate ecology
students from the University of Brasilia were engaged in a collaborative model building activity. The
objective was to build qualitative models about the carbon cycle and the greenhouse effect in GARP.

A questionnaire was used to obtain the students opinion about different aspects of the modelling
effort. Almost all the students (94%) reported an increase in their understanding of the ecological
problems after the modelling activity, (an observation that supports the idea of modelling as a learning
activity in itself). In certain aspects, being an ecologist (and therefore possessing relevant domain
knowledge) made some parts of the model building activity easier. For example, global identification of
the processes involved. Contrary, the AI students found it easier to construct typical AI representations,
such as subtype hierarchies. The most difficult task for both groups was to build a library of model
fragments. Identifying quantities and their quantity spaces were also mentioned as difficult.

In order to improve the performance of the qualitative modelling environments the QR community
has to put effort in developing authoring tools with explanatory facilities. The study reported here
provides some insights on how to scaffold such model building tools.

76

1. Introduction

Model building is becoming an important educational activity. According to Forbus et al. (2001) it is
important that students become modellers because during the modelling process they have to articulate
relationships between entities and dependencies between their beliefs. This is important for both
understanding the phenomenon being modelled and in developing a broader understand of complex,
interrelated systems. This way, models provide means to externalise thoughts and to support questioning,
discussion and justification of decisions. Finally, modelling provides students with practice in using
formal representations, a skill needed for mastering mathematics and programming.

Qualitative Reasoning (QR) has a role in introducing modelling into the classroom. Historically QR
systems are linked to education (e.g. SOPHIE, Brown et al., 1982, and STEAMER, Hollan et al., 1984).
Recently, a new generation of QR related tools is being developed. During the last international workshop
on QR (San Antonio, US, 2001) a number of papers illustrated that new approach: Mobum (Bessa &
Bredeweg, 2001) and VisiGarp (Bowers & Bredeweg, 2001), Vmodel (Forbus et al., 2001), and Betty’s
Brain (Leelawong et al., 2001).

As QR-related learning environments become available, and more people start building qualitative
models, it becomes important to actively develop tools to support such model building activities. To carry
out an exploratory study on this topic, a collaborative modelling effort was conducted with students from
the University of Amsterdam (UvA) and the University of Brasilia (UnB). These students designed
qualitative models about the carbon cycle and the greenhouse effect, using the qualitative reasoning
engine GARP (Bredeweg, 1992). They worked on a pencil and paper basis, and at the end of the course
some of the students actually implemented their models in GARP. In order to investigate difficulties
students found during the collaborative modelling effort, a questionnaire was completed by the students
about different aspects of the modelling process. Their answers give us indications of how to further
develop the use of qualitative modelling in the classroom.

This paper first presents the experimental context of the collaborative modelling activity. Second, it
briefly discusses the domain knowledge the students had to work with. Third, the activities are described
that were followed in order to have the students construct qualitative models and simulations. Fourth, the
results obtained from the answers given by the students to the questionnaire are discussed. Finally, the
lessons learned from of this experience are discussed.

2. The Experimental Context

The exploratory study described here involved 10 undergraduate and MSc students at the University of
Amsterdam (UvA) enrolled in the discipline ‘Model Based Reasoning’ (MBR) and six MSc and PhD
students at the University of Brasilia (UnB) enrolled in the discipline ‘Models in Ecology’. Due to their
different backgrounds, the approach each group took to qualitative modelling was somewhat different.
UvA students took it in terms of an artificial intelligence curriculum and UnB students took the modelling
effort in the context of an Ecology curriculum. UvA students had a good introduction to the QR literature
in their MBR course, whereas UnB students had only basic knowledge on that. The lectures also prepared
a tutorial on GARP, particularly focussing on the notion of model fragments and qualitative behaviour
graphs.

Five groups were formed, each consisting of two Dutch and one Brazilian student1. The overall modelling
problem was divided into sub-problems and each group had to tackle a specific sub-problem. In order to
facilitate the interaction and communication the e-group facility offered by Yahoo! was used (mbr-
ecology). All students and lecturers were subscribed to the e-group. Thus, participants could
communicate with each other using regular email as well as other Computer Supported Communication
(CSC) tools provided by the Yahoo! e-group facility.

In order to evaluate the modelling activity a questionnaire was used consisting of 41 questions, including
personal characterisation, course evaluation, the modelling effort, and the collaboration.

1 One group had 2 Brazilian students.

77

3. The Domain

An important area in ecology is nutrient cycling. Among them, the carbon cycle is particularly relevant
because it includes a very broad set of phenomena and involves the interaction of biological, physical and
chemical processes related to the production and use of organic matter. One of the most interesting
aspects of this cycle and a big issue nowadays is the fact that compounds of carbon, specially the carbon
dioxide (CO2), retains heat and therefore affects the climate – the greenhouse effect. One of the tasks for
the students was to acquire the knowledge relevant to this domain (see also next section). Figure 1 is a
picture found by the students on the World Wide Web that illustrates the problem situation2.

Figure 1: one of the many pictures found by the students illustrating the problem situation

4. The Model Building Method

The procedure described below was used to have the students conduct the required model building
activities. Each activity was supposed to take one week, and students were expected to spend
approximately 20 hours on the course during a week (including participating in seminars). For each
activity, the teams had to produce written documents discussing their results and share this with the other
students by placing the documents in the (mbr-ecology) e-group.

3.1 Starting the Collaboration.
Here the idea was that students should get to know each other, particularly to ‘meet’ the persons from the
other university. Each student therefore had to perform the following three tasks:
- Register at Yahoo! and join the e-group (mbr-ecology) that was made by the lectures for this

purpose.
- Send an introductory message to all the e-group members, particular stating: who you are, what you

are studying, why you are interested in the modelling course and what your expectations in this
respect are.

- Submit at least two bookmarks to the (mbr-ecology) e-group concerning ‘global heating’ (and/or the
‘greenhouse effect’). The idea was that the pages referred to by these bookmarks would form the
group's initial overall knowledge-based (understanding) of the problem.

In addition, and mainly to provide focus, the lectures gave the students a technical paper discussing some
of the most important aspects of the ‘carbon cycle’ (Grace, 2001).

3.2 Form Teams and Assign Subsystems
Based on the information provided by the students, teams were formed to tackle the sub-problems that
constitute the overall problem (the greenhouse effect). Notice that this step already enforced students to
decompose the main problem into a set of sub-problems even though their knowledge on the domain was
limited at this point. In order to prevent a potential deadlock the lecturers deliberately intervened both

2 http://www.acad.carleton.edu/curricular/GEOL/DaveSTELLA/climate/climate_modeling_1.htm

78

concerning the problem decomposition and the forming of teams. After all, this step was an important one
and needed to be solved in order to progress with the main model building activities.

Five themes were identified and each group started working on one of them: (a) a global model about the
carbon cycle, (b) forests, (c) water and oceans, (d) human activities, like industries, transport, agriculture,
and (e) the greenhouse effect.

3.3 Process Domain Related Publications
In order to learn more about their specific part of the overall problem teams had to study the domain
related material (WWW pages, including some online articles) and produce a four page written document
explaining and discussion their part. As all documents, this document had to be submitted to the (mbr-
ecology) e-group at Yahoo! so that all teams could read about the knowledge acquired by the group as a
whole3. Notice that each team consisted of students from both universities. During the seminars (locally at
each University) group members had to present and discuss their ideas with the members from the other
teams. This had two goals, first to share insights among teams and second to reduce too much diversity
between the groups (part of the discussion focussed on the relations between the sub-problems).

Students were also instructed to download the qualitative simulation software (GARP and VISIGARP)
and make sure that the software worked properly on their computers4.

3.4 Structural Model and Global Behaviours
To arrive at a qualitative model of the systems under study, the model building activity should continue
with a relatively strong focus on the knowledge representation underlying the qualitative simulator that
we intended to use. The idea was to divide that goal into four steps (see also below). The first step
consisted of three sub-activities:
• Structural model (objects and relations, e.g. part-of and is-a). Basically, a concept map including all

the entities relevant to the problem organised in a subtype hierarchy. In addition definitions of
structural relations, such as part-of, contains, etc, between those entities as far as needed (an example
constructed by students is shown in Figure 2).

• Global description of behaviour (processes). Textual oriented descriptions of typical behaviours, in
fact processes (e.g. respiration) or agents with certain behaviour (e.g. farming).

• Scenario's and related behaviour graphs. Develop two scenario’s using the previously defined objects
and behaviour descriptions and show how those lead to a particular behaviour graph relevant for
understanding the issues concerning the problem of global heating.

Entity

Process Object

photosynthesis

deforestation

fire/burning

death
biomass

atmosphere

gas

sunlight

soil vegetation animals?

forest

coniferous forest rainforest broad leaved
forest

growth?

Eating

CO2 O2

Carbon(C)

matter

Figure 2: an example of an initial concept hierarchy constructed by students

3 There were some technical problems with uploading and downloading MSWORD files. This caused some delay.
However, soon students discovered that PDF and RTF formats could be handled properly by Yahoo!. Consequently
DOC files were not used anymore.
4 At the time of the course we did not yet have easy to use model building software, such as HOMER (Bessa
Machado & Bredeweg, 2002). MOBUM (Bessa Machado & Bredeweg, 2001) was implemented as a demo, but was
not stable enough to support a broad model building effort. Thus, only students with knowledge of PROLOG could
be expected to actually build simulation models in GARP. Notice that currently this situation has changed. E.g.
HOMER is a fully implemented workbench and can be used to build qualitative models. For details see WWW
pages: http://web.swi.psy.uva.nl/projects/GARP/

79

3.5 Detailed behaviour model
The second step towards a specific qualitative model is to further detail the behavioural aspects. This
consisted of three sub-activities:
• Define quantities.
• Define quantity spaces for each quantity and point out important landmarks.
• Construct an influence diagram (a ‘causal model’). Using the previously defined quantities specify

how they are causally related, mainly using the notions of influences and proportionalities (see,
Forbus, 1984) (an example is shown in Figure 3).

Students also had to further detail the ‘global behaviours’ defined during the previous step. The idea
being that this should lead to a first global description (using text) of the model fragments that will be part
of the final model.

C on
atmosphere

C on soil

C fossil
fuels

I+:Fossili
zation

C ocean
I+:Run Off

P+:Decomposition
P+:Amountof

rain
P+:Slope
P+ Deforestation

I+
: H

um
an

 a
ct

iv
iti

es

P+:Human
population

P+ :Technology

I+:Diffu
sion

P+: Temperature
P+: Moisture
P+: Microorganism

activities

P+:Temperature;

I+: Soil respiration

C on
vegetation

I+
: D

ec
om

po
si

tio
n

P+Temperature
P+Water
P+Amountof

organic matter
P+Microorganism

I+:Photosynthesis

P+ : Temperature;
P+ : Water availability
P+: CO2
P+: Nutrients

I+: R
espiration

P+:Temperature
P+:Water availability
P-: Exposureto Light

C rocks

I+
: S

ed
im

en
ta

tio
n

P-:Marineflow
P-:Temperature
P-:Decomposition

I+:Volcanism

P+: Geological
activities

Figure 3: an example of an influence diagram constructed by students (stressing the fluxes)

3.6 Detailed specification of model fragments
The third step consisted of constructing detailed descriptions of the required model fragments. Although
this step was performed using paper and pencil the students had to follow a specific syntax (provided by
the lectures). Students who were more experienced with PROLOG were encouraged to formulate their
model fragments directly in GARP, however, without running the simulator. The focus of this step was to
conceptually clarify the set of model fragments (and not to focus on the overall effect of those model
fragments on the behaviour graph potentially generated by the simulator).

3.7 Towards Detailed Implementation and Running a Simulation
During the fourth step the idea was to actually run models using the simulator. This mainly included the
following sub-activities:
• Defining and implementing the possible scenarios (input systems).
• Analysing behaviour graphs generated by the simulator.
• Debugging and finalising the library of model fragments.

3.8 Writing Documentation
Finally students had to write a report discussing their model. The goal was not to simple copy and past
the documents produced before, but to examine them and reformulate these documents following all the
discoveries and modifications made during the model building activities. In other words, a description of
the latest results had to be produced by each team.

80

5. The Modelling Effort

“A change of reasoning and thinking”

In the questionnaire there was a set of questions related to building the model. Some of these questions
explored each of the main points in the models, like identifying objects, quantity spaces and so on. We
asked the students to comment on how difficult they found it to develop each part of the models. The
results are presented below.

Degree of difficulty – When the students were asked to define how difficult it was to build qualitative
models, the answers varied. All UvA students mentioned an intermediate (‘medium’) level of difficulty.
They made comments like qualitative modelling represented for them a “change of reasoning and
thinking”, and that once they understood the process, they found it doable. One UvA student said “it took
me a while to make the distinction between ‘modelling’ and ‘programming’.” Among UnB students, one
third found it ‘more or less easy’. The tutorial prepared by the lectures made it easy for them to represent
the basic processes. Also, the implementation part of the modelling effort was not their main concern.

Understanding the problem – Understanding the general problem (carbon cycle and the greenhouse
effect) in the beginning of the modelling activity was ‘more or less difficult’ for one third of UvA
students and more than two thirds of UnB students. One of the students said, “the start was difficult. After
that when you finally figured out what is needed, it was easy”. Some students referred to previous studies
in biology, physics, earth sciences and chemistry at secondary school, which confirms the expectations
that qualitative modelling draws on common sense and incomplete knowledge. Another one said
understanding the problem was “difficult, the theory didn’t help at all, you just needed to look at what
GARP needed.”

Identifying the most relevant aspects – For 40% of UvA students and 84% of UnB students, it was
‘more or less difficult’ and ‘difficult’ to identify the most relevant aspects of the problem. UvA students
referred to a consult via email to their Brazilian partners “to have a confirmation that we had chosen the
right subjects”.

Identifying typical situations – Nobody found it ‘easy’ or ‘more or less easy’ to identify typical
situations and to define initial scenarios. However, it was a bit more difficult for UvA students than for
UnB students – maybe because of their background. One said it became “easier as a result of identifying
the most relevant aspects of the problem”.

Describing the system’s behaviour – Asked about imagining the overall behaviour of the system and
drawing a state-graph, the two groups gave different answers. For 84% of UnB students it was considered
‘medium’, ‘more or less easy’ and ‘easy’. For 60% of UvA students it was ‘more or less difficult’ and
‘difficult’. A UvA student said “difficult mostly because of lack of ecological / chemical fore knowledge”
Another one mentioned the fact that the whole problem was “fragmented over different groups”. This
part of the modelling problem seems to be domain knowledge related and the difficulties are bigger in the
beginning of the modelling activity.

Identifying physical objects – None of the students found it ‘easy’ or ‘difficult’ to identify the physical
objects involved in the problem. For 84% of UnB students and 80% of UvA students the task was ‘more
or less easy’ and ‘medium’. One of the AI students of UvA said “The difference between objects in GARP
/ Prolog and a OOP language as Java make some conceptions hard.”

Representing objects and model fragments in isa hierarchies – In GARP, objects and model
fragments are organised in isa-hierarchies. We asked the students to evaluate difficulties in building up
such hierarchies. Similar distribution of answers was observed in the two groups. Half of both UvA and
UnB students groups considered it ‘more or less easy’ and ‘easy’; the other half considered this task
‘medium’, ‘more or less difficult’ and ‘difficult’. Some UvA students mentioned their previous
experience in doing this type of knowledge representation, whereas these were new concepts for the UnB
students.

Identifying causal relations – A fundamental part of the qualitative modelling process is to identify
causal relations and to draw diagrams of influences. We asked the students to include direct and indirect
influences in their causal models. Opposite perceptions came up from this question: 90% of UvA students

81

said the difficulty level was ‘medium’, ‘more or less difficult’ and ‘difficult’, whereas for all UnB
students it was ‘medium’, ‘more or less easy’ and ‘easy’. We believe that the ability for explicating causal
relations is very well related to domain expertise. Some interesting remarks made by UvA students refer
to their difficulties: “especially problematic was the distinction between indirect / direct influences”
indicates that they found it difficult to understand / identify processes. Another UvA student mentioned
time scale problems, which are interesting and difficult aspects of ecological modelling: “difficult, so
difficult if this are going on all the time or at the same time”. Implementation is also an issue, as pointed
out by a UvA student: “this is the point were you need the domain knowledge and a lot of modelling
knowledge”.

Identifying processes – Identifying processes is crucial for building qualitative models in GARP. Asked
about how difficult it was, 80% of UvA students answered ‘medium’, ‘more or less difficult’ and
‘difficult’, whereas 100% of UnB students answered ‘medium’, ‘more or less easy’ and ‘easy’. One of the
UvA students said it was “difficult, because many processes also occur in other subsystems”. Similarly to
the previous question, domain knowledge is important for the students to identify processes.

Identifying quantities – None of the students found it easy to identify quantities and to define quantity
spaces. For two thirds of UvA students and for half of UnB students, this task was ‘medium’, ‘more or
less difficult’ and ‘difficult’. Their comments are helpful for understanding their difficulties: “more or
less difficult, there are too many quantities, difficult to choose the relevant ones”. It is “difficult to identify
quantity spaces, it is hard to imagine. Would there be a maximum or not? Is zero an option?” Another
student said “Difficult, it is hard to say when something is normal, high or maximum. Most of the times
you could only say it’s positive, normal or zero.”

Creating model fragments – Knowledge about objects, quantities, relations, conditions for things to
start and to stop and causal relations is represented in model fragments. They are the fundamental unity of
the library that encode knowledge in GARP models. Therefore, creating model fragments is probably the
most important part of the modelling activity. It is also one of the most difficult parts: 90% of the UvA
students and 83% of the UnB students said building model fragments was ‘medium’, ‘more or less
difficult’ and ‘difficult’. It is “difficult to translate the causal relations into a model fragment, because
this has certain limitations on the representation you can use” said one of the students. “There you need
to have a great understanding of GARP”, said another one. However, “it helps when you get an example
of the subject you are modelling” suggested a third student.

The most difficult part – Creating model fragments was considered the most difficult part by 60% of
UvA students and 50% of UnB students. ‘Understanding the general problem’, in the beginning of the
modelling effort, came next: 30% of UvA students and 17% of UnB students selected this option. Some
comments are worth to mention. The most difficult part was “getting a good overview of the domain,
especially the perspectives one can have of the systems”. “Thinking about the relevance of things” was
also mentioned. A UnB student said, “it was difficult in the beginning to understand the problems and the
objectives of the modelling”. Identifying ‘physical objects’, ‘typical situations and scenarios’, and
‘building causal models’ were not mentioned by any student as the most difficult part.

The easiest part – Among the ecologists, the activity that received more votes (34%) was identifying the
processes. A student said, “when you know what needs to be done, it works very fast. Understanding
GARP makes it easy”. For 20% of UvA students and 17% of UnB students constructing isa-hierarchies
was the easiest part of the model building process.

6. Is it Worth to Build Models?

We asked the students to evaluate their knowledge about the carbon cycle and greenhouse effect and QR,
having read the literature, BEFORE starting the model building and AFTER finishing the model.
Building qualitative models had a positive effect on the learning process about the ecological problems
for all the Dutch and for two thirds of the Brazilian students, according to their answers to the
questionnaire.

The most impressive results here are: UvA = 40% beginners before, and 0% after; 0% was ‘more or less
expert’ before, and 40% said so after. UnB = 50% was ‘more or less beginner’ before and 0% after; 34%
was ‘more or less expert’ and 50% was ‘more or less expert’ and 17% ‘expert’ after. Some UnB students

82

(34%), who were not really involved in the modelling activity, said their knowledge on the domain did
not improve.

We also presented the students a statement saying “building a qualitative model made me understand
better the problem”, and 60% of the UvA students and 83% of the UnB students said they ‘agree’ and
‘fully agree’. One of the UvA students said “fully agree, it gave me insight in the causality and the
different perspectives from which we can look at the problem”. A different view was presented by another
student, who said it “made me able to abstract the problem”.

7. About the Collaboration

An UvA student said “I think it is relevant to collaborate with people who have a different background
(biology) but the fact that they are far from each other and in different countries wasn’t relevant at all”
and others went on the same line. The UnB students were more excited about the international
collaboration, something they are not used to. Asked about how effective was the collaboration the two
groups had different opinions. The UvA students found it was not effective, whereas the UnB students
found it effective.

Why is it that ecologists found the interaction ‘effective’ while their partners did not? An overall
evaluation of the collaborative modelling effort shows that the students had an uneven experience. Five
groups were formed, including students from both universities. One group had a strong interaction, and
eventually they implemented part of their models in GARP; three groups had some interaction, but this
was not regular; and one group had no interaction between the students. There are some elements that
explain that. First, UvA students started the modelling effort earlier than their colleagues in Brazil.
Therefore, they were not at the same stage of the modelling process and for some groups it was difficult
to catch up. Given that e-mails exchanged in the e-group go to all the members, even for those that did
not interact within their groups there was some sort of feedback. Second, there were problems with the
language. Brazilian students have more difficulties with written English, and messages did not flow
smoothly and quickly. Third, those groups that were not interacting could finish their work separately
despite of their different background. AI students built their models using their basic knowledge of the
ecological problem. Ecology students had some help (from the lecturer and from a tutorial on modelling)
in order to design their models, but most of them did not try to actually implement their ideas in GARP.
Finally, this was our first tentative in doing such interaction between students via internet, and we could
not anticipate all the problems, prepare all the required didactic material beforehand, and adjust the
timetable of the modelling activities for both courses.

Even though, 75% of all the students expressed that we should continue with the international
collaboration in the future. As one UvA student said, “yes, it was nice and it has never been done before”.
The students suggested also to make a longer interaction: “the contact should be made soon, the response
should improve” and “increase the duration (time) of collaboration”.

8. Discussion

This exploratory study confirms the idea that modelling is a valuable learning activity, and suggests that
collaborative modelling involving students with different background may add some extra value to that
educational activity. We describe the collaboration between Artificial Intelligence (AI) students from
UvA and Ecology students from UnB in order to build qualitative models of the carbon cycle and the
greenhouse effect, using the representational schema adopted in GARP.

After the modelling effort, these students answered questions about general aspects of themselves and the
course, and specific questions about the qualitative model building process. All in all, modelling is a
doable activity for them, after understanding what they had to do. A student said qualitative modelling
represented a “change of reasoning and thinking”, an interesting comment for our reflection.

For the majority of the students understanding the problem they had to model and identifying the most
relevant aspects were more or less difficult activities. Knowledge of the domain helps, but still this can be
more or less difficult. Specific knowledge was important also for identifying typical situations the system
may go through, and for describing system behaviours. Our study shows that AI and ecology students had

83

opposite opinions about how difficult it is to describe behaviour. The same divergence of opinions we
found asking them about identifying objects and organising them in isa-hierarchies. AI students are used
to that and find it an easy task. Ecology students were not used and had some difficulties to create such
representations.

Probably the task that requires more domain knowledge is to build the causal models that underlay
qualitative models. Once again, the two groups of students presented different opinions about this task.
Almost all AI students marked ‘medium’ to ‘difficult’, and almost all Ecology students marked ‘medium’
to ‘easy’. Some problems were mentioned by them, such as the fact that the distinction between direct
and indirect influences is not always clear, processes are not easy to identify, and some aspects
particularly related to ecological systems. Among them, processes that happen all the time and others that
happen in particular moments; processes that occur in all the parts of the system and other that occur only
in some parts.

The students mentioned also difficulties for identifying quantities and their respective quantity space. One
student said in order to identify quantities and quantity spaces, “even more perception and interpretation
is needed”. In fact, this is a big issue in ecological modelling. Notions like ‘boiling temperature’, full of
meaning in domains such as physics are not easily found in ecology. The solution our students found was
to assume simple quantity spaces like {zero, plus} or {minus, zero, plus} for most of the variables.

Building model fragments was considered the most difficult activity of the modelling effort. Given that
these partial models encode in a specific language representations of objects, quantities, conditions,
relations, situations and processes, that is, the core of the knowledge being modelled, one can understand
why the students answer that way in the questionnaire.

The students recognise that it is worth to build models for their learning process. After investigating the
individual progress of the students reported in each questionnaire, we noted that 100% of students from
UvA reported an increase in their knowledge about the ecological problems studied. Among the UnB
students, 67% reported an increase, whereas 34% said their knowledge about the problem did not
increase. In the overall evaluation, these latter students were those who made less effort in the course. So
we can say the majority increased their understanding of the problem.

Students engaged in collaborative modelling sometimes act as teachers and sometimes as learners. As a
UvA student said, “maybe it is a good idea if the ecologists put more emphasis on explaining the
modellers their domain knowledge. Then the modellers could spend more time on making the models and
hierarchies, and maybe explain things about that to the ecologists”, the essence of collaborative
modelling.

This study was not intended to be prescriptive, but we can organise some suggestions we captured and
learned from our students. First, it is important to provide support for collaborative modelling. In the
beginning, keep the focus on the expert, imagining the overall behaviour, identifying processes and
drawing causal models. Describing behaviour in (qualitatively relevant and different) states, identifying
quantity and quantity spaces, that is, understanding the problem is crucial for the success of the modelling
effort.

When planning the collaboration, it would be a wrong decision to separate understanding the domain
knowledge from ‘how to implement’ that knowledge. There is a pragmatic aspect mentioned in two
different occasions to be explored. One student said modelling is “difficult, the theory didn’t help at all,
you just needed to look at what GARP needed” and another one said, “when you know what needs to be
done, it works very fast. Understanding GARP makes it easy”. These results suggest that the knowledge
representation should come along with thinking about the ecological system and what is relevant to
model.

As expected, the strength of the interaction varied among the groups involved. One group had a strong
interaction and eventually implemented running models. One group did not interact much and did not
produce running models. In between, three groups existed with a reasonable amount of interaction. The
perception of the Dutch and Brazilian students about the effectiveness of this experience was nearly the
opposite: for the former, it was not effective, and for the latter it was effective. We explain this
paradoxical as a result of different schedules, backgrounds and proposals for the two groups.

84

Concluding, it is worth to continue with collaboratively building qualitative models. This activity
provides the students with a better understanding of the problems. Skills acquired during the modelling
effort will be useful in their professional future. All students expect for one ecologist, found that
qualitative models are ‘very useful’. They say why: “It is convenient as a predictive tool in management
strategies and decision making”. Another ecologist said qualitative models are “very useful for
formulating the reasoning about a problem”. It is also important to get people from different countries
together. In our case, we intend to give more time for the students to get know each other better and to
exchange cultural experiences. We believe that cross-fertilisation of ideas may improve learning
opportunities.

Acknowledgements
We would like to thank the UvA and the UnB students for their collaboration and their willingness to
shared their opinions and suggestions with us.

References

Bessa Machado, V & Bredeweg, B. (2001) Towards Interactive Tools for Constructing Articulate
Simulations. Proceedings of the International workshop on Qualitative Reasoning, QR'01, pages 98-
104, San Antonio, Texas, USA, May 17-19. Gautam Biswas (editor).

Bessa Machado, V & Bredeweg, B. (2002) Investigating the Model Building Process with HOMER.
Proceedings of the International workshop on MBS/QR at ITS2002 (this volume).

Bouwer, A. & Bredeweg, B. (2001) VisiGarp: Graphical Representation of Qualitative Simulation
Models. In J.D. Moore, G. Luckhardt Redfield, and J.L. Johnson (eds.), Artificial Intelligence in
Education: AI-ED in the Wired and Wireless Future, pp. 294-305, IOS-Press/Ohmsha, Osaka, Japan.

Bredeweg, B. (1992) Expertise in Qualitative Prediction of Behaviour. PhD thesis. University of
Amsterdam, Amsterdam, The Netherlands.

Brown J.S.; Burton, R. & de Kleer, J. (1982) Pedagogical, Natural Language, and Knowledge
Engineering Techniques in SOPHIE I, II, and III. In Sleeman, D. & Brown, J.S. (eds.) Intelligent
Tutoring Systems. London, Academic Press.

Forbus K. (1984) Qualitative process theory, Artificial Intelligence, Vol 24, Issue 1-3, pages 85-168.
Forbus, K.; Carney, K.; Harris, R. & Sherin, B.L. (2001) A qualitative modeling environment for middle-

school students: A progress report. In Biswas, G. (ed.) Proceedings of the Fifteenth International
Workshop on Qualitative Reasoning, St. Mary’s University, San Antonio, TX.

Grace, J. (2001) The Garbon Cycle. http://www.ierm.ed.ac.uk/ierm/teaching/ccycle/ University of
Edinburgh.

Hollan, J. D.; Hutchins, E. L.; & Weitzman, L. (1984) STEAMER: an Interactive Inspectable Simulation-
based Training System. AI Magazine, vol. 5, no. 2, p. 15-27.

Leelawong, K.; Wang, Y.,; Biswas, G.; Vye, N. & Bransford, J. (2001) Qualitative Reasoning Techniques
to support learning by teaching: The Teachable Agents Project. In Biswas, G. (ed.) Proceedings of
the Fifteenth International Workshop on Qualitative Reasoning, St. Mary’s University, San Antonio,
TX.

Salles, P. & Bredeweg, B. (1997) Building Qualitative Models in Ecology. In Ironi, L. (ed.) Proceedings
of the 11th. International Workshop on Qualitative Reasoning (QR’97). Instituto di Analisi Numerica
C.N.R., Pubblicazioni no. 1036 , Pavia, Italy.

Salles, P. & Bredeweg, B. (2001) Constructing Progressive Learning Routes through Qualitative
Simulation Models in Ecology. In Biswas, G. (ed.) Proceedings of the 15th. International Workshop
on Qualitative Reasoning (QR’01). Saint Mary’s University, San Antonio, TX, USA.

Walker, D.H & Sinclair, F.L. (1995) A Knowledge-based Systems Approach to Agroforestry Research
and Extension. AI Applications, 9(3): 61-72.

85

Learning with qualitative models and cognitive support tools:
the learners’ experiences.

Julie-Ann Sime
Centre for Studies in Advanced Learning Technology,

Educational Research Department,
Lancaster University,

Lancaster, LA1 4YL, U.K.

J.Sime@lancaster.ac.uk
Tel: +44 1524 594726
Fax: +44 1524 592914

Abstract
This paper looks at the learners’ experiences when learning with CPRODS, an interactive learning environment
based on 6 qualitative and quantitative models. The learners spent 2 hours during the study using the learning
environment, completing the evaluation questionnaire and tests of knowledge. Analysis of the data has revealed
some interesting comments e.g. on the interface design, functionality, learning styles. Recommendations for the
future have been derived from this study. The learning environment has also been evaluated to see if it has all the
features that Kolb (1984) says are necessary for experiential learning, or learning by doing. The five learner support
tools do provide most of the learner support that Kolb prescribes, although reflection on the learning process is
identified as a weakness of the learning environment. On the other hand the support provided for the learner is a
strength. The qualitative models are readily accepted by learners and seen as worthwhile although more could be
done to explain the reason for using ‘rough calculations’ in problem solving. There are also some design
recommendations such as the issue of the speed of the simulation which was found to be too slow for some and too
fast for others. While these recommendations and evaluations relate to this specific system the issues and concerns
are common to all learning environments based on qualitative or quantitative simulation.

Keywords: Learning Environment, Qualitative and quantitative models, evaluation, user feedback.

86

1. Introduction
This paper reports on a study of learners using CPRODS, a learning environment that encorporates 3 qualitative and
3 quantitative models of the same heat exchange system. The focus is on the learners’ experiences of using the
learning environment as gathered from analysis of questionnaire answers. The learning environment, CPRODS, uses
the same underlying models as its predecessor MSPRODS. The qualitative models are an integral part of the
teaching material within the domain, for further details of the instructional design see Sime (1998), and for result of
studies of learning effectiveness see Sime (1995, 1996). The difference being that the models have been re-
implemented in Visual Basic on a PC, the domain or instructional material remains the same but the user interface
and the cognitive tools, to support the learners have been completely redesigned and re-implemented. The user
interface has been greatly improved and crucially a number of learner support tools were introduced into the learning
environment. These learner support tools, or cognitive tools, are intended to support the learning process and
improve the learning experience (Lajoie 2000, Lajoie and Derry 1993). To assess the learning experience, all 36
participants in the study completed a questionnaire and expressed their views through multiple choice questions and
open answer questions. Comments on any aspect of the system were encouraged. The intention was to determine
the strengths and weaknesses of the cognitive support tools, and other aspects of the learning environment from the
perspective of learners. Potentially, this information can be used to generate recommendations for modification to
the design of the learning environment or for how to use of the learning environment to best effect.

This paper will focus on two issues:
1. What do learners think of qualitative models used in learning environments?
2. What do learners think about cognitive tools to support learning?
Subjective opinions gathered from evaluation questionnaires are reported.

The design of cognitive tools to support learning within a virtual laboratory or simulation based learning
environment is a complex process that takes input from research in cognitive science on human learning and
reasoning processes and combines that with theory and practice from instructional science. Like many design
processes there is room for interpretation and artistic expression that can mean that the end result is not as useful as
intended! While our understanding of human reasoning and learning processes has grown substantially in the last 20
years, there has been less progress in our understanding of teaching. Especially, on how teaching interacts with
learning; we may be able to build a cognitive model of learning but do we really know how to interfere with that
process (i.e. teach) to bring about improved learning. Yes, teachers know how to do this, but many years of
attempting to build expert teaching systems (or intelligent tutoring systems) has produced unconvincing results.
While we understand many of the differences between experts and novices (Chi et al 1988) we do not understand the
difference between an excellent teacher and a poor teacher.

Perhaps to avoid this lack of information, research into authoring tools has found two avenues, the first takes a
theoretical stance and attempts to work out some guidelines from first principles, i.e. from a theory of learning and
instruction, e.g. Sime (1998). The second approach looks towards practice and gathers large libraries of instructional
methods extracted from the practice of teachers, e.g. the Generic Tutoring Environment GTE (van Marcke 1998,
Johnson and Sime 1998). There are problems with both of these approaches. Within educational research, a
pragmatic approach based on learning effectiveness can be seen i.e. what works in practice? What leads to
improvements in learning? What can we do to support learners? How can we improve the learning experience?
What aspects of a learning environment assist learning and what hinders learning?

This paper will question whether qualitative models are useful in teaching, whether they are appreciated by learners,
and whether cognitive support tools are useful and used in the manner expected by designers? One of the questions
examined below is whether or not the cognitive support tools do actually support the learning of the learners in the
ways expected by the designers? There is already evidence from van Joolingen (1993) to suggest that the hypothesis
scratchpad is not as effective, in practice, as one might expect. Is this due to the implementation or due to the design

87

of the tool? Does the advice tool provide helpful information or not? Does the overview provide a sense of where
you are in the learning material? It is intended to guide the learner and give a sense of progress through the learning
environment. These are some of the questions this study attempts to answer by analysing data from evaluation
questionnaires given to learners after using the system.

2. The CPRODS Learning Environment

2.1. The Learning Environment

The learning environment, CPRODS, is related to MSPRODS (Sime 1998) in that the underlying 6 qualitative and
quantitative models are the same. There are 6, inter-related, models of the same physical system. The Bytronics
Experimental Process Rig is a commercially produced heat exchange system that was designed for the laboratory
teaching of theory and application of control theory. It is typical of a class of industrial heat exchangers and had
been designed to be used in the teaching of undergraduate engineering students.

The 6 models represent different analyses of the Process Rig, each appropriate for solving a particular set of
problems. There is a qualitative representation of the thermal processes in the system, a corresponding quantitative
representation, qualitative and quantitative models of the flow around the system, and a qualitative and quantitative
model of the complete system.

The models were chosen in consultation with an experienced teacher to illustrate key difficulties in understanding
experienced by students during learning. The learning objective is to understand the relationship between heat and
flow processes. In addition there are various concepts that are also learnt.

The learner is supported in the learning environment by several features, or learner support tools. These tools are
designed to provide support to the cognitive processes of learning. The learner is given access to multiple
simulations based on qualitative and quantitative models, a set of assignments, and a concept explanation facility.
The assignment tool provides a set of assignments for the learner to do, there is a recommended order but the
learners can select any assignment to do. The concept explanation facility provides information on basic concepts
and terminology. In addition, CPRODS also contains 3 new tools: an advice feature, an overview, and an hypothesis
scratchpad which are described in more detail below. The simulations have an improved interface over previous
MSPRODS implementations and include representations of the trends. This is a feature that was in the first
implementation and has been reinstated in this implementation. An outcome of the study will be to assess whether
these representations of change in variables over time, are useful to learners.

The final assessment has been revealed to participant learners through the pre-test. The participants know the type of
questions they will be asked and can therefore choose their investigations of the learning environment to meet this
perceived need. Motivation is provided only by the learner’s internal motivation to do well, the actual results will
not influence their life in any way and so ultimately are unimportant. It would have been better if this had been
integrated within an existing curriculum but this was not possible at the time.

2.2. The Learner Support Tools

There are five tools within the learning environment that provide support to the learners in their exploration of the
simulated environments. For the purposes of the study two are considered part of the basic learning environment and
the three others are referred to as cognitive support tools: the advice tool, that provided help on demand; the

88

overview tool that gives an overview of the learning material, cognitive tools and content; and the hypothesis
scratchpad that assists in the forming of an hypothesis which can then be tested.

The Advice tool provided explanation of the concepts within the domain, e.g. the “dead band”. Basic concepts
within the learning material include: sensor, dead band, manipulated variable, controller, control system, set-point,
settling time, error, feedback, closed-loop control system, open-loop control system.

The Overview tool provided a graphical representation of the knowledge in the domain with the assignments already
attempted marked. This Overview provides a scaffold to the knowledge and also serves as a means of measuring
progress though the learning material.

The Hypothesis scratchpad tool provided a set of pull down menus so that variables could be combined and the
results of experimentation recorded. This enables the learner to record trials of different variables using a simulation
and from the analysis of the data, extract the trend or relationship (Bierman et al 1990, de Jong et al 1994).

3. Method

3.1. Participants

36 undergraduate students were recruited (and paid a fee) to participate in the study of learning of learning with C-
PRODS. The students were all aged in their early 20’s, and were familiar with computers. Some had experience of
computer based training. They were from a mixture of backgrounds some scientists, engineers and others were
studying politics, education, psychology and other social sciences. 7 additional participants were used to pilot test
the learning environment and the questionnaire.

3.2. Design

Two groups participated in the experiment, the first group used the basic learning environment and the second also
had the benefit of the additional cognitive support tools. The additional cognitive tools enabled learners to request
advice (Help), get an overview, or use a hypothesis scratchpad. Participants were given complete freedom in how
they interacted with the environment. There were a number of assignments that could be undertaken but this was not
compulsory. There was also access to explanations of concepts, and the qualitative and quantitative models that
could be run so that they could observe and adjust the behaviour of the system. All participants, in both groups, were
given the same time limit to interact with the learning environment. Each group were given an introduction to the
use of the learning environment and the cognitive tools (for the second group only).

All participants were given a pre-test and a post-test, the pre-test established their existing level of knowledge in this
field and the second test was used to determine their knowledge after use of the learning environment. The questions
in the pre and post test were not identical but were matched so that they covered the same aspect of the domain and
were of the same level of difficulty. Participants were also given an evaluation form to complete.

3.3. The Evaluation Form

The evaluation form asked the participants for their opinion of the learning environment, the learning materials, and
the cognitive tools. The cognitive tools group answered 32 multiple choice questions and 16 open questions, a total

89

of 48 questions. The other group had the same evaluation form with questions about the cognitive tools removed
resulting in an evaluation form with 33 questions including 23 multiple choice questions and 10 open questions. The
multiple-choice questions asked participants to tick one of 5 boxes representing a five point scale, e.g.

1.b. Was the concept explanation window easy to use?
Useless Useful Very Useful
   ! 

Open questions asked more general questions to determine whether participants were using the cognitive tools as
expected, e.g.

3.d. What is the purpose of using the overview tool?……I actually mostly used it for
managing time: spend 1/3 in each field.
I also told me that I had almost completed a field – so it was no use going on.
……………………………………………………………………………………………..

Evaluation questions were grouped around features of the learning environment:
1) The Concept Explanation window – 5 questions.
2) The Advice Window (Cognitive tools group only) – 5 questions.
3) The Overview Tool (Cognitive tools group only) – 5 questions.
4) The Hypothesis Scratchpad (Cognitive tools group only) – 5 questions.
5) The Assignment Window – 5 questions.
6) The Qualitative Models – 6 questions.
7) The Numerical Models – 6 questions.
8) General Questions

9) freedom of exploration in the learning environment - 2 questions.
10) Feedback, its clarity and frequency – 2 questions
11) Duration and difficulty of the instructional materials – 2 questions
12) difficulty and time to complete the pre-test – 2 questions
13) difficulty and time to complete the post-test – 2 questions

14) Other Remarks – 1 question.

4. Results

4.1. How useful are the tools?

1.a. How useful was the concept explanation window?
Useless Useful Very Useful
    !

These grade were translated into numbers -2, -1, 0, 1, 2 and these are used below to indicate where on the scale was
indicated by participants.

All the cognitive tools were rated at least “useful” (0) although some were considered more useful than others. The
advice tool, overview tool, hypothesis scratchpad were considered useful while the concept tool, assignment tool, the
qualitative model and the numerical model were considered “more useful” (1) but none rated “very useful” (2).

90

4.2. How easy to use are the tools?

1.b. Was the concept explanation window easy to use?
Useless Easy to use Very Useful
   ! 

All the cognitive tools were rated at least moderately easy to use (0) with the exception of the hypothesis scratchpad
which was rated (-1) a bit difficult. The easiest to use was the advice tool. Both the qualitative and the quantitative
models were thought to be easy to use (1).

4.3. Which tools were worth using?

Participants were undecided about the value of the hypothesis scratchpad and the overview tool (0) but they thought
the advice tool was worth using(1) and the concept, assignment and qualitative and quantitative models were
definitely worth using(2).

4.4 Was it clear how to interpret the trends?

6.d. Was it clear how to interpret the trends (graphs of values over time)?
Unclear OK Clear
   ! 

Questions 6d and 7d related to the clarity of the graphs for the qualitative and quantitative models. The results
showed that on the whole participants thought that the clarity of the qualitative models was OK (0) and the numerical
models were considered slightly better than OK (1). Most thought the graphs clear but 5 out of the 31 thought the
numerical graphs were unclear and 7 thought the qualitative graphs were unclear. One reported that “I found the
graphs confusing and didn’t use them for the assignment.” On the other hand some reported that the trend graphs
were useful, e.g. “The graphs on the bottom were helpful because they gave a qualitative idea to go along with the
quantitative (numerical)”.

4.5. How much freedom in exploration was wanted?

When asked about freedom to explore the environment, participants suggested the current level was OK (0), however
one reply was conditional “less given the time, with more time the current freedom is perfect” This indicates that
perhaps the question was not specific enough about the learning objectives and time constraints.

4.6. Was enough feedback given?

When asked what they thought of the feedback and whether they wanted more or less feedback the participants were
positive except for 2 persons who were negative. The result was an OK (0). One participant commented that the
“the qualitative and numerical model graphics were a bit crowded and it was difficult (a little) to take in, at first.”

4.7. Were the tools used as intended?

In general the tools were used as intended. Feedback from questions 1d, 2d, 3d, 4d, 5d, 6e, and 7e asked about the
purpose of the tool and this highlighted when learners were not using the tool as it had been designed to be used. For

91

example, several participants only used the overview tool for time management, and as a means of measuring time
on task. E.g. “I mostly use it (the overview tool) for managing time: spend 1/3 in each field. I also told me that I had
almost completed a field - so it was no use going on. I totally forgot to use the relationship graph”. Another
commented “I only used the % bar graphs at the bottom” of the overview screen “to monitor your own progress from
time to time.”

4.8. What was seen as restrictive in the learning environment?

There were a variety of responses to this question. Common themes included the inability to abort from running a
qualitative model, “Not being able to stop an assignment using a qualitative model until the correct settings had been
achieved.” Also the difficulty of using the hypothesis scratchpad, “Too many options and complicated relationships
forced my restricted use of this tool”. Thirdly, “I found the graphs confusing..”, “graphs difficult to interpret.” The
graphs of trends of variables over time were found to be difficult to read.

5. Discussion
The discussion takes two parts, the first draws some recommendations out of the results of the evaluation of
CPRODS, the second part examines Kolb’s theory of experiential learning and sees whether CPRODS provides all
the elements necessary for learning by doing, according to Kolb (1984).

5.1. Recommendations

It is reassuring to see how easily the students accepted and dealt with the qualitative models. Some seemed to see
the benefits of “rough calculations” while others saw the qualitative models as inferior, and less accurate, than the
numerical models. This is perhaps due to prevalent perspectives on learning that places accuracy and detail high in
importance.

This highlights the importance of presenting qualitative models to learners in a positive manner with plenty of
explanation to the learners of the benefits of qualitative reasoning. This can either be presented as an
intermediate step to quantitative understanding or as a useful tool for “rough calculations”. This is the first
recommendation.

A common view is that learning is about searching for the finest grain of detail – this is a reductionist view of
learning. One in which the basic aim of science is to reduce complex phenomena to separate simple parts and that
this reduction provides explanation of the phenomena. While scientific understanding may benefit from this
approach, it is not always an appropriate method of learning. It all depends on your learning objective. If the
objective is to understand the components of the system then it may be appropriate, whereas if the objective is to
understand the processes involved in the system, to control and manipulate its behaviour then a reductionist analysis
is not the best approach.

The output from the simulations in the form of graphs showing change over time of variables was found to be clear
to some and unclear to others. However, due to the varied group of students from a variety of disciplines, it may be
that some are more familiar than others with interpretation of graphs. This generates a second recommendation
that the learners must be trained (either through existing skills, or additional training) in the interpretation of
the simulation output. This was backed up by one participants more general comment, “the qualitative and
numerical model graphics were a bit crowded and it was difficult (a little) to take-in, at first”.

92

Many comments were made on the design of the learning environment that can be taken into account in further
implementations. For example, when asked about the qualitative simulation…“some of the instructions were
unclear. Weren’t told what was happening while model ran before message came up to say assignment was
achieved.” The qualitative simulation which was found to be too slow by some participants and too difficult to
control by others and they wanted a running commentary, rather than feedback just at the end of the assignment.
Irritation was also expressed at “Not being able to stop an assignment using a qualitative model until the correct
settings were achieved”. The issue of speed is an interesting one common to many simulation based training
systems. There are many situations in which learning to control a system in real time would take many hours
whereas a training system can provide additional experience purely by speeding up time. In this system, the
simulations were seen to be too slow, e.g. “Realistic but perhaps a little slow on reacting:” Other participants
commented on how fast the qualitative models were. “it’s difficult to watch everything at the same time, everything
seemed to move along very quickly”, “you had to run the (qualitative) models more than once in order to see
everything that was going on”. The models are actually quite realistic, perhaps even faster than the real system, but
realism is not necessarily best for learning. This leads to a recommendation that the speed of the simulation
should be tested with learners during the design of a learning environment to take into account user tolerance
as well as consideration for learning opportunities. The simulation should not be so fast that it is difficult to see
what is happening, nor so slow that it irritates.

5.2. Supporting experiential learning

In 1984 Kolb published a book describing his 4 stage model of learning by doing. In it he presented a cyclical model
of experiential learning. The main points of his theory are:
1. that the learner is active in exploration,
2. the learner must reflect on the experience in a critical and selective way,
3. that the learners must be committed to the process of exploring and learning,
4. that there must be scope for the learner to achieve some independence from the teacher and
5. that the teacher imposes some structure on the learning process so that the learners are not left to discover by

trial and error.
6. The learner must feel supported and encouraged
7. The trainer must provide appropriate learning activities and teaching methods to support each stage of Kolb’s

cycle (of experience, reflection, study the theory, plan the next experience).

Let’s consider each of these points in turn and see how C-PRODS matches up to Kolb’s model of experiential
learning. (1) The qualitative and quantitative models within the learning environment give plenty scope for active
exploration of the simulations. There was evidence of different individual learning styles. While some preferred to
gain the basic concepts from the concept explanation window first, others preferred to explore. E.g. I felt that I did
not use this option (the concept explanation window) as much as I should have tending to opt more for trial + error +
seeking logical deductions.” The second point will be addressed last.

(3) Commitment to the process of exploration and learning is a factor of motivation that I assume is dealt with
outside the learning environment. However, feedback from the learners indicates a high degree of motivation and
interest in learning in these students who were paid to take part in the study but for whom the learning means
nothing. The learning itself is not part of their curriculum but many still managed to generate interest in learning and
to enjoy the learning experience. For example, comments like “I enjoy the experience and learnt…”, “Well worth
undertaking again”, “I found it an interesting task to do”, “It was a pleasure to work on it”, “I wanted to play more”.

(4) It was possible for the learners to gain independence from the ‘teacher’ in that they did not have to follow the
assignments they could do them in any order or ignore them and simply explore the simulations. This was a feature

93

that may not have been clearly conveyed to the learners as one reported that “I didn’t realise the assignments could
be done in any order”. Others showed independence e.g. “I didn’t always follow the advice”.

(5) Structure was imposed through the provision of assignments that provided a structure to the learning this was
backed up by: the advice tool that could suggest what to do next if the learner was stuck; the overview tool that gave
an idea of the content and progression through the learning material; and the concept explanation tool that provided
definitions and explained basic concepts and terminology. The concept tool and the assignment tool were available
to all learners as part of the basic learning environment.

(6) Additional support was provided by the cognitive support tools, the hypothesis scratchpad, the advice tool and
the overview tool. This was a very supportive environment with so many (five) tools provided. At the design stage
there was concern that there were too many tools and therefore that the learning curve was too great for the learners
who may be put off the learning environment. This may be true for some learners, as some reported that “I didn’t
use this tool” even when it was available to them. This may be due to individual learning styles, differing levels of
independence or concerns over time (which several participants expressed). Some did make comments like “It takes
a long time to get into the environment, so there is little time to really enjoy the numerical models”.

(7) The learning environment provides a range of learning activities from free exploration, to hypothesis generation
and testing, to learning about concepts from the concept explanations, to assignments that compare the behaviour of
more than one model, to assignments that ask the learner to control the behaviour of the system. There are a variety
of tasks that should suit a variety of learners’ individual learning styles. In hindsight it might have been better if
learners were initially taught how to use the hypothesis scratchpad through some easy assignments. This may have
increased the use of the hypothesis scratchpad that was considered the most difficult tools to use, but not the one
least worth using – that was the overview tool. The learning environment enables the learner to study the theory
(concept explanation tool), experience (free exploration of the simulations and control of their behaviour), reflect
(generate and test hypotheses then reflect on the hypothesis tested, or use the overview tool to reflect on progress
through the content) and plan (generate a hypothesis, or select the next assignment).

(2) The weakest link in this cycle is the reflective process, unlike many systems used in training in military and
commercial areas, there is no after action review, or debrief of the training session. Reflection is supported only in
that the learner reflects on the relationships within the field (supported by the hypothesis scratchpad) and reflects on
progress through the content (using the overview tool), but the learner does not reflect on the learning process itself.
Specific tools to reflect on the learning that has been achieved can be produced such as in the ETOILE project,
(Dobson et al 2001, Pengelly et al 2000) where representations of the learner’s actions during training are recorded
and presented back in a variety of graphical representations. These external representations are then used by trainers
and trainees to discuss what happened during training and to reflect on the learning process.

6. Conclusions
This paper has reported some initial analyses of the questionnaire data from learners and has produced some
recommendations for consideration in future simulation based learning environments. The learner support tools have
also been assessed and all have been considered a positive force although some participants chose not to use them.
This is their choice, of course. The hypothesis scratchpad was found to be the least useful and the least easy to use
learner support tool but it was not the one considered least worth using, that was the overview tool. This may be due
to the greater needs to learn to use the tool. The overview tool was not much used and many only used it to gauge
progress over time rather than take advantage of all its features.

94

The qualitative models are readily accepted by learners and seen as worthwhile although more could be done to
explain the reason for using ‘rough calculations’ in problem solving. Analysis of the data has revealed some
interesting comments which can be fed back into the design process and generate modifications to the design and
presentation of the learning environment, e.g. issue of the speed of the simulation which was found to be too slow for
some and too fast for others.

The learning environment has been evaluated to see if it has all the features that Kolb (1984) says are necessary for
experiential learning, or learning by doing. The five learner support tools do provide most of the learner support that
Kolb prescribes, although reflection on the learning process is identified as a weakness of the learning environment.
On the other hand the five support tools available to the learner are a major strength.

While these recommendations and evaluations relate to this specific system the issues and concerns are common to
all learning environments based on qualitative or quantitative simulation.

7. Acknowledgements
This study would not exist without the hard work of Mr. Ken Korsmit who programmed CPRODS and who assisted
in data gathering while he was a visiting student at CSALT. The study was financially supported by a grant from
Lancaster University, Faculty of Social Sciences Sciences, Small Grants Scheme.

8. References
Bierman, D.J., Kamsteeg, P.A. & Sandberg, A.C. (1990). Student models, scratch-pads and simulation. In E. Costa
(Ed.), New directions for intelligent tutoring systems (pp. 135-145). Berlin: Springer-Verlag.

Chi, M.T.H., Glaser, R. & Marr, M.J. (1988) The Nature of Expertise. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Dobson, M.W, Pengelly, M, Sime, J.A, Albaladejo, S, Garcia, E, Gonzalez, F. & Maseda, J. (2001) "Situated
Learning with Co-operative Agent Simulations in Team Training" Computers in Human Behaviour. Volume 17,
issue 5-6, on pages 547 - 573, cover date September-November 2001

Forbus, K.D. and Feltovich, P.J. (eds) (2001) Smart Machines in Education: The Coming Revolution in Educational
Technology. MIT Press.

Johnson, R. & Sime, Julie-Ann (1998) Authoring and GTE. Instructional Science journal, special issue on GTE: A
Generic Knowledge Based Tutoring Engine, guest edited by Kris van Marcke. Volume 26, Nos 3-4 July 1998, pp
227 - 242. Kluwer. ISSN: 0020 4277.

Jonassen, D.H. and Carr, C.S. (2000) Mindtools: Affording Multiple Knowledge Representations for Learning.
Chapter 6 in S. Lajoie (ed) Computers as Cognitive Tools: No More Walls. Volume II. LEA: Mahwah, N.J.

de Jong, T, van Joolingen, W, Scott, D, de Hoog, R, Lapied, L & Valent, R. (1994). SMISLE: System for
multimedia integrated learning environments. In T. de Jong & L. Sarti (Eds.), The design and production of
multimedia and simulation-based learning material (133-165). The Netherlands: Kluwer Academic Publishers.

van Joolingen, W. (1993) Understanding and facilitating discovery learning in computer based simulation
environments. PhD thesis, Eindhoven University, Netherlands. ISBN 90-386-0242-1

Kolb, D.A. (1984) Experiential Learning – Experience as the source of learning and development. N.J. Englewood
Cliffs.

95

Lajoie, S. eds (2000) Computers as Cognitive Tools: No More Walls. Volume II. LEA: Mahwah, N.J.

Lajoie, S. and Derry, S. eds (1993) Computers as Cognitive Tools. Volume I. LEA: Hillsdale, N.J.

Van Marcke, K. (1998) GTE: An epistemological approach to instructional modelling. Instructional Science journal,
special issue on GTE: A Generic Knowledge Based Tutoring Engine, guest edited by Kris van Marcke. Volume 26,
Nos 3-4 July 1998. Pp 147-191. Kluwer. ISSN: 0020 4277.

Pengelly, M, Sime, Julie-Ann, & Dobson, M.W. (2000) Using Shared Mental Models as a basis for developing team
competencies. In Proceedings of Workshop on advanced instructional design for complex safety critical &
emergency training. Intelligent Tutoring Systems Conference (ITS2000), 19 – 23 June 2000, Montreal, Canada.

Sime, Julie-Ann (1995) Model Progressions and Cognitive Flexibility Theory. In J. Greer (ed) Artificial Intelligence
in Education, 1995: Proceedings of AI-ED 95 - World Conference on Artificial Intelligence in Education.
Washington, DC; August 16-19, 1995. Pp 493-500. AACE: Charlottesville, VA.

Sime, Julie-Ann (1996) An Investigation into Teaching and Assessment of Qualitative Knowledge in Engineering. In
P. Brna, A. Paiva & J. Self (eds) European Conference on Artificial Intelligence in Education. 30 Sept. - 2 Oct. 1996,
Lisbon, Portugal. Pp 240-246. ISBN: 972-8288-37-9

Sime, Julie-Ann (1998) Model Switching in a Learning Environment based on Multiple Models. Interactive Learning
Environments journal, “Special issue on the Use of Qualitative Reasoning Techniques in Interactive Learning
Environments", guest edited by Bert Bredeweg and Radboud Winkels. Volume 5, 1998, pp 109 - 124. Swets &
Zeitlinger. ISSN: 1049 4820.

96

MMforTED: A COGNITIVE TOOL FOSTERING THE
ACQUISITION OF CONCEPTUAL KNOWLEDGE

ABOUT ARTEFACTS1

ELIO TOPPANO

Dipartimento di Matematica e Informatica
Università di Udine, Via delle Scienze 206, Loc. Rizzi, 33100 Udine, ITALY

Abstract. The work described in this paper deals with conceptual understanding of technical artefacts. A
working hypothesis is that the comprehension of something by someone is strongly related to the capability of
the subject to build and use multiple representations of the thing under consideration and to explicitly consider
their characteristics and their reciprocal dependencies in explanation and problem solving. A cognitive tool
called MMforTED has been developed to foster the acquisition of several conceptualisations (ontologies) that
can be used to represent and inquiry about artefacts from different perspectives. The system exploits an
instructional environment implemented by an electronic hypertext, that enables users to browse through a
network of models of several devices. Browsing through the network of models is accompanied by a
simultaneous change of perspective. Because of the particular organisation of domain knowledge we have
adopted, this amounts to exercising a well defined knowledge transmutation (e.g. conceptual abstraction,
generalisation, reduction, approximation and aggregation or their inverses). The ability to explore a situation
from different conceptual perspectives is considered fundamental for problem setting and design development.

Key words: conceptual understanding, ontologies, multiple models, model transmutations.

1. Introduction
This paper is concerned with conceptual understanding of technical artefacts. Conceptual understanding means
being able to reason about domain concepts and their relations. We assume that the core of undertanding is an
hermeneutic activity of constructing interpretations [8]. The need for computational tools supporting
understanding and interpretation has been stressed by various authors. Protzen et al. [17] write:

"Instead of computational problem solving attention should be given to the power of computational tools as
communicative devices: devices that aid in the development of new and different understanding of problematic
situations. It is this potential of computers to enhance our own understanding that needs to be explored"

In our opinion there are, at least, two main approaches for developing such kind of systems. The first
approach is to build systems that substitute the human in making the interpretation. This approach has been
followed, for example, by [10]. Another approach is to build cognitive tools that help the user acquiring the basic
conceptualisations and relative knowledge transmutations that can be used by herself to make the interpretation.
To this end, some authors, such as Laurillard [14] stresses the importance of systems that support tutorial
dialogues; others, see for example, Ohlsson [16] suggests the analysis of epistemic activities (arguing,
describing, explaining, predicting, etc.) which are considered more relevant for conceptual understanding than
the study of goal oriented action or procedural skills.

The work described in this paper follows this second approach. The instructional system we are going to
describe is aimed at fostering the acquisition of several conceptualisations that can be used to describe, explain
and understand artefacts. The system, called MMforTED - an acronym for MultiModelling for Technical
Education - has been conceived for introductory courses on technical education and design theory in the
secondary school (age range 14-18). It exploits a learning environment, implemented as an hypermedia,
constituted by a collection of cases of simple electrical and fluid mechanical devices. A case is represented by a

1 This paper is a reduced and slightly modified version of a paper that will be presented at AID02.

97

graph of models [1] each one describing the artefact observed by a specific conceptual perspective. Models
within a case are related together by codesignation links. Associative links are, instead, used to relate models of
different artefacts featuring the same perspective. The collection of all available models and their
interrelationships constitutes a kind of "conceptual landscape" that can be criss-crossed in many directions
according to the type of problem or task to be executed (e.g. means-ends analysis, teleological explanation).
Navigation through models includes:
- browsing within a case: the student can gain cognitive flexibility by being exposed to multiple interpretations

(perspectives) of the same device [19]. Because of the particular organisation of domain knowledge we have
adopted, changing perspective amounts to exercising a well defined knowledge transmutation;

- browsing through cases: the student can gain knowledge transferability by seeing multiple manifestations of
the same interpretation.

Besides showing models of artefacts the system provides a scaffold of questions and ontologies upon which
students can construct their interpretations of an artefact model together with exercises and meta knowledge
about the instructional environment.

The paper is organised as follows. Sections 2 and 3 are devoted to describe the theoretical framework we
have followed for representing artefacts from multiple perspectives. The framework leverages on the existence
of a strictly layered organisation of conceptual knowledge. This organisation guides both the design of the
educational material and the learning that subsequently takes place. In section 4 we illustrate the main
characteristics of the instructional environment that has been developed to support conceptual understanding by
showing how a typical page of the hyperspace is presented and which kinds of interactions are afforded to the
learner. The section discusses also the experimental activity that is currently done with the system. Finally,
section 5 draws conclusions.

2. The concept of model and model based communication
We assume here that a model is basically a device that is built to answer specific questions about some portion of
reality. A symbolic model of an artefact is a description with the following properties:
- it is constituted by a set of assertions referring to the considered artefact;
- assertions describe the artefact in terms of: entities, properties of entities, and relations among entities;
- assertions are expressed in some language that has a well defined syntax and semantics and are externalised

through a system of signs.
Notice, that for an object under investigation there is not "the model" to represent it but a set of models

representing it from different points of view (i.e. using different types of entities, properties, and relations) or
using different languages or systems of signs according to the observer's background knowledge and the kind of
question or problem to be tackled.

Models can be used for problem solving or communication. This paper is mainly concerned with computer
mediated communication of artefact models. We shall adopt a point of view that is strongly inspired to the
FRISCO framework for information systems [5]. This point of view can be summarised as follows. In
communication, a subject (the emitter) generates a message (e.g. a model) that represents some knowledge about
an artefact expressed in a language. The message is transmitted via a channel (a medium such as a computer
system) to another subject (the receiver) who interprets the message and constructs a personal conception of its
content. Information is the personal knowledge increment of the receiver in interpreting the message. For
FRISCO, information and communication are not absolute but relative concepts. They are seen as linking the
individual person ("information" as increase of personal knowledge) and the larger community of which that
person is a member (shared knowledge resulting from communication).

It is assumed that two main processes are involved in communication namely, interpretation and modelling.
During interpretation the receiver perceives the message with her senses and forms a specific pattern of visual,
auditory, or other sensations in her mind. These percepts are then elaborated by various cognitive processes such
as categorisation, inference, imagination, etc. in order to form a mental conception. During modelling the emitter
selects the content of a model that is, the aspects of a mental conception that are deemed relevant to answer the
question or solve the problem of interest (articulation), and represents the content in a language and a system of
signs (externalisation).

Interpretation and modelling are driven by the subject's conceptual system. The term conceptual system is
intended here to refer to the collection of relatively stable conceptions (e.g. conceptual categories, cognitive
models) formed in a person mind during her experience and interaction with the physical and socio-cultural
environment in which she lives. In order for the process of communication to be effective it is necessary that the
two partners in the communication process share a body of linguistic and conceptual knowledge about the
domain of discourse that is they have to commit to an ontology.

98

3. Ontologies for reasoning about artefacts
In Artificial Intelligence, ontology is defined as "an explicit representation of a conceptualisation" [9]. Ontology
is typically composed of two parts, that is, the conceptual-level ontology and the lexical level ontology. Lexical
level ontology provides a human-friendly vocabulary of terms used by the authors of the ontology to describe the
domain of interest. Conceptual level ontology specifies the detailed meaning of each concept, the relationships
existing between concepts (e.g. taxonomic relations) and a set of semantic constraints (i.e. axioms). It is worth
stressing the fact that an ontology in not only a specification of a conceptualisation but embodies an agreement
about that conceptualisation. It helps people belonging to a community of practice or interest to identify what
they agree on and what they don't about the domain of interest. Such agreement facilitates accurate and effective
communication of meaning which, in turn, leads to other benefits such as inter-operativity, reuse and sharing
[21]. In building the ontology for reasoning about artefacts we adopted an incremental design process keeping
teachers of technical education in the loop. Teacher participation in ontology design has greatly enhanced
practicality of the framework and its relevance to instruction.

3.1 The internal structure of the ontology: epistemological types and conceptual hierarchies
The proposed ontology is based on previous research on model based representation of physical systems [3].
According to this work, conceptual knowledge about artefacts have been partitioned into four categories called
epistemological types. For each category a kernel collection of concepts and related terms together with a set of
relevant prototypical questions and problems have been introduced. A brief description of epistemological types
follows.

1. Structural knowledge. This type of knowledge describes which components constitute the artefact and how
they are connected to each other (i.e. their adjacency). The basic ontology includes the concepts of
"component", "terminal" and "connection". Structural knowledge can be used to represent the connectivity
of a system;

2. Behavioral knowledge. This type of knowledge describes how components can work and interact in terms
of the physical quantities that characterise their state and the physical laws that rule their operation. The
basic ontology includes the concepts of "mode of operation", "physical quantity", "physical law",
"behavioral state" and "trajectory" of states. Behavioral knowledge can be used for behavioral prediction,
causal dependency analysis and sensitivity analysis.

3. Teleological knowledge. This type of knowledge describes the goals assigned to the artefact by its designer
and the operational conditions which allow their achievement through correct operation. The basic
ontology includes the concepts of "goal", "operational conditions", "use", "expected behavior".
Teleological knowledge can be used for interpretation of actual use and definition of proper use.

4. Functional knowledge This type of knowledge describes the contribution of individual component
behaviors to the realisation of the ultimate goals of the artefact. The concept of function is thus understood
as a bridge between behavioral and teleological knowledge. For the class of artefacts whose behavior can
be interpreted in terms of flow structures of generalised substances (e.g. material, energy, power,
information) the bridge can be represented at two different levels of abstraction:
Level 1: at this level the basic ontology includes the concepts of "generalised substance", "generalised

current", "functional role" and "functional role network". Generalised substances represent the abstract
entities that flow through a system while a current is the amount of generalised substance that flows
through a unit surface in a time unit. The functional role of a component is an interpretation of its
behavior - more precisely of the physical equations governing its behavior - aimed at characterising
how the component contributes to the realisation of the flow structure in which it takes part. Examples
of functional roles are: the conduit, the barrier, the reservoir, and the generator. A component may
play different roles in different domains: in a flat-iron, for example, a resistor is a conduit of current in
the electrical domain and a generator of heat in the thermal domain. It should be stressed that the
association of a functional role to a component is done in a principled way by exploiting formal
analogies between laws belonging to different physical domains [4]. Two types of relations between
functional roles have been identified, namely, mutual dependency and influence. These are used to
represent functional role networks.

Level 2: at this level the basic ontology includes the concepts of "cofunction", "process", "phenomenon",
and "functional organisation". Specific configurations of roles (called cofunctions) enable the
occurrence of elementary processes such as transporting, reservoir charging, reservoir discharging and
blocking. Elementary processes can be related together by specific relations such as direct causation,

99

regulation or support to generate phenomena. The network of processes (and phenomena) specifies the
functional organisation of the artefact.

Functional knowledge can be used for functional prediction, functional dependency analysis and process
detection.

Ontological proposals vary along the formality dimension from highly informal to rigorously formal ontologies
[15]. The degree of formality required depends upon the intended purpose of the ontology. Since our purpose is
communication an unambiguous but structured informal ontology (i.e. expressed in a restricted and structured
form of natural language) has been considered sufficient. For the core terms of the ontology we use a definition
template proposed by [21]. Figure 1 shows an example of concept definition. A critical issue in ontology design
is the internal concept structure. Rather than having a single tree-like concept hierarchy the conceptual content of
each epistemological type has been organised into a number of small local taxonomies including type_of
hierarchies, part_of hierarchies and precedence hierarchies namely, rank hierarchies and measure hierarchies
[11].

Term: TERMINAL
Short definition: a TERMINAL is a passive channel supporting possible interactions with the outside
environment
Elaboration: a terminal supports just one kind of physical interaction which identifies its type
Example(s): thermal terminal, electrical terminal, mechanical terminal
Variations (synonyms): port, interface
Related terms/concepts: (type_of) structural concept, (part_of) component, (part_of) connection

Figure 1. Definition of the structural concept “TERMINAL”

Based on this organisation, five independent dimensions for conceptual variation has been identified. These are:
- abstractness: level in a rank hierarchy of epistemological types. The epistemological abstractness of a

concept is a measure of the distance of this concept from the immediate experience within some theoretical
framework. We consider the following ordering of abstractness: structural concepts are more concrete than
behavioural concept which, in turn, are more concrete than functional and teleological ones.

- generality: i.e. level in a typological hierarchy of the conceptual entities and relations used to describe reality.
For example, the type of entity "component" used within a structural model is more general than "electrical
component" which, in turn, is more general than "resistor";

- detail: i.e. degree of granularity of the knowledge represented by a conceptualisation. For example, the
structural model of an electronic device may include conceptual entities at the level of major subsystems
(e.g. the concepts of "filter", "amplifier") or can be further refined at the level of elementary entities (e.g. the
concepts of "resistor", "capacitor", "diode");

- phenomenic coverage: i.e. the range of phenomena taken into account by a conceptualisation and the kind of
simplifying assumptions that it presupposes. For example, in order to represent the behaviour of an electrical
circuit we can use the concepts of "voltage", "current", "resistance", the Ohm's law and the Kirkoff
principles. Using these concepts it is possible to represent electrical conduction. However, the above
conceptualisation prevents us to describe the effect of magnetic induction of the current flowing through a
wire. Moreover, a physical phenomenon can be represented by means or more or less idealised laws. As an
example, in representing electrical conduction in wires we can use the Ohm's law (i.e. V=RI) or we can
abstract away the resistance R and use the idealized law (i.e. V=0);

- resolution: i.e. number of distinctions allowed by the domains of values associated to the attributes of entities
and relations of a conceptualisation. For example, the resolution of a quantitative behavioural model can be
lowered either by relaxing real valued variables and using qualitative domains of values such as the set
D={negative, 0, positive} or by representing precise functional relationships by qualitative direct or indirect
proportionalities.

Dimensions are used for multilevel representation of an artefact as it will be shown in the following sections.

3.2 The concept of perspective
The ontology provides the basic conceptualisations that can be used to describe a technical system. In our
approach, each conceptualisation is represented by a conceptual schema. Formally, a conceptual schema CS is a
tuple <E, R, A/D> where
- E= {Ei} is a set of entity types;

100

- R= {Rjk(Ej1, ..., Ejk} is a set of relation types. Each relation type has a degree (k) that is the number of
participating entity types;

- A/D={Aj/Dj} is a set of attributes representing general properties of entities or relations types. Each
attribute (Ai) has an associated domain (Di) specifying the range of values the attribute may take.

Conceptual schemes are used, during articulation, to provide a semantic content to the specific entities and
relations represented in a model. As a consequence the model can be seen as a set of entities that are instances of
the concepts types specified by its associated schema .

In selecting the constituents of a conceptual schema we enforce the restriction that no concepts of the same
schema can be taxonomically related. In other words we do not mix concepts having different abstractness,
generality, detail, coverage and resolution in the same conceptualisation. This choice results in a rigid multilevel
system of conceptual schemes each one representing a single perspective. By the term perspective we mean a
specific choice of values (i.e. levels) along each of the above dimensions. Obviously, models inherit the
perspective embodied in their schemes. It must be stressed that what can be seen from a given perspective is not
"part" of the artefact but the whole artefact as can be perceived and conceptualised through its associated
schema. Changing perspective means moving along one or more modelling dimensions thus changing the point
of view (that is the conceptualisation) through which we interpret or represent reality. Because of the particular
organisation of knowledge we have adopted this amounts to performing a specific type of knowledge
transmutation as discussed in [20]. Table 1 summarises modelling dimensions, conceptual hierarchies and
associated knowledge transmutations.

3.3 Representing artefacts using multiple perspectives.
Figure 2 shows an example of representation using multiple perspectives. The considered artefact is a simple
lighting system composed by a battery that supplies power to a light bulb when a switch is closed. The
representation includes seven models of the device: a structural model (M7); two behavioural models (a
quantitative model, M5, and a qualitative - causal - one, M6); a functional role model (M4), a functional process
model (M3) and two teleological models (M1 and M2) at different levels of detail. We use a diagrammatic
language to represent the models. Links between pairs of models specify the codesignation relations existing
among elements belonging to two or more descriptions of the artefact. For example, the link between the
structural model M7 and the behavioural model M5 specifies which physical quantities and laws in the
behavioural model correspond to which terminals and components in the structural one; the link between the
behavioural model M5 and the functional model M4 describes which physical laws in M5 are associated to
which functional roles in M4, while the link between the functional role model (M4) and the process model (M3)
specifies the correspondences existing between cofunctions (i.e. specific configurations of roles) and processes.

TABLE 1. Basic knowledge transmutations and related modelling dimensions

Modelling dimension Conceptual
hierarchy

Knowledge
transmutation
(and inverse)

Conceptual
abstractness

Rank hierarchy of
epistemological types

Conceptual abstraction
(Concretion)

Resolution Measure hierarchy Relation or value
 abstraction
(Concretion)

Generality Type hierarchy Generalisation
(Specialisation)

Phenomenic coverage
(range of phenomena
that are explicitly
 represented)

Rank hierarchy of
 idealised laws

Reduction (Expansion)

Phenomenic coverage
(accuracy of relations
used to represent relevant
phenomena)

Rank hierarchy of
 idealised laws

Approximation
(Elaboration)

Detail Part hierarchy Aggregation
(Refinement)

101

Finally, the link between function and teleology is realised by associating goals in the teleological description
with the phenomena (or processes) represented in the functional representation which are used to achieve them.
The relation between processes and goals is, in general, many-to-many since a process may participate to the
realisation of several goals and, conversely, a goal can be fulfilled by utilising several processes. Codesignation
relations can be used to switch from a description to another in order to focalise reasoning or disseminate
information.

4. The MMforTED Prototype System
MMforTED is a cognitive tool. By this term we intend an instrument that can support, represent or perform an
identifiable cognitive process that is part of the complete learning experience by a learner [22]. The target
cognitive processes are multiperspective analysis and multilevel reasoning. Multiperspective analysis means to
be able to analyse and conceptualise an artefact from different perspectives and to be able to map corresponding
elements belonging to different points of view. Multilevel reasoning means to be able to integrate several points
of view and representations to solve problems and to be able to change representation by selecting the aspects of
the object under consideration that are more relevant and the level of accuracy, resolution, and detail of the
descriptions that are deemed more appropriate for the problem to be solved. Figure 3 shows how the learner may
access the information space. A typical page is divided into areas that are distinguished by different colour
backgrounds.
• Reasoning with a model: this is the main presentation area (A). Each device model is displayed in this area both
diagrammatically using a plex structure and by a short textual description to facilitate interpretation and
remembering. This area includes major buttons for analysing the model:

Figure 2. Representing a lighting system using multiple models

c1

c4 c2

c3

n1 n2

n3n4

n5

n6

t1.2

t2.2

t2.3

t3.3t3.4

t4.4

t4.1

t1.1

t1.6

t4.5

Structure

c1: light bulb

c2: wire
c3: battery
c4: switch

c: component t: terminal n: connection

M7

E= V4+V1+V2
V4=0
V1=Rl*I

V2=Rs*I

Φ=k*I*I
Rs=a

E=b
Rl=c
k=d

physical

laws

M5

E + V1+V2 I+ + Φ

Rs
-

Rl
-

influences

M6

E: electrom. force Φ: light flow
V: voltage Rs: circuit resistance

I: current k: conversion factor
Rl: bulb resistance a-d: const

Behavior

1 2

3

Function
(roles)

C: conduit G: generator S: reservoir

M4

C3S1

4 G1

C1

C2

G2
influence Physical domains

optical
electrical

mechanical

Process-1 :

user action on the switch

Process-2 :

electrical conduction

Process-3 :
energy conversion

enables
causes

Function
(processes) M3

Goal-1 :

TO-CONTROL light BY switch position
Operational conditions :
switch: CLOSED M1

Teleology

Goal-1.1 :
TO-CONTROL current
BY switch position

Goal-1.2 :
TO-TRANSDUCE current
INTO light

before
Teleology M2

Links
(codesignation relations)

E <--> [t3.3, t3.4]
V1=Rl*I <--> c1
I <--> t3.4
. . .

V1=Rl*I <--> C1

V2=Rs*I <--> C2

Φ= k*I*I <--> G2
E= a <--> G1
. . .

P1 <-> [S1-C3]
P2 <-> [G1-C3-C1-C2]
P3 <-> [C1-G2]

Goal-1.1 <--> [P1-P2]
Goal-1.2 <--> [P2-P3]

102

Figure 3. The page representing the structural model of a lighting system

- Assumptions: visualises the main modelling and operational assumptions taken by the modeller to build the
description.

- Ontology: describes the ontology (e.g. the conceptual schema) used to build the description.
- Questions: provides examples of prototypical questions for reasoning about artefacts using different

perspectives. Questions are linked to ontologies and to a set of exercises that are simple quizzes aimed at
testing the ability of the learner to discriminate among epistemological types.

- What-if: proposes possible changes of the assumptions lying behind a model in order to analyse their effects
both within a perspective and across multiple perspectives. For instance, by clicking on the "What if"
button the student may select a different operating mode for the artefact or hypothesise an abnormal state
for a component and observe the effects of the modification. Actually, the selection is made within a set of
predefined modifications.

• Browsing within a case: this is the primary navigation area (B). It contains a clickable map to browse within a
case. The map shows the available models of the artefact under consideration which are clustered according to
their epistemological type. By clicking on the arc connecting a pair of models it is possible to visualise relational
knowledge i.e. codesignation links. This is valuable to connect model fragments (snippets) through perspectives
in order to understand the behaviour and functioning of specific subsystems or component assemblies.

• Browsing through cases: this is the secondary navigation area (C). It contains several buttons for browsing
through cases:
- Alternatives: proposes a list of models, across cases, which share the same ontology (hence the same

perspective) of the currently displayed one.
- Variants: proposes a list of cases which have the same purpose (goal) of the currently displayed one but

different functional organisations.
- Analogies: proposes a list of examples which share the same type of functional organisation but the

organisation has been realised by exploiting different physical phenomena.
- Where am I: shows actual position (case) in the global environment of available cases.
Finally, the area at the top of the page (D) includes general services, namely: help, home, guided tours and
search.
MMforTED has been designed to be usable for diverse learning goals and thematic threads so we do not impose
a single overarching perspecive or global narrative struture to the material. The idea is to let the students develop
their own comprehension by exploring the information space of cases and observing the many ways artefacts
may be described and the many ways the general principles behind their functioning become manifest. This is in
accordance with modern learning theories such as constructivistic theory that points out the positive effects of
letting the learner create her understanding and knowledge structures. Moreover, the student is requested to

103

reflect on the structuring of knowledge presented through the environment and on the ontologies and questions
that each model calls forth in order to make hypotheses about the behaviour and functioning of the artefacts.
An experimental activity with the system is currently done within the ICARO project a national initiative whose
principal aim is to provide the discipline of technical education with an epistemological foundation and to
produce a set of guidelines to help teachers develop educational curricula and web-based educational material.
The project involves a selected set of schools and teachers, several regional educational research institutions and
experts from different fields such as pedagogy and engineering sciences. Teachers have been fully involved in
the design and evaluation of the system as well as in planning the activity to be done with the students. This
activity has three distinct phases:
• Pre-assessment: students are asked to write an essay where they describe a given artefact and explain how

the artefact achieves its purpose. The goal of this activity is to pre-assess the student's capability to
understand the artefact functioning and to use appropriate concepts and terminology in describing her
understanding.

• Reflective learning: The teacher introduces the multiperspective approach and models how to deal with the
MMforTED environment. Then she fades her involvement while coaching and supporting the students in
their own navigation.

• Post-assessment: finally, the student is invited to write an essay where she describes the behaviour and
functioning of a given artefact (which is different from that used in pre-assessment). The result is then
compared with the essay generated before the experimentation.

In the post assessment phase, students are forced to abandon their status of “hypertext audience” and are engaged
in being teachers of the meanings they have created by exploring the learning environment and reflecting on the
extent and quality of their knowledge. Evaluating their learning experience involves evaluating them as
designers of models. These models are then compared in terms of consistency, terminological appropriateness
and completeness with respect to epistemological types and perspectives. At the current stage of the
experimental activity, we can only provide a qualitative assessment. While many of the pre-assessment essays
are characterised by limited generation of concepts, poor terminology and a general inability to describe the
object under consideration from several conceptual perspectives, we find that all students involved in the
experimentation, each one at his or her own pace, made improvements in their skill to interpret and argue about
the given artefacts. We are actually exploring the role of collaboration in improving such results. The idea is that
if the students have to collaborate to write the final essay then they are forced to explicitly externalise their
conceptions and points of view, understand each other and negotiate meanings. The knowledge negotiation
approach in Education holds that the goal of education is not knowledge acquisition per se, but to acquire the
flexibility to participate in the discourses of several communities of practice, that is specific groups of
professionals acting and communicating in specific ways. Participating in professional groups implies the ability
to understand the important debates and problems and use the right language and conceptualisations to examine
and influence ongoing debate.

5. Conclusions
In the last decade several intelligent systems for instruction or training in technical domains have been proposed.
Most of them are designed to support the acquisition of procedural knowledge or skills. For instance, XAIDA
[12] is a system for the development of computer based maintenance training, Cycle Pad [7] supports modelling
and simulation of thermodynamic systems; the Science Learning Space [13] is an inquiry learning environment
designed to support learners in performing discovery skills. MMforTED does not directly support any specific
activity, but is focused on the acquisition of the conceptual knowledge that is propedeutic to perform complex
activities such as, for example, discovery, diagnosis, design. In discovery learning , learners construct their own
knowledge by experimenting with a domain and inferring rules from the results of these experiments. Because of
this constructive activity, it is assumed that students will understand the domain at a higher level than when the
necessary information is just presented by a teacher or an expository environment. In practive, as discussed in
[22], it has been very hard to find solid evidence for this hypothesis. Our position is that students need more than
just the domain to learn about it. Apart from access to domain information (e.g. cases) they need assistance in
selecting and interpreting this information in order to build their knowledge bases. In fact, making hypotheses,
during an inquiry process, involves the ability to formulate questions about the object under consideration. In
particular if we consider an hypothesis as a guessed relationship among a set of entities (i.e. Rk(ei, ...ek)) than
the search space of hypotheses that can be formulated by the student critically depends on the student's
knowledge about the possible relationships that can be assessed and the types of entities that can be involved in a
relationship. Hence, our claim is that, if the student has been exposed to a space of possible interpretation then
she can enrich her vocabulary of entities and relationships and, thus, enlarge her search space for hypothesis

104

construction. MMforTED seems to meet general acceptance. One reason is that it is perceived as an elaboration
of an actual practice: the RARECO method [6]. This is an heuristic method widely used in the first two years of
the secondary school to support the construction of knowledge about artefacts and the production of technical
texts. The method is constituted by four phases, which are sequentially performed by the students under the
supervision of the instructor:
1. Representation. In this phase, the artefact under consideration is represented by a picture or by a realistic

drawing. The main components of the artefact are then highlighted and labelled.
2. Analysis. For each component a definition is provided together with a specification of its purpose and

physical properties;
3. RElation. The students are encouraged to identify the main processes occurring in the artefact and to

relate them together. For each process, the components that take part in the process are specified.
4. COmunication. The above analysis is translated into a text describing the structural decomposition of the

artefact and its functioning.
The main contributions of our system with respect to RARECO are: i) the ability to support a richer variety of
perspectives including structural, behavioural, functional and teleological models as well as all major dimensions
for model variation proposed in AI literature (i.e., detail, coverage, value and relation abstraction, resolution,
epistemological abstractness); ii) a particular attention to conceptual knowledge (i.e. ontologies) and model
based reasoning; iii) the use of the web as the content provider as well as the delivery medium of instruction.
Actually, models have to be built by hand. This is a difficult and error prone process. We are exploring the
possibility of using plex replacement production rules with applicability conditions to specify transformations
between models [20]. As a final remark, we think that the system could be useful also to the teacher who can
browse the information space in order to select materials (e.g. models, exercises) to be presented off line i.e. in a
traditional class lesson. The modularity resulting from the organisation of domain knowledge allows the teacher
to identify different types of problems; to build exercises in a more focalised way in order to exercise specific
capabilities (e.g. abstraction, generalisation, aggregation, etc.) or satisfy particular educational objectives.
Moreover, the proposed knowledge organisation and the use of perspectives allow one to derive an order of
presentation of domain knowledge: from "simple" to "complex" models. To this end, the teacher has several
degrees of freedom: she may select, for example, on the base of epistemological type or according to the level of
generality, detail, resolution, coverage, etc. of modelling concepts. Therefore, it is possible to build a progression
of learning experiences [23] that can be used to support a competence based approach to instruction.

References
[1] Addanki, S., Cremonini, R., and Penberthy, J.S., 1991, Graphs of Models, Artificial Intelligence 51, 145-

177.
[2] Andriessen, J. and Sandberg, J.: 1999, Where is Education Heading and How about AI?, IJAIED, 10,

130-150.
[3] Chittaro, L., Guida, G., Tasso, C. and Toppano, E.: 1993, Functional and teleological knowledge in the

Multimodelling approach for reasoning about physical systems: a case study in diagnosis, IEEE Trans. on
Systems, Man, and Cybernetics, 23(6), 1718-1751.

[4] Chittaro,L., Tasso, C. and Toppano, E.: 1994, Putting functional knowledge on firmer ground, Applied
Artificial Intelligence, 8(2), 239-258.

[5] Falkenberg, E.D., et al.: 1998, FRISCO - A Framework of Information System Concepts - The FRISCO
Report IFIP WG 8.1 Task Group FRISCO, Web version: ftp://ftp.leidenuniv.nl/pub/rul/fri-full.zip.

[6] Famiglietti Secchi, M.: 1984, Laboratorio Tecnico, IGDA, Novara.
[7] Forbus K.D., Whalley P.B., Everett, J., Ureel, L. Brokowski, M., Baher, J., and Kuehne, S: 1999,

CyclePad: An articulate virtual laboratory for engineering thermodynamics. Artificial Intelligence 114,
297-347.

[8] Gadamer, H.: 1976, Philosophical hermeneutics, Berkeley, CA, University of California Press.
[9] Gruber, T.R.: 1993, A translation approach to portable ontology specification, Knowledge Acquisition,

5(2), pp.199-220.
[10] Haymaker, J., Ackermann, E. and Fischer, M.: 2000, Meaning mediating mechanism, in J.S.Gero (ed.),

Artificial Intelligence in Design '00, Kluwer Academic Publishers, pp. 691-715.
[11] Hieb, M.R. and Michalski, R.S.: 1993, Multitype inference in multistrategy task-adaptive learning:

dynamic Interlaced Hierarchies, in R.S. Michalski and G. Tecuci (Eds.), Proc. 2nd Int. Workshop on
Multistrategy Learning, Harpers Ferry, West Virginia, pp.3-17.

[12] Hsieh, P., Halff, H.M., Redfield, C.L.: 1999. Four Easy Pieces: Development Systems for Knowledge-
Based Generative Instruction, IJAIED, 10, 1-45.

105

[13] Koedinger, K.R., Suthers, D., Forbus K.D.: 1999. Component-Based Construction of a Science Learning
Space, IJAIED, 10, pp.292-313.

[14] Laurillard, D.: 1993, Rethinking university teaching, London, Routledge.
[15] Noy, N.F. and Hafner, C.D.: 1997, The State of the Art in Ontology Design. A survey and Comparative

Review, AI Magazine, 18(3), 53-74.
[16] Ohlsson, S.: 1993, Learning to do and learning to understand: a lesson and a challenge for cognitive

modelling, in P. Reimann and H. Spada (eds.), Learning in humans and machines, Oxford, Pergamon
Press, pp. 37-62.

[17] Protzen, J., Harris, D. and Cavallin, H.: 2000, Limited computation, unlimited design, in J.S.Gero (ed.),
Artificial Intelligence in Design '00, Kluwer Academic Publishers, pp. 43-52.

[18] Rosenman, M.A. and Gero, J. S.: 1996, Modelling multiple views of design objects in a collaborative
CAD environment, INCIT'96 Proceedings, pp. 49-61.

[19] Spiro, R.: 1997, Knowledge acquisition for application-cognitive flexibility and transfer in complex
content domains, in B.K. Britton and S.M. Glynn (Eds.), Executive Control Processes in Reading,
Erlbaum, Hillsdale, pp. 177-199.

[20] Toppano, E.: 1999, Using graph transformations to support multilevel reasoning in engineering design,
Machine Graphics & Vision, 8(3), pp. 395-425.

[21] Uschold, M.:1998, Knowledge level modelling: concepts and terminology, The Knowledge Engineering
Review, 13, 5-29.

[22] van Joolingen,W.: 1999, Cognitive tools for discovery learning, IJAIED, 10, 385-397.
[23] White B., Frederiksen, J.: 1990, Causal model progression as a foundation for intelligent learning,

Artificial Intelligence 42, 99-155.

106

AN APPROACH TO TEACNING ENGIEERING DESIGN
USING MULTIPLE PERSPECTIVE AND INTEGRATED

PRODUCT MODELS AND SIMULATION

Xiu-Tian Yan

Department of Design, Manufacture and Engineering Management
Strathclyde University
James Weir Building

75 Montrose Street, Glasgow G1 1XJ
e-mail address: x.yan@cad.strath.ac.uk

Engineering design education is traditionally structured such that each individual discipline is taught by a
specialist in that discipline. This has artificially created an impression to students that a product should be
looked at from different perspective in a segmented manner. This approach hence results in a great problem
when computer model based teaching methods are introduced to tackle multidisciplinary product design
classes. There are clear gaps in student’s knowledge as well as excuses that they have forgot what they have
learnt. On the other hand, the competitive market requires better products designed and made in a shorter
time with a higher quality and at a lower cost. The speed of launching products onto the market becomes an
increasingly important factor for a new product to become successful. With rapid advancement in computer
technology development both in terms of hardware capability and software functionalities, engineering
designers as well as product designers are better equipped to create and make new and novel products than
ever before. However many engineering graduates are not taught effectively to use these technologies to
benefit their future design activities. In addition, these computer tools are not fully used to explore their
potentials in teaching and learning.

This paper presents the practical experience of using model based learning approach in an education subject
area - product development, which is an area of great complexity and diversification. It describes a broadre
view of using model based learning approach in the education of new generation of engineering designers by
introducing an innovative design model for computer based engineering design. The approach is based on an
integrated and coherent use of several existing computer aided design (CAD) tools. Through the use of these
tools as learning support systems, students are trained to be aware of multi-perspective models and their
integration during a product development. Students learn in-depth knowledge of each subject area by using
each aspect models. At the same time, by integrating these models, they can appreciate integrated design
approach. Knowledge representation of product engineering design is also discussed in the paper. The paper
highlights the current practice in product design engineering education and the problem areas for model
based system and qualitative reasoning for intelligent tutoring system. An example of how these systems
have been used is described in the paper to illustrate the benefits of the approach. As part of continuing
research effort, the paper also describes a proposed outline framework to develop a suitable intelligent
learning/tutoring system to improve the effective learning of such a complex teaching topic.

KEYWORDS
Model based teaching, multi-perspective modeling, knowledge intensive tutoring, and design education.

1. INTRODUCTION
The increasing pressure from customers in today’s competitive market requires many manufacturing
companies to produce a variety of products to satisfy rapidly changing market conditions, which include both
functional requirements as well as aesthetic requirements fro different culture and time. In addition, rapid
advancement in technology development means that there are now far more options available to a designer to
solve a given design problem than any other time in design history. Companies as well as education
organizations hence actively seek for enabling technologies to facilitate their product development and
improve the productivity and effectiveness in generating new design solutions and products. In order to
achieve the above, designers want to make more informative design decisions to cut down rework and to be
more confidence about their design solutions and the intended product performance at the end of design
process.

Due to human being’s limitation in remembering relatively small amount of information, it is infeasible to
expect a designer to remember all abstract description and details of a product being designed – a product
model. Instead, a designer should utilize his/her strength in judging a solution based on multiple criteria
reasoning and previous experience, making decisions and knowing how to perform a number of design
studies. By taking the above division of tasks, storing information and retrieving details of partial design
solutions can be separated from these overall high-level tasks. This naturally leads to the identification of
computer systems to support design, as computers are good at remembering and processing a vast amount of
information associated with a product being designed. Computer systems can also handle very well both
static and dynamic information being generated during design processes.

Over last decade, the computational power of computers has been improved enormously. At the same time
computers are available with rapidly reduced cost relative to performance. It is now possible to rethink the
traditional design methods and practice taking consideration of these rapid design environment changes. At
the same, due the complex nature of product design process and modelling, no such a computer has been
developed, which is really powerful enough to handle all aspects of complex product modelling and design.
This is therefore an interesting time for engineering designers to use these tools as they face the dilemma of
having some support, but not all support they hope for. Therefore the methods of making student as well as
practical design engineers aware of how to use these tools to their best advantage become very important in a
successful product development.

More importantly for product design engineers is the fact that a number of advanced Computer Aided Design
(CAD) systems are now available at affordable prices and can be run PC-based platforms. The use of
advanced CAD system in the product development has added a new dimension in maximizing the use of
these systems. This has created great opportunities for engineering designers especially working in small to
medium sized companies, to think how to make best use of these available technologies.

Computer based tutoring system to address this need at both the detailed level of using one particular CAD
system and at the high level of identifying suitable CAD system functions is of great important in educating
next generation product design engineers.

This paper describes a proposed approach to cover this very wide yet important area of education based on
the idea of using computer multi-perspective product models to teach how to support product modelling and
simulation in the product development. It focuses on the real needs of developing a practical approach for
product design engineers to use advanced CAD tools. This approach is based on the research results of using
integrated computer based design approach in product design and experience that the author has had in
practicing this approach in teaching various classes for both BEng/MEng Product Design Engineering and
MSc in Computer Aided Engineering Design. The design environment and facility available to students
involved in practicing this approach are very similar to many small to medium sized companies. Using these
environments to model a product from a multi-perspective point of view and represented in multi-complexity
level is the proposed pragmatic approach to improving design solution generation and evaluation process.
This approach allows one to investigate more design alternative solutions (improve solution quantity at
conceptual design stage) and produce better-considered solutions (improve final solution quality). Potential
difficulties that one might face using this approach are also discussed in the paper. Examples of student
projects will be given to discuss what can be achieved by applying the techniques introduced in the class in
their design projects. Finally an outline of a proposed computer aided learning/tutoring system will be
described to show the direction of future research work and the system development.

2. PRODUCT DESIGN AND MODELLING
Product design engineering is a subject of true multi-discipline nature, and the focus of the design activities is
on product development rather than on a specific traditional academic discipline. It is a well-known fact that
many products under consideration by designers are often the artefacts engineered using knowledge and
technology from a number of disciplines. The design research community has been studying and tried to
understand the engineering design and its process at least or the last half century. The common understanding
of engineering design so far is that design is a process of generating solutions, which satisfy customer’s
requirements (French, 1985). A number of design process models have been since created, represented by
French’s model, Pahl &Beitz’ model (Pahl &Beitz, 1996)and Pugh’s model(Pugh 1991). These models are
intended to be general and aim to guide designers to go through a series of stages and carry out a number of
design activities in order to understand and solve design problems. However these design process models
don’t provide sufficient and specific guidelines for product development using computer based tools. It is
therefore difficult to use them in a computer support design environment. In an effort of clarifying a design
process model for product modelling and simulation using computer support tools, the author has derived a
computer support design process model shown in Figure 1. This model is based on the research work carried
out on the deployment of several computer support systems. These systems include FORESEE (Borg et al
2000) and FORESEE 2 (Yan at el 2001), DeCoSolver (Sawada and Yan 2001), Schembuilder (Bracewell
1995).

The design process can be broadly divided into three stages in a computer supported design environment,
namely the design problem understanding through an analysis of need, the initial solution generation through
the conceptual design, and the solution refinement and finalization through the embodiment and detail
design. So far in the development of computer support for engineering design, there is little well developed
support for the first two stages of the design process, mainly due to the complexity and diversification of
these design activities during these stages. The final stage of the design is currently the main area of
reasonable computer support, which can be used to aid engineering designers to improve their design. This
stage of computer support can be further decomposed broadly into component modelling, component
matching and sizing, and behaviour simulation and comparison for informative decision making. This
decomposition enables one to investigate even further the constituents of each of these design support
activities. It is argued in this paper that the conventional component geometry-based modelling should be
enriched and broadened to be multi-perspective modelling for a product. Based on this enrichment of
modelling, t is therefore possible for the subsequent behaviour evaluation and comparison to be also multi-
perspective. Only with such a design support environment, can a designer have a full support for a thorough
evaluation of any solutions. During any design process, designers also need to use reference information e.g.
working principles, component database etc., as shown in Figure 1 to support a designer to be more
productive, systematic and effective. In addition, design information in Figure 1 has the following feature.
Design information tends to be qualitative and abstract at the early design stage and this information become
more quantitative at the later design stage as more and more design decisions are committed to concretise a
design solution. This design information feature is ideally suited for computer-based support as computer
systems support well incremental expansion of deign information. Since the current computer support
systems have not been fully developed to support multi-aspect modelling and simulation, a pragmatic
framework and concept in thinking of using currently available systems are important in this approach. In
addition, skills and techniques are required to fully support multi-perspective modelling and simulation. The
following sections of this paper describe an advanced way of using modern computer systems in supporting
product design and development. The roles of computer based simulation tools, the benefits and precautions
of using these systems are also discussed in the paper.

3. MULTIPLE PERSPECTIVE MODELLING
A product is an integral artifact consisting of many facets or aspects, which require consideration and
engineering before it becomes a marketable commodity. Most of current education system educates an

Multi-Perspective Models
Multi-Perspective

Model Construction

Analysis and Simulation Model

Market Research
results Analysis of need

A statement of
customers need

Product Design
Specifications

Concepts and Qualitative
Models

Fully developed
Concept models

Concept generation
& evaluation

A set of concepts
and their models

Embodiment and
Quantitative Models

Fully developed
solution models

Embodiment/
Detail Design

Embodiment and
their models

Design Initialization and
task clarification

Geometry evaluation Model;

Product Assembly model;

Finite-element analysis model;

Dynamic evaluation model;

Kinematic analysis model;

Product cost model;

Control program model;

Aesthetic model;

Simulation/
Visualization/
Comparison

Component
Matching/

Sizing

Fully computer evaluated and defined design solution
for final assessment, then prototyping/manufacturing

Component data-
base for Embodi-

ment Design

A Library
of Simulation

 Blocks/Elements

A Dictionary
of Working
 Principles

Legends: Existing information flow
Activity decomposition
Evolving information flow

Solution information flow

Figure 1. A proposed framework to support learning of design process and its modelling and simulation for product

design

engineering designers in such a way that a student design engineer studies each aspect of important
perspectives of product development in a segmented way. Little emphasis has been put on the integral aspect
of all these important perspective of product development. The results of the education system are that
students can work out a given problem in a reasonable depth. But they lack training in integrating various
aspects of product development in an effective manner. They tend to think the other aspect of the product
development is not their responsibility. There is a big gap between these type of graduate design engineers
and what is expected, especially from small to medium sized companies, as they can’t afford to a so many
specialists. Even for the large organizations, specialists don’t always communicate with each other
effectively as they don’t normally share a common language.

To be successful in today’s competitive market, manufacturing companies need to produce more innovative
products as well as a variety of products to satisfy the consumers’ changing needs. This requires engineering
designers know how to use more efficient and effective methods of conceiving more design alternative
solutions, selecting suitable concepts from this long list of different concepts, refining chosen design
solutions, and finally converting them into manufacturable products to satisfy ever-increasing and rapidly
changing market needs. One important approach to address the above need is to make engineering designers
to be aware of possible consequences associated with chosen design solutions. By making best use of the
computer-based design tools, the product development lead-time can be reduced and quality of a design
solution can be improved through more coherent and integrated use of these tools. From previous research
work (Yan and Sharp, 1994, Yan 1992)), it is demonstrated that multi-perspective product modelling and
simulation can help product design engineering practitioners to advance the design practice by producing
better considered product design solutions with little increase of the product development cost. Figure 1
shows the important modelling aspects that one should consider from a number of perspectives during the
produce development. These include: the geometrical modelling, the kinematic modelling, the assembly
modelling, various analysis modelling including Finite-Element Analysis modelling, product dynamic
behavior modelling, product cost modelling, control/control programming modelling, and
ergonomic/aesthetic modelling. It is obviously difficult to find an all-round perfect system which is able to
handle all the above. The key to the multi-perspective modelling proposed in this research is through the
product model partition and integration. An appropriate model partition using product perspective views as
guideline will allow one to concentrate on the local modelling of an aspect of a product that a designer is
interested in. The identification of these important aspects for a particular design problem concerned helps a
designer to concentrate on the key aspects of the design problem. More effort and time spent on these aspects
can ensure that better quality design solutions be produced with consideration of these aspects.

Within each of these important aspects, a concept of modelling a product using multi-model complexity level
can be introduced to accommodate the requirements of modelling different details with different modelling
resolution. More complex models can be created by including more details of an aspect of the product. These
complex models enable a designer to conduct more in-depth investigation of a chosen design aspect. This can
lead to a better understanding of the design problem, hence better solutions generated.

A complete product can be decomposed into sub-systems, and the modelling of the product can be tackled by
creating sub-models of these sub-systems. The integration of these sub-system models at the abstract level
allows one to have an overview of the product. This high-level overall model allows a designer to see the
overall behaviour of the intended product to be derived from this solution model. During a product
modelling, the process of generating, analyzing and evaluating a design solution using computer modelling
should be fully supported. It is essential that a computer design support tool will be able to assist designers to
focus on one aspect of a product in a great depth without loosing the overall sight of the product. Equally
important, a designer should also be supported to have a good overall understanding of product models,
without loosing the grasp to details of aspect models. It is therefore argued in this paper that the multi-
complexity level and multi-aspect model based system to the product development is essential to facilitate
designers to investigate a product’s behaviour from a different perspective at a different level of the
modelling resolution. This approach can also provide a compromised solution to the conflicting behavioural
requirements of computational speed and level of accuracy of the model. By combining different sub-system
models with different model complexity levels, a product model can represent a product with detailed
representation of aspect/subsystem of interest to a designer. At the same this model will not require undue
computational power to solve/display the model.

A tutoring system, which address the above model based learning system requirements, would help a learner
to master these complex yet important concepts and methodologies. It is clear from the above discussion that
the effective support for engineering design involves multi-perspective and complexity-level modelling of a
product. This requires integration of product partial models from different perspective at different level of
resolution. The data communication among these partial solution models, possibly through communication
links using standard data formats/protocols, is the key to product model integration. To achieve an effective
model composition, configuration and integration, a model library of the commonly used product modelling
components should be and has been created. A collection of these models in each aspect forms a
comprehensive reusable product-modelling library. Such a library provides a designer with a rich source of
models to support multi-complexity level modelling and multi-perspective modelling. The interchangeability
of the models at a different complexity level can be supported in this approach. Figure 2 shows an example
product model – a modular wall climbing robot modeled and designed by two project students. The model
used a number of stardard modules generalized in a robot-modelling library. This particular model was
created to facilitate learning and understanding of such a robot’s behaviour during its normal operation. It
acts as a good learning tool to study the robot.

Models in Figure 3 were created using IDEAS and AutoLisp – a programming method provided by
AutoCAD system to develop customized model and functionality. These models derived from the AutoLisp
programming method give a designer/student much more to learn in terms of flexibility in manipulating these
models, checking clearance etc. than a static model. Figure 3.c shows another example - a gear mesh created
using AutoLisp program. Students learn much more effectively through this model-based approach. They can
used fully developed geometry models to explore and understand what a mechanism does and how it behaves
at the initial study stage in their early year study. They have to understand the basic principles of mechanisms
before they can implement these mechanisms in a computer model in their later year study. Next section will
discuss how simulation facility can be used to help students to learn design and modelling of products.

Figure 2 A modular wall climbing robot built from library modules and developed by a project

student;

4. MULTIPLE PERSPECTIVE SIMULATION
Based on the models described in last section, it is useful if students can see the behaviour of a physical
system in a computer so that one can learn these physical systems without having them built. This can be
done through the use of simulation techniques developed over last decade or so. Computer model based
simulation uses embedded relationships between various parts of the system and can exhibit a correct motion,
kinematic, dynamic and structural and thermal deformation behaviour of a physical system. Compared with a
real physical system, each of the above aspect can be studied in a computer model separately so that a multi-
perspective model based learning approach and its associated framework can be implemented to give an
integral study of a product. Simulation technology has been traditionally used for system analysis and control
system design. It has also been used for mechanism analysis and validation. Various simulation techniques
have been studied and successfully used in different applications to predict the behaviour of a physical
system. The notation and representation of a physical system can be different depending on the modelling
methodology employed for a particular modelling approach. Typical modelling methods for simulation
include clock-based mechanism geometric solid modelling (Yan 1992), block diagram (Gayakwad and
Sokoloff 1988), signal flow diagram, bond graph approach (Karnopp et al. 1990), Yourdon diagram
(Cooling 1990) and schematic diagram and so forth.

These simulation methods were generally developed for a specific discipline/aspect of a product and can only
cope with the aspect of a product/system within the discipline/aspect. Whilst the simulation technology
advanced in last two decades rapidly due to the significant computer technology advancements, it has only
been used in the product design in a very limited way. Emerging interdisciplinary subjects, such as
mechatronics, on one hand remove many design constraints and a designer can work in a much wider design
space, on the other hand design process become more complicated due to much more possible combinational

 (a)
 (b)

(c)

Figure 3 Some example model based learning models: (a) A geometry and its assembly model of
a car brake system; (b) The FEA model of its key component, showing the stress; (c) A gear mesh

geometry model and mechanism model for simulation;

solutions for a given problem. The verification of a product design scheme from multi-perspective point of
view can become a quite difficult task without an appropriate computer support.

To overcome these difficulties, the author has developed a pragmatic approach to modeling these
interdisciplinary systems. This approach establishes design project requiring multi-perspective modelling and
simulation to enable product design engineers to understand fully design multidiscipline problems, and
evaluate their solutions models.

One of the obvious problems with many current computer modelling methods is that they are very much
domain dependent. Product design engineers have to be trained to be able to use them in different application
domains in order to be competent in using all these domain dependent technologies. This task itself is a very
challenging task for product design engineers. In addition, when it comes to interfacing different application
domains using corresponding modelling methods, modelling using a computer is becoming a daunting task
even for many researchers, let along the new product design engineers. However, recently the modelling
separation of data and control and function decomposition employed in Yourdon method suggests that a high
level function block oriented method used to model high energy systems can also be used to model
information related systems. This method suggested an integrated modelling approach adopted in this
research and teaching could lead to advancement in modelling and simulation of interdisciplinary subjects
such as mechatronic products.

5. A MULTI-PESPECTIVE LEARNING EXAMPLE
The role of modelling and simulation in product embodiment design is clearly shown in figure 1 where these
methods can assist a designer to evaluate a scheme generated at conceptual design stage. Dynamic
performance of a mechatronic product can be evaluated by using a unified simulation approach (Yan 1994),

(a)

(b)

0GY
Vi

ii
0

Sf=i=0
Sf=w=0

Structure
Support

1

R

I

Torque

w

n

Re

1

(c)

 (d)
Figure 4 An examples of multi-perspective product modelling. (a) A wheelchair geometry model, (b) A wheelchair

assembly model for simulation; (c) A Bond Graph model for a D.C. motor; (d) Physical model of an intelligent
wheelchair built by students

in which energy transformation from an energy form to another will be clearly illustrated and the efficiency
of each component/sub-assembly can be readily available to a designer. The same computer model can be
used to match the components, which interface with each other. This allows a designer to rapidly determine
the correct parameter values for a given design scheme and carry out evaluation. The simulation system also
provides a high interactive interface, allowing a designer to instantly change the values of any design
parameter and get immediate feedback of the effect due to the changes made. This has proven to be an
extremely useful facility, especially for new designers who need to repeat many time to learn and evaluate
the behaviour of a design solution.

From the design aspect point of view, it can be and has been used to evaluate mechanism kinematics, which
include the velocity, path and geometries of many mechanisms. In assembly modelling, computer can
generate many frames of graphic representations of a product at different positions during its assembly
process and these frames of images can then be animated. Similar process can be used to simulate the
mechanism to visualize the tack/path of a particular point of a mechanism. An example used here is the
design of an intelligent wheelchair. Both the assembly of the wheelchair and its mechanism has been
animated as shown by captured screen dumps in Figure 4. This enables a designer to clearly identify the
problem of a design by graphically simulating the kinematic and assembly behaviour of the product. A
design leaner can visually learn and study these behaviors of the wheelchair. They also allow a learner to
study the effect of modifying certain design parameters and be optimized rapidly by re-simulating the
behaviour with a modified design. These models can also be used to study the optimization of design. This
model based teaching and learning approach has been quite successful in teaching product design at
advanced study level.

Figure 5 A simulation model of a D.C Motor used in the wheelchair project – left: the detailed model

of the motor; right: a high level model masked into a block.

The other important perspective of product investigation is the dynamic simulation of an energetic system in
which energy flow is of significant importance. For example, in the same wheelchair design project, d.c.
motors and gear boxes are used to convert electrical energy to mechanical rotation energy to drive the
wheelchair. A good understanding and appropriate selection of these energy components are vital to a
successful wheelchair development. A model-based system developed by the author has been quite useful for
students to learn these energetic aspects of the system. It allows students to study the energy flow and
conversion from one domain to next. It also helps designers to have more insights regarding the underlying
relationships between important design parameters. Students learn effectively how to design and select the
correct power components based on the simulation models. Simulink has been used to enable students to
simulate energy flow and control requirements. Figure 3.c shows a basic Bond graph model of a d.c. motor
and its use in the form of converted model object is shown as in Figure 4.a. using Bond Graph theory based
rules, a bond graph representation as shown in Figure 4(c) can be converted into a block diagram based
representation, shown in Figure 5. This block diagram can be implemented in a simulation system such as
Simulink, which allows one to model a dynamic system using control blocks. Using object-oriented software
design methodology, a low-level complex block diagram can be further simplified into a high level block and

Figure 5 shows a parameterized high level block representing a D.C. motor. With a library of such
parameterized commonly used components, the dynamic performance of a mechatronic product can be
evaluated by using a unified simulation approach developed by the author (Yan and Sharp 1994), in which
energy transformation from one energy form to another will be clearly illustrated. A library of commonly
used engineering components has been developed and is composed of a number of expandable sub-libraries.
A user can easily select a component and configure a product model to simulate the behaviour of the product.
The same computer model can be used to match the components interfacing with each other. This allows a
designer to determine rapidly the correct parameter values for a given design scheme and carry out
evaluation. The simulation system also provides a highly interactive interface, allowing a designer to
instantly change the values of any design parameter and learn quickly the effect due to the changes made.
This has proven an extremely useful learning tool offered to students, who need to repeat the evaluation
many times to learn the behaviour of a design object. Figure 6 shows an example plot of simulation results of
the dynamic behaviour of one drive system for the wheelchair. A designer can determine from these
simulation results the maximum power requirements and maximum speed the wheelchair can travel and so
forth. This information can help students to learn and gain great insights to the systems they are dealing with.

6. FRAMEWORK OF A MULTI-PESPECTIVE MODEL BASED LEARNING
SYSTEM

Having described a broad product multi-perspective model based learning approach, this section gives details
of a proposal to a more integrated and intelligent computer aided learning system, by incorporating some
reasoning mechanism to facilitate the learning of product engineering design. It aims to develop a single
learning system by bring all aspects discussed in this paper as well as other important learning and tutoring
issues learned from other researchers. Model based diagnosis techniques discussed in other work [Koning et
al 1999] will be used to provide more proactive support to learners. Figure 7 shows the architecture of the
system. The architecture consists of four distinctive yet closely related modules. The learner user interface
acts as an important medium for a learner to interact with the system and learn many techniques how to
perform a task and concepts/principles of product modelling. All learner interaction with the system will be
recorded into a user learning log file. In the opposite direction of information flow, identified suitable
knowledge, explanations to a query and some possible suggestions to the learner about suitable actions the
learner should take before moving on.

Based on the analysis of these logged learner actions, a reasoning mechanism can then determine the profile
of the learner, e.g. level of knowledge of each of the subject area, competence of using the system, interest of
modules of the subject area. etc. Also within this reasoning module, it can retrive relevant information to a
learner’s query, making suggestions or asking questions based on the learning behaviour up to this moment
of time. Assessment questions can also be generated using a database within which there exist a number of
predefined questions and learning stimulus at a suitable level of learner’s ability. The reasoning modules can
also derive learning advices or actions the learner should take once the learner the system detects the
difficulties the learner is experiencing. The third module basically contains important subject knowledge
models for product design engineering education. And the final module contains a number of database to
provide information on generating learning stimulus proactively, learning assessment methods and associated
questions, and learning advice and actions for learners having difficulty in mastering the subjects as well as
using the system.

T i m e (s e c o n d s)

S t e p r e s p o n s e o f a n g u l a r v e l o c i t y

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

s/
s)

T o r q u e l o a d

Figure 6 Simulation results of dynamic behaviour of one drive wheel of the wheelchair

7. CONLUSION AND FURTHER WORK
This paper has described a multi-perspective model based learning approach used by the author to teach
multi-disciplinary product engineering design classes. A unified modelling approach, based on Bond graph
and block diagram methods as underlying knowledge representation, has been developed and used in this
approach. A novel function block oriented modelling method has been derived to support effective learning
and proved effective in handling energetic system design. In combining the commercially available kinematic
and assembly modelling and simulation systems through integration techniques, a multi-perspective model
based learning approach has been developed. Through the introduction to and use of this learning approach,
new designers such as senior student design engineers appreciated the importance of and gained the benefits
of multi-perspective product design by using multiple models. This approach has broadened design engineers
understanding significantly from single geometric modelling to much more comprehensive modelling and
simulation in an integrated manner. However, from evaluation of the approach, design engineers found it is
difficult to understand Bond graph theory, as student designers have not gained sufficient experience and
knowledge about specific components they need to use. Industrial designers have not been introduced to this
method either. This raised the need of developing higher-level encapsulated modelling method to help these
designer engineers to adopt this approach.

In addition, the paper also described a framework for developing a single tutoring system based on the
current teaching practice. Successful multi-perspective model based learning approach will be used in the
system. In addition, qualitative reasoning and other means of reasoning and methods will be deployed to
enhance the intelligent behaviour of the system.

The approach described in the is paper represents the practical part of the teaching approach adopted by the
author. There are a number of areas for further development and research. The work has largely been tried on
the education of mechatronic product design. The learning models generated in the component library are
hence very much for mechatronic products. This library requires further expansion to cope with other domain
specific product design. Currently, this approach is being used to design a mechanical product and it is hoped

In
te

lli
ge

nt
 u

se
r i

nt
er

ac
tio

n
lo

g

Learner

Le
ar

ne
r f

rie
nd

ly
 c

om
pu

te
r i

nt
er

fa
ce

Qualified
Engineer

U
se

r q
ue

ry
 e

xp
la

na
tio

n
an

d
le

ar
ni

ng
 a

ct
io

n
su

gg
es

tio
n D

yn
am

ic
 a

nd
 In

cr
em

en
ta

l u
se

r
le

ar
ni

ng
 p

ro
fil

e
m

od
el

Manufacture
Models

Material
Models

Geometric
Models

FE analysis
Models

Kinematic
Models

Energy
System
Models

Subject
knowledge
models

Proactive learning
stimulus, learning
assessment and
advice database

Intelligent user
behaviour and

learning profile
reasoning

Retrieving
information to

queries

Deriving
suggested

learning actions

Generating
assessment
questions

Proving
learning
stimulus

Model based
qualitative reasoning

In
te

lli
ge

nt
 u

se
r i

nt
er

ac
tio

n
lo

g
In

te
lli

ge
nt

 u
se

r i
nt

er
ac

tio
n

lo
g

Learner

Le
ar

ne
r f

rie
nd

ly
 c

om
pu

te
r i

nt
er

fa
ce

Le

ar
ne

r f
rie

nd
ly

 c
om

pu
te

r i
nt

er
fa

ce

Qualified
Engineer

U
se

r q
ue

ry
 e

xp
la

na
tio

n
an

d
le

ar
ni

ng
 a

ct
io

n
su

gg
es

tio
n

U
se

r q
ue

ry
 e

xp
la

na
tio

n
an

d
le

ar
ni

ng
 a

ct
io

n
su

gg
es

tio
n D

yn
am

ic
 a

nd
 In

cr
em

en
ta

l u
se

r
le

ar
ni

ng
 p

ro
fil

e
m

od
el

D
yn

am
ic

 a
nd

 In
cr

em
en

ta
l u

se
r

le
ar

ni
ng

 p
ro

fil
e

m
od

el
Manufacture

Models

Material
Models

Geometric
Models

FE analysis
Models

Kinematic
Models

Energy
System
Models

Manufacture
Models

Material
Models

Geometric
Models

Manufacture
Models

Manufacture
Models

Material
Models

Material
Models

Geometric
Models

Geometric
Models

FE analysis
Models

Kinematic
Models

Energy
System
Models

FE analysis
Models

FE analysis
Models

Kinematic
Models

Kinematic
Models

Energy
System
Models

Energy
System
Models

Subject
knowledge
models

Proactive learning
stimulus, learning
assessment and
advice database

Intelligent user
behaviour and

learning profile
reasoning

Retrieving
information to

queries

Deriving
suggested

learning actions

Generating
assessment
questions

Proving
learning
stimulus

Model based
qualitative reasoning

Intelligent user
behaviour and

learning profile
reasoning

Retrieving
information to

queries

Deriving
suggested

learning actions

Generating
assessment
questions

Proving
learning
stimulus

Intelligent user
behaviour and

learning profile
reasoning

Retrieving
information to

queries

Deriving
suggested

learning actions

Generating
assessment
questions

Proving
learning
stimulus

Model based
qualitative reasoning

Figure 7 A proposed architecture of an multi-perspective product design learning system

through further investigation that the approach will be further evaluated. More importantly a single stand-
alone system will be developed by incorporating all best practice in model based qualitative reasoning and
other reasoning techniques, so that a true intelligent learning system can be fully developed for product
design engineering education.

REFERENCES
Bracewell, R.H., Chaplin, R.V., Langdon, P., Li, M. Oh, V, , Sharpe, J.E.E. and Yan, X.T. 1995 (in

alphabetic order), “Integrated Platform for AI Support of Complex Design(Part 1) and (Part 2)”, in AI
System Support for Conceptual Design ed. by J. Sharpe, International Workshop on Engineering Design,
Ambleside, England, March 27-29,.

Borg, J, Yan, X. T. and Juster, N. P. "Exploring decision’s influence on life-cycle performance to aid
“design for Multi-X”", Artificial Intelligence for Engineering Design, Analysis and Manufacturing
Cambridge University Press, Vol 14, pp 91-113, 2000.

Cooling, J.E., "Software Design for Real-time Systems", Chapman and Hall, 1990.
Cunningham, J. J., Dixon, J. R., (1988), "Designing with Features: The Origin of Features";

Proceedings of the ASME International Computers in Engineering Conference, Vol. 1, San Diego, pp. 237-
243.

French, M.J. 1985, "Conceptual design for engineers", Springer-Verlag, second edition.
Horváth, I., Kulcsár, P., and Thernesz, V., 1994, "A Uniform Approach to Handling of Feature-Objects

in an Advanced CAD System", in Advances in Design Automation, DE-Vol. 69-1, ed. by Gilmore, B. J.,
Hoeltzel, D. A., Dutta, D., Eschenaurer, H. A., ASME, New York, pp. 547-562.

Gayakwad, R. and Sokoloff, L., "Analogue and Digital Control Systems", Published by Prentice-Hall
Inc. International Editions, 1988.

Karnopp, D.C, Margolis, D.L. and Rosenberg, R.C., 1990, "System Dynamics, A Unified Approach",
Second Edition, John Wiley & Sons, Inc..

Kees de Koning, Bert Bredeweg _, Joost Breuker, Bob Wielinga 2000, “Model-based reasoning about
learner behaviour”, Artificial Intelligence 117 (2000) 173–229

Pahl, G. and Beitz, W., 1996 “Engineering Design – A Systematic Approach”, Springer.
Pugh, Stuart, 1991 “Total Design – Integrated Methods for Successful Product Engineering”, Addison-

Wesley Pub.
Sawada H. and Yan, X. T., “Preliminary Design Support System Based on a Generic Under-Constraint

Solving Technique”, ASME 2000 International Design Engineering Technical Conferences and the
Computers and Information in Engineering Conference - ASME Design Automation, Baltimore, USA,
September 2000.

Yan, X. T. Borg, J. and Juster, N P 2001 “Concurrent modelling of components and realization systems
to support proactive design for manufacture/assembly”, Journal of Engineering Manufacture, Proceedings of
the Institution of Mechanical Engineers Part B, Vol215 pp1135-1141, September 2001.

Yan, X. T. 1997, “The Role of Simulation Tools in the Teaching of Product Design”, Proceedings of
11th International Conference on Engineering Design ICED97 Tampere, Vol. 3 pp. 469-472, ISBN 951-722-
788-4, August 19-21,

Yan, X.T. and Sharpe, J. 1994, “Unified Dynamic Mixed Mode Simulation of Mechatronic Product
Design Schemes”, Int. Workshop on Computer Aided Engineering Design, England, pp. 259-280.

Yan, X. T. 1992, “Graphic Modelling of Modular Machines”, Ph.D thesis, Department of
Manufacturing Engineering, Loughborough University of Technology, UK,.

119

120

