
Performance Rendering using
Structure Level Expression

Bastiaan J. van der Weij
5922151

Bachelor thesis
Credits: 15 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Prof. dr. ir. R.J.H. Scha

Institute for Language and Logic
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

June 24th, 2010

Abstract

Both machine learning and rule based techniques have been extensively
applied to performance rendering. However, relatively few systems make
explicit use of machine learning combined with musical structure. Systems
that use machine learning usually learn expression at note level. This
paper introduces a performance rendering system that learns expression
exclusively at a structural level. The system can be seen as complementary
to systems that learn expression at note level.

Keywords: performance rendering, musical structure, constituent
structure

1 Introduction

In the Western art music tradition it is customary that composers write down
their compositions as scores. The task of a performer is to some extent to
accurately reproduce the score; however, a perfect reproduction of a score gen-
erally sounds robotic and unpleasant. What makes a performance appealing
is that the performer deviates from the score, altering timing, articulation and
loudness, creating an expressive performance.

Given a hypothetical perfect synthesizer, performing scores with computers
is a trivial task. However, expressively performing music is not, and much
research has focussed on this issue. A wide selection of scientific fields may have
interest in such research: Artificial intelligence, cognitive science and musicology
all benefit from a better understanding of expression in music.

A rather practical approach to expressive music performance is to recreate
it. A performance rendering system is a computer program that automatically
creates an expressive, human-like performance of a musical score. Performance
rendering systems have always faced a problem of evaluation. It is debatable
how much we should value correlation of generated performances with human
performances of the same piece. A Chopin interpretation by Arthur Rubinstein
can be radically different from a Chopin interpretation by Vladimir Horowitz,
yet both are considered high quality interpretations. This problem has been one
of the motivations for a yearly performance rendering event where performance
rendering systems compete and are judged by an audience [7].

Over the years, many performance rendering systems have been proposed.
Early attempts, like Director Musices [3], have applied sets of rules to the prob-
lem. As the availability of corpora grew, machine learning systems have been
proposed as well. Gerhard Widmer is working with a large dataset containing
almost all works by Chopin, performed by one pianist. A performance rendering
system using this dataset called YQX [1] was proposed by Sebastian Flossman
et al. in 2008. This system won in al three categories of Rencon2008. At Ren-
con2011 it was ranked best in a blind evaluation by experts and ranked second
in the evaluation by an audience. It should be noted that despite its age, Di-
rector Musices ranked third in the blind evaluation, suggesting that although
performance rendering systems have advanced, the field is still in its infancy.

Many of the performance rendering systems that use machine learning, in-
cluding YQX, predict expression at note level. Some do use structure. Pop-E
[6], a rule based performance rendering system, uses a structure analysis based
on Lerdahl and Jackendoff’s grouping preference rules [10], but the structural

1

analysis must be supplied to it by a human expert. In this thesis we will mo-
tivate the need for structure level expression and propose a system that purely
uses structure level expression. The YQX system is very successful at the mo-
ment, therefore we will use this system as a reference for introducing our own
system. In the following section we will provide a short analysis of some short-
comings of the YQX system and argue what we believe is the reason for these
shortcomings.

What we mean by structure level expression and why we think it is important
is clarified in section 2. Section 3 will describe the system as a whole. Section
4 will describe every component of the system in detail. Practical issues are
discussed in section 5. Results are presented in section 6 and evaluated in
section 7. Suggestions for improving the system and future research can be
found in section 9.

2 Musical Structure

2.1 Motivation

The YQX system, as Flossman et al. admit, tended to sometimes produce
nervous sounding changes in expression. They present two extensions tailored
towards generating smoother performances. The problem with these extensions
is, as Flossman et al. also admit themselves, that the increased smoothness
comes at the expense of expressivity. To compensate for this, three explicit rules
are added to post-process the performances. We think the reason that Flossman
et al. stumbled upon this tradeoff between expressiveness and nervousness is
that the nervousness is inherent to note level performance rendering. Note level
systems simply are not suited to capture one component of expression, namely
structure level expression.

The system presented here will use structure exclusively to generate per-
formances and will completely ignore note level expression. We hope that this
system is able capture the sudden changes of expression that a note level system
cannot easily learn. Sudden changes in expression occur frequently in expressive
performances, a few notes may be played very loud, or very slow followed by soft
notes played very fast. When done at the right moment, such sudden changes
can greatly improve the human-like feel of the performance, however when done
at the wrong moment, they can ruin a performance. We think that at structure
level it will be easier to capture the context in which sudden changes occur.

2.2 Structure Level Expression

When listening to music, the listener’s musical intuition assigns a certain hierar-
chical structure to the music: Notes make up phrases, phrases make up themes
and themes make up a piece. In a performance, this structure may be accen-
tuated in different ways. Accentuation happens at different levels, at note level
performers may slow down at the end of a phrase or introduce small pauses in
the performance at phrase transitions. At constituent level one phrase may be
played very loud, fast or staccato, while the next may be played slow, soft and
legato.

To formally describe musical structure, we can look at music in a way similar

2

to the way we look at natural language processing(NLP). In this analogy we see
a piece of music as a sentence, which consists of constituents that individually
can be made of constituents as well. We can recursively subdivide constituents
into more constituents until we reach a terminal symbol. In NLP this may be
a word, in music, this may be a note. We could represent musical structure as
a parse tree. This paradigm corresponds to the intuition that a melody is not
simply a sequence of notes but that notes form phrases. A phrase is always a
constituent but a constituent is not always a phrase, it can be a distinguished
part of a phrase or a distinguished set of phrases as well.

We must note that musical scores can be highly ambiguous and even ex-
perienced listeners may not agree on the correct parse tree of a piece. Quite
often there may simply be more than one parse tree that makes musical sense.
This should not be a problem for a performance rendering system: different
expressive interpretations of one piece can be very diverse and still be accepted
as sensible interpretations of the piece. As long as the parse tree does make at
least some musical sense, a performance rendering system should be able to use
it.

Although the YQX does have some notion of structure1, expression is only
predicted per note. The authors admit that the first simple version of the system
“tended to sometimes produce unstable, ‘nervous’ sounding performances”. The
only way to overcome this problem was to introduce methods that limited the
expressiveness of performances. We consider this trade-off to be inherent to
note-level expression based systems. To solve it, some notion of structure level
expression is required.

3 Approach

In this thesis, we propose a structure based performance rendering (SBPR)
system. The system presented here ignores note level expression. Instead we will
try to predict only constituent (or structure) level expression. The assumption is
that this kind of expression really exists in performances and that it is different
and independent from note level structure. We think that a constituent level
system also corresponds better to how actual human performers play music.

The system will be similar to YQX in a number of ways, but with the crucial
difference that expression will not be predicted per note, but per constituent.
Every constituent will be played with consistent expression, the articulation,
dynamics and tempo change only at constituent breaks.

We use a corpus that contains performances and corresponding scores of
Western classical piano music. Every note in every performance has been asso-
ciated with the corresponding score note so we can see exactly how every note
in the score was played. The performances are of high quality and played by
famous pianists. See section 5.1 for more details on the corpus.

A structural analysis is used to derive a hierarchical structure for every
score in the corpus; however, to keep the system simple we will only use this
structural analysis to create a segmentation of the score into constituents. After
segmentation, four score features, two of which are direct generalizations of
YQX’s score features, are extracted for each constituent.

1One of YQX’s note features is distance to nearest point of closure, see section 4.3.

3

So far, we have only used the score. Since we have a segmentation and every
score note is associated with a performance note2 we can also define expression
per constituent. Three parameters, analogous to YQX’s targets, will be used to
describe expression per constituent.

The segmentation, score features and expression parameters are based only
on the melody of the piece. In this case, melody is defined to be the highest
notes in the top staff.

The resulting data is used to train a first-order hidden Markov model. The
system uses this model to generate performances given a score. To do this,
the score is segmented into constituents, score features are extracted for each
constituent. Finally Viterbi decoding is used to find the sequence of expression
parameters that best explains the observed score features.

The success of a SBPR system depends largely on two factors. The ability
to generate musically meaningful parse trees of a piece and the ability to ac-
curately characterize the individual constituents and their relations with other
constituents in score features. The following section addresses these issues.

4 Method

This section will describe individual components of the system sketched in sec-
tion 3 in more detail. The structural analysis is based on the delta framework,
which will be described in section 4.1. Section 4.2 will discuss how the delta
framework is used to get a segmentation. Sections 4.3 and 4.4 will describe how
the score features and expression parameters are calculated. Section 4.5 will
describe how a hidden Markov model is trained on our data.

4.1 The Delta Framework

In his Ph. D. thesis [12], Markwin van den Berg introduces a formal way of
parsing music into parse trees: the delta framework. He relates his work to the
work of Lerdahl and Jackendoff’s Generative Theory of Tonal Music [10] but
claims to have found a more general approach. Below, I will shortly describe
the delta framework as proposed by Van den Berg.

The delta framework is based on the intuition that differences between fea-
tures of notes indicate splits between constituents. The larger the difference,
the higher the level of the split in the parse tree (where the root note is at
the highest level). Van den Berg proposes a delta rule that converts a set of
differences, or deltas, between notes into a parse tree following this intuition.

The differences between notes are defined as the difference in value of a
certain note feature. More formally, we can look at a piece of music as a sequence
of notes, ordered by onset time:

Mi,j = [ni, ni+1, · · · , nj]

A set of basic features, Φ, is assigned to each note. These are: onset, pitch,
loudness and release (called offset by Van den Berg). From these, two other
features can be derived: duration and virtual duration. Duration is defined

2In reality, not every score note is associated with a performance note since the pianist
may have missed some notes. These notes will be ignored.

4

as release(ni) - onset(ni) while virtual duration is defined as onset(ni+1) -
onset(ni).

The basic note features can be used to define delta functions, for example
δPitch = Pitch(ni) − Pitch(ni−1). In general, a delta function δ(i) is defined
as the difference of two notes in some feature φ: δφ(i) = φ(ni) − φ(ni−1). We
can apply a delta function to every pair of succeeding notes in a sequence to get
a list of deltas:

∆φMi,j = [δφ(ni+1), δφ(ni+2), · · · , δφ(nj)]

A recursive rule, called the delta rule, can be used to translate a list of deltas
into a grouping structure. This rule, called the delta rule is shown in algorithm
1, where DeltaRule(φ,Mi,j) is a recursive call to the algorithm itself, φ is the
feature that we use for the delta function, Mi,j is the ordered list of notes to
be analyzed and A is the resulting analysis.3 The algorithm is initialized with
the entire piece of music, M0,n and the feature, φ, to use for the delta function:
DeltaRule(φ,M0,n).

Algorithm 1 The delta rule

Di+1,j ← ∆φMi,j

A← []
m← max(D)
p← i
for d in D do
if d = m then
q ← index of d in D
append DeltaRule(φ,Mp,q) to A
p← q

end if
end for
append DeltaRule(φ,Mp,j) to A
return A

The delta rule converts a sequence of notes into a nested list structure that
can be interpreted as a tree. The delta rule parses a piece of music into a parse
tree. The resulting parse tree depends on what feature φ we used for the delta
function. Every feature yields a different parse tree.

It is also possible to define higher order delta function (deltas of deltas).
Such higher order functions can detect patterns that would remain undetected
by first-order delta function. Second order pitch delta functions, for example,
can be used find constituent splits between a group of steadily ascending notes
and a group of notes that have wildly varying pitches.

Since we have six basic note features, we have six first-order delta functions
and six interpretations (parse trees) for a piece of music. Although each parse
tree provides us musically relevant information, we would like to have only one
tree. Intuition tells us that if a particular group of notes is found in multiple
parse trees, this group of notes may be eligible to be a constituent. Van den
Berg captures this intuition in the form of a yield rule. A node in the parse tree

3The version here is a slightly reformulated, although functionally equivalent, version of
Van den Berg’s delta rule. See [12] for his original version.

5

is said to ‘yield’ a group of notes if the node recursively contains this group of
notes. If two or more nodes in different trees yield the same group of notes they
should be connected according to the yield rule.

Unfortunately, the yield rule addresses the problem of how to interpret mul-
tiple parse trees quite poorly. We would like to have some way of combining
parse trees into one ‘consensus tree’. This is not what the yield rule does. The
yield rule generates a set of trees in which some nodes may be interconnected
but there does not seem to be a logical way to interpret this set of interpreta-
tions and connected nodes. Van den Berg does not further address this issue.
In the next section we circumvent the problem completely by not using more
than one interpretation at a time.

4.2 Segmentation

A recursive structure like the parse trees generated by the delta framework is
the kind of structure that we would ideally want to attribute to music. However,
because of the problems with interpreting different parse trees and because delta
trees do not necessarily represent the kind of structure that human musical
intuition would attribute to music, we chose not to use a hierarchical structure
and instead settle for a segmentation, which can be more reliably derived from
delta trees.

The goal is to find a ‘safe’ method to segment music, that is, a method that
generates segmentations that do not clash with human musical intuition. For
this purpose the parse trees of delta onset (inter-onset interval, or simply IOI)
and delta pitch (pitch interval) seem most suited: sudden jumps in pitch or
onset often correspond to phrase transitions.

A delta onset tree and a second order delta pitch tree of the first eight
bars of Mozart’s Turkish March can be found in figure 1. In this figure we
can see that some nodes contain only other nodes, some nodes contain only
notes and some nodes are mixed and contain notes and other nodes. We will
use this differentiation between node types in the translation of a tree into a
segmentation, which is shown in algorithm 2. The algorithm is initialized with
the root node.

Algorithm 2 Segmentation

For some node n, do:

1. If n is a note.
Then add n as a singleton segment to the segmentation.
Else expand n.

2. If n is mixed and directly contains more than x notes.
Then add all notes recursively contained by n as a segment to the seg-
mentation.
Else start from step 1 for every child of n.

The value of x represents the tolerance of singleton segments. We need
this parameter because, in the delta onset tree, very long notes cause one note
to split of a constituent at a high level, in this case we want to accept that
this one note will be a singleton segment. We have found that setting x to a

6

(a) Delta onset tree

(b) Second order delta pitch tree

Figure 1: Parse trees of the first eight bars of piano sonata KV331 III. (Turkisch
March)by Mozart

variable number, namely: the number of notes recursively contained (yielded)
by the current node divided by 16 works quite well for works by Mozart. Our
segmentation of the first eight bars of Mozart’s Turkish March using a delta
onset tree can be found in figure 2.4

For some works, like most works by Mozart, using only a delta onset tree
works very well. However, for other, like Bach’s Inventionen, a delta onset tree
is not sufficient since the music contains almost no differentiation in IOI (most
notes are equidistant in onset).

To overcome this problem we will use pitch. Even though Bach’s Inventionen
use almost no differentiation in IOI they can be segmented nonetheless. We will
not make any attempt to combine pitch interval trees and IOI trees. Instead we
take the segmentation given by the IOI tree and try to subdivide every segment
using a pitch interval tree.

The sort of changes in pitch that indicate constituent transitions are not
characterized very well by a first-order pitch interval tree. Let us take the
example from the previous section, where we have a melody of eight notes, four
of which are chromatically ascending followed by four notes that have octave
intervals between. We want this to be segmented into two constituents where
one contains the four ascending notes and another one contains the notes with
octave intervals. A first-order pitch interval tree puts the four ascending notes
in one segment but puts the four octave interval notes in four separate segments.

4Note that if the delta tree from figure 1(b) is used the segmentation will be different. This
segmentation was based on an onset delta tree over the entire piece instead of just the first
eight bars.

7

Figure 2: First four segments of piano sonata KV331 III by Mozart (grace notes
are not shown)

A second order pitch interval puts the split in this case exactly where we would
want it.

The pitch interval segmentations are less reliable than the IOI segmentations
but since we use pitch only to subdivide IOI segments we can still be sure that
some constituent transitions are based on the more reliable IOI segmentation.

4.3 Constituent Features

We can now convert a piece of music into a series of constituents. These con-
stituents will be used to predict expression, so we must be able to characterize
them in a way that correlates with the way they are performed. Analogous to
YQX we are looking for the context of the constituent, but in contrast to YQX
we also need some description of the constituent itself.

YQX uses a set of three score features: pitch interval, duration ratio and I-R
arch. The pitch interval is simply the difference in pitch between the current
note and the next note. The duration ratio is the logarithmic ratio of the
duration of the current note and the duration of the next note. The I-R arch is
is the distance to the nearest point of closure, where closure is calculated from
the Implication-Realization analysis [11].

We can generalize pitch interval and duration ratio per note to context fea-
tures: mean pitch interval and mean duration ratio. Definitions can be
found below.

Mean pitch interval The difference between the average pitch of the current
constituent and the average pitch of the next constituent, zero if the cur-
rent is the last constituent

Mean duration ratio The logarithmic ratio between the average note dura-
tion of the current constituent and the average note duration of the next
constituent

Since I-R arch is related to note-level expression, it does not generalize well
to a constituent level feature.

The two features above provide information about the constituent context:
if they are both zero the constituent is apparently similar in mean pitch and
mean duration to the next constituent. At note level there is not much to say
about the current note besides the pitch and duration. However at constituent
level we would also like to say something about the constituent itself. For this

8

purpose the constituent features mean delta pitch and mean delta duration
are used. These features say something about the amount change in pitch and
the amount of change in note duration:

Mean delta pitch The average of all absolute pitch intervals within one con-
stituent.

Mean delta duration The average of all absolute differences in duration of
succeeding notes within one constituent

Note the difference between these features and the context features. The
context features use the mean pitch of one constituent and the mean duration
within constituent and compare these to the mean pitch and mean duration of
the next constituent. The constituent features use the average of all pitch inter-
vals within one constituent and the average of all differences in duration within
one constituent, giving a measure of the spread of pitch and differentiation of
rhythm within the constituent.

The complete set of score features consists of the two context features and
the two constituent features.

The system does not make use of expressive markings in the score. A mature
performance rendering system should incorporate these in some way. Even a
human performer is not expected to read the mind of the composer and uses the
expressive markings to guide his performance. Disregarding articulation marks
and dynamic markings has a significant impact on the results: the system has
an overall slight preference for playing staccato and softly. This is due to the
fact that staccato notes or notes that should be played soft are treated as normal
notes and bias the statistics.

4.4 Expression Parameters

Every constituent will be assigned expression parameters that indicate how the
constituent is played expressively in a performance. These parameters define
what we mean by structure level expression and should therefore be chosen
carefully.

Some concepts that we think fall under structure level expression are crescendo
or decrescendo, ritardando and piano or forte etc. From these, concepts like
crescendo, decrescendo and ritardando arguably fall under note level expres-
sion and for simplicity we will not consider them structure level expression. In
fact, we will only look at the mean tempo, the mean articulation and the mean
loudness of a constituent.

YQX defines expression per note in three parameters: IOI ratio, articulation
and loudness. These parameters are defined as the logarithmic ratio between the
performance IOI and the IOI notated in the score (calculated using some base
tempo), the silence after a score note divided by the silence after the performed
note and the logarithmic ratio between the loudness of the performed note and
the mean loudness of the performance.

We are going to define our own expression parameters in a similar way, but
let us first look at some issues with the definitions YQX uses. The definition of
articulations seems to be a bit awkward and inconsistent. Awkward because if a
score note is not followed by a rest, the notated silence after it is zero, rendering
articulation undefined. Inconsistent because all the other expression parameters

9

use logarithmic ratios and we see no reason not to use a logarithmic ratio for
articulation as well.

IOI ratio and loudness are defined relative to mean performance tempo and
loudness. However, to capture micro expression in the form of small changes in
onset relative to the beat, it seems more logical to define this feature relative
to the local tempo, instead of relative to the global tempo. The same argument
can be made for defining loudness relative to local loudness instead of global
loudness. Structure level expression may help to define the concepts of local
tempo and local loudness as we can simply take the mean tempo and loudness
within one constituent and take this to be the local tempo and loudness. See
section .

The expression parameters that we will use are:

Mean Tempo Ratio The logarithmic ratio between the mean tempo within
the constituent and the base tempo of the performance.

Mean Articulation The logarithmic ratio between performance IOI and the
score IOI if the next note is not a rest. If the next note is a rest we use
the note duration calculated with the score duration of the note and the
local expressive tempo instead of the performance IOI. IOI is the onset of
the next note minus the onset of the current note.

Mean Loudness Ratio The logarithmic ratio of the mean loudness within the
constituent and the base loudness of the performance

Admittedly, we still use mean loudness and tempo to calculate tempo and
loudness ratio. This is a limitation inherent to using a segmentation instead of
hierarchical structure. When using hierarchical structure, the parameters could
be defined relative to the parent constituent.

4.5 Model

We can now reduce a piece of music, represented as a sequence of notes Mi,j ,
of which we have a score and a performance, to a sequence of score feature
vectors F and expression parameter vectors E. First, we segment the score into
constituents:

segment(Mij) = {c1, c2, · · · , cn}

We can then extract feature and parameter values from the score and the per-
formance:

fi = (pi, di,∆pi,∆di)
T

F = {f1, f2, · · · , fn}

where fi is a feature vector, pi is the mean pitch interval, di is the mean duration
ratio, ∆pi is the mean delta pitch and ∆di is the mean delta duration. And the
expression parameters:

ei = (ti, ai, li)
T

E = {e1, e2, · · · , en}

10

where ei is a parameter vector, ti is the mean tempo ratio, ai is the mean
articulation and li is the mean loudness ratio.

We can construct a corpus by parsing a number of works in this manner.
Given such a corpus, the rendering of a performance can be formulated as
maximizing the probability: P (E|F). We can estimate an approximation of
this probability by calculating feature likelihoods and transition probabilities.
We approximate the features likelihood, which is the conditional probability of
a feature vector fi given an expression vector ei, with the following probability:

P (fi|ei) =
c(fi, ei)

c(ei)
(1)

Where c(x) is the number of occurrences of x in the corpus. The expression
transition probability is approximated by the unigram count of ei divided by
the bigram count of ei−1, ei.

P (ei|ei−1) =
c(ei−1, ei)

c(ei−1)
(2)

where we make the simplification that expression in one constituent is only
dependent on the expression in the previous constituent which is of course not
true.

The problem of creating a performance of a score is now reduced to finding a
suitable sequence of expression vectors, given a sequence of feature vectors. We
can calculate the probability of one expression vector of a performance as the
product of the probabilities defined in equations 1 and 2. The probability of the
entire performance is approximated by the product of the individual expression
vector probabilities.

P (E|F) =

n∏
i=1

P (fi|ei)P (ei|ei−1)

The resulting model is analogous to a stochastic part of speech tagger based
on a hidden Markov model where we have substituted words for score feature
vectors and parts of speech for expression parameter vectors. Rendering a per-
formance is like finding the most likely part of speech tags for a sequence of
words. In our case:

E∗ = argmaxEP (E|F)

which can be found using Viterbi decoding [2].

5 Implementation

This section will discuss practical issues that we faced creating a complete per-
formance rendering system based on the method described in the previous sec-
tion.

11

5.1 Corpus and Representation

We were lucky to find and receive permission to use the CrestMusePEDB [5],
which is a database containing expressive performances of Western classical
music by famous pianists, including Glenn Gould, Vladimir Horowitz and Mau-
rizio Pollini. The music in this database includes works by Bach, Beethoven
and Chopin.

Every performance is accompanied by an XML file containing information
on how every note from the score is performed. This information consists of
a loudness deviation, attack deviation and release deviation. The loudness is
defined relative to a base loudness. The attack and release deviation are defined
as the portion of a local beat duration that the attack and release deviates from
the score.

Local tempo is defined for every beat in every measure as the ratio of the
tempo in that beat and the base tempo.

To prepare a score and performance from the database for use in our system
we use the score to extract melody notes. We do this simply by taking notes in
the highest voice in the top staff. From now on when we talk about pieces and
notes we mean melodies and melody notes.

Attack and release are clearly note level parameters so we do not use them.
We only need tempo deviations and loudness deviations. The average tempo of
a constituent is determined by the average tempo deviation of all the beats that
fall within the constituent. The average loudness is determined by the average
loudness deviation of every note within the constituent.

The delta functions that are used in the segmentation process use pitch
intervals and duration ratios. The pitch intervals use MIDI note numbers which
range from 21 to 108 and go up one semi-tone with each step. Durations are in
milliseconds, calculated from the score and a standard tempo, set at 120 beats
per minute.

We constructed two corpora from the database, one consisting of all per-
formances of Chopin and one consisting of all performances of Mozart in the
CresMusePEDB.

5.2 Discretization

We chose to make the model discrete. We discretize expression and score fea-
tures in a different way.

Expression Discretization of expression parameters is a delicate subject, we
want to capture small changes in dynamics and tempo precisely, but outliers
may fall in large bins. A sigmoid function is very useful for this purpose. The
expression parameters are all logarithmic ratios so they theoretically vary from
−∞ to ∞. Therefore we first normalize the parameters by dividing it by the
minimum absolute value found in the corpus. Discretization of a normalized
expression parameter p into d bins is now done as follows:

D(p) = floor

(
d

1 + e−sp

)
Where D(p) is the discretization of p, s is a special sensitivity parameter

indicating how small the changes in tempo that the discretization captures can

12

be; a larger s means a more sensitive discretization. Undiscretization is the
reverse operation:

D−1(p) = s−1d−1(− log(p−1)− 1)

Features To discretize the features, we simply normalize every feature divid-
ing through the maximum absolute value of that feature found in the corpus.
After normalization we multiply the feature by a discretization parameter d that
determines the number of bins and take the floor.

D(f) = floor(f ∗ d)

Where f is the normalized feature value.

5.3 Smoothing

Despite having discretized our feature and observation vectors we often find that
we observe feature vectors in a new score that we had never seen during training.
We do not want the conditional probabilities from equation 1 to become zero
so we have to smooth these probabilities. We use a smoothing technique known
as simple Good-Turing smoothing [4]. The idea is that we use the probabilities
of things we have seen once for the things we have never seen. Recall how we
calculate the conditional probability of a feature vector:

P (fi|ei) =
c(fi, ei)

c(ei)

Let us call the c(fi, ei) the coincidence count. Let Nc be the number of
things with frequency c in the corpus. For example if there are five coincidences
(fx, ex) nd no other pair of f and e occurs five times, then N5 = 20. Good-
Turing re-estimates counts according to this formula:

c∗ = (c+ 1)
Nc+1

Nc
(3)

The smoothed probability of some event x is

P (x) =
c∗

N

In our case, the probability we seek is P (fi|ei), the sample size N is therefore
the number of times we have seen ei: c(ei). Nc is the number of coincidences
with ei that we have seen c times. The count c is c(fi, ei) and c∗ is derived
using equation 3. The

P (fi|ei) =
c∗

c(ei)
for all c > 0

By applying this formula to all counts larger than zero we reserve approxi-
mately N1

N probability mass for things that we have never seen. We assign an
equal probability for all unseen feature vectors, namely:

P (funseen|ei) =
1

U

N1

c(ei)

13

Where U is the number of unseen coincidences, which is determined by the
number of different observations in the corpus plus the new observations from
the score minus the number of coincidences with ei.

In order to make this work we cannot use Nc directly since it will not be
defined for every c. We use a least square approximation to the following func-
tion.

log(Nc) = a+ b log(c)

This completes the definition of simple Good-Turing smoothing. However,
even now there may still be some expression parameter vectors that occur with
only unique feature vectors, so that for that expression only N1 is defined. We
cannot fit a function to one sample, so if we have only one Nc sample, we simply
turn off Good-Turing smoothing and accept the fact that some probabilities will
be zero.

In practice we have to use quite a large bin size. Despite this large bin
size, many combinations of features and expression parameters were never en-
countered during training. The same applies to transitions of expression: only
small portion of all possible transitions of expression are actually encountered in
the corpus. Some of the feature likelihoods can be smoothed like we described
above, but the transition probabilities are not smoothed at all. Since our model
does not allow zero probability transitions (this would make the likelihood of the
entire performance zero), our model is heavily overfitting. The resulting per-
formances only contain changes of expression that were actually encountered in
the corpus.

In most applications of machine learning, this degree of overfitting would
not be acceptable. However, in this particular application we seem to be able
to get away with it. Playing phrase transitions exactly as encountered in the
corpus seems to be acceptable as long as we play the right transitions at the
right moment. The overfitting and the large bins size gives the performances a
bit of a stereotypical and cartoonistic feel. A larger corpus allows would reduce
the overfitting and the requirement of large bins, but this kind of corpus is not
available to us at the moment.

5.4 Performance rendering

Our model is able to generate expressively performed melodies but does not
handle polyphony. During training, the bass and harmony notes were stripped
off. After rendering an expressive performance we can simply put them back in
and estimate their expressive parameters. We do this by giving each bass and
harmony note the expressive parameters of the last played melody note.

Unfortunately the notes we treat as melody notes are not always the notes
that humans perceive as melody notes. Sometimes the melody is voices other
than the top voice. In other cases, like Bach’s fugues, there are multiple melodies
in multiple voices at the same time. In addition to that, bass and harmony notes
should generally not be played with th same expression as melody notes. Bass
notes, for example, tend to be played slightly softer and more legato than melody
notes.

14

6 Results

We compiled two corpora from the CrestMusePEDB. One contained 42 perfor-
mances of 13 piano works by Mozart, the other contained 49 performances of 19
works by Chopin. We suspect that performances of Mozart’s music most out-
spokenly use structural level expression. Expression within a constituent tends
to be more unsteady in performances of Chopin’s music. In musical terms, more
expression like riterdando, crescendo and rubato is used.

To test the system we trained it on one of the two corpora and let it perform
a number of works. Here we show the results of four renderings of Chopin’s
Mazurka No. 19, Op. 30-2 and Mozart’s Piano Sonata 310 III. To see what the
effect was of each corpus on different styles of music we performed each work
on both corpora. For reference, we also show a performance by a real human
pianist that was used during training. Given the small dataset and the free
nature of expression we did not expect the performances to correlate much with
performances by human pianists and as can be seen in the results they indeed
do not.

For all four performances the system was trained with a discretization factor
of five. In practice, this means that the constituent features (see section 4.3) were
discretized into five bins and the context features into a slightly larger number
of bins since their values can be negative as well. The expression features were
discretized into ten bins, with a sensitivity of five. The bins had to be this large
to recognize most of the score features in the score that was to be performed.

Segmentation was done using only delta onset trees. This proved to be most
reliable for Mozart and Chopin.

When rendering a Mozart performance on the Mozart corpus and a Chopin
performance on the Chopin corpus all performances of the piece that had to be
performed were left out of the corpus during training.

Plots showing dynamics, tempo and articulation of the resulting perfor-
mances are shown in figure 3 and 4.5 The values on the y-axis, labeled de-
viation, are the exponents of the expression parameters, which themselves are
logarithmic ratios. In other words, the values indicated by the axes are ratios.
A tempo of 2.0 means twice as fast as the average tempo, an articulation of 0.5
means the notes are played twice as short as notated in the score, a dynamic
value of 0.5 means the notes are played half as loud as the average loudness
of the performances. Likewise, to translate the output of the system into a
performance, the mean tempo and loudness have to be set manually.

The performances are plotted per note. The block like character of the axes
is caused by the segmentation. For the sake of comparison, the performances
by human pianists have been averaged over each constituent and discretized, so
these plots show how the performance is represented in the corpus.

7 Discussion and Evaluation

In the introduction, we mentioned the problem of evaluation. The most effective
evaluation that is available at the moment is participation in the performance

5Of course, staring at plots of music performances is not nearly as informative as actually
listening to them. For this purpose, a few performances including the ones shown here can be
found online at http://soundcloud.com/expressiveperformance/sets/final-results/.

15

(a) Performance by the system trained on the Mozart corpus

(b) Performance by the system trained on the Chopin corpus

(c) Performance by Maria João Pires

Figure 3: Three performances of Mozart’s Piano Sonata 310 III.

16

(a) Performance by the system trained on the Mozart corpus

(b) Performance by the system trained on the Chopin corpus

(c) Performance by Samson Francois

Figure 4: Three performances of Chopin’s Mazurka No. 19, Op. 30-2

17

rendering contest, Rencon [7]. Unfortunately, participating in this contest was
not feasible for this project. Therefore we are left with our own subjective
observations and qualifications.

When listening to the performances generated by our system, the effect of
per-segment expression can clearly be heard. Making changes in dynamics at
phrase transitions effectively increases the human feel of a performance. These
dynamics changes work well when phrase transitions are correctly detected.
Sometimes however, when a phrase transition is incorrectly detected, changes
in dynamics can be very disrupting. This can be heard in the system’s rendering
of Mozart’s Piano Sonata KV331 I. when trained on the Chopin corpus. At the
end of the second bar, a transition is detected one note too early, causing a strong
accent to be placed at an uncomfortable point in the piece. These incorrectly
detected transitions are not systematic and in general the transitions detected
by the system are musically plausible, if not, interesting.

Changes in tempo are riskier than changes in dynamics. Small changes in
dynamics, when made at phrase transitions at least, do not disrupt a perfor-
mance as much as small changes in tempo at the wrong moment. Often, the
tempo deviations the system makes sound good or at least acceptable, but the
system does tend to sometimes produce awkward sounding changes in tempo,
like a sudden slow down that can be heard a number of times in our results
online.

Despite the fact that our system only determines expression per segment,
small segments and gradual changes in dynamics or tempo can give a crescendo
or accelerando feel to certain parts of the music. It was interesting to see that
this could be achieved using only structure level expression.

The system clearly accentuates structure, but only on the level of the seg-
mentation. Although locally the changes in dynamics, articulation and tempo
often seem sensible, at a higher level there does not seem to be an idea behind it
all and the overall flow of the performance seems a bit random. When theme is
repeated a few times, the system may perform it completely different each time.
While some variation when playing a repetition of a phrase makes a perfor-
mance interesting, playing it completely different each time conveys the feeling
that the performer does not really know what he is doing. This sort of random-
ness comes as no surprise since our model uses only transition probabilities and
local expression probabilities. To really capture global flow of performance, a
grasp of hierarchical structure and repetition seems crucial.

Ignoring note level expression has been an adequate way to demonstrate the
phenomenon of structure level expression. Yet, we cannot deny the need for note
level expression in a performance rendering system that intends to completely
simulate human expression. Section 9 suggests a possible integration of structure
and note level performance rendering systems.

8 Conclusion

In this thesis, we have introduced a way of recognizing and using structure
level expression. We argued why we think it is a crucial aspect of performance
rendering systems and we criticized note level performance rendering for not
being able to correctly learn to make daring and large changes in expression as
well as lacking the ability to convey structure level expression.

18

Our goal was to create a system that, in contrast to a note level performance
rendering system, dares to make sudden big changes in expression and clearly
accentuates musical structure. Our results show that our system indeed is not
shy about this kind of big expressive changes. The performances of the system
contain sometimes smooth, sometimes sudden changes of expression that really
do seem to be an improvement over note level performance rendering systems.

The system that we proposed reduces the idea of structure to a segmentation
of a score into constituents based on a structural analysis. For the structural
analysis, we used the delta framework [12], proposed by Markwin van den Berg.
We noticed that a segmentation based on onset delta trees works well for some
music but does not recognize all constituent transitions. To overcome this we
suggested to use a second order pitch delta tree, but we ended up discarding
this idea because it produced too many incorrect splits in phrases. Our system
would therefore not work very well on music that has a consistent rhythmic
structure like some of Bach’s music. In the end, an onset tree segmentation
worked well enough to produce musically relevant segmentations given the right
genre of music.

To characterize constituents and their relations to other constituents we
used constituent likelihoods and bigram transition probabilities of expression.
The resulting hidden Markov model could be used in combination with Viterbi
decoding to generate performances. This approach is very similar to stochastic
part of speech tagging using hidden Markov models.

9 Future Work

We have presented a new approach to performance rendering, one that is purely
structure based. Our first results look promising but also clearly demonstrate
some limitations of our system. We think that these limitations are easily iden-
tifiable and addressed and with some extensions, structure based performance
rendering can bring us far. We will shortly list some of the limitations that we
discussed in our evaluation in section 7 and provide some suggestions on how
to address them.

The segmentation of a score is not always perfect and leaves room for im-
provement. Ultimately, we do not want discard the idea of a segmentation
completely and move to a multilevel structure analysis, this will help to elim-
inate the randomness that we discussed in our evaluation. Whether the delta
framework can be used for such an analysis remains a topic for future research.
The delta framework offers us more analytic power than we have used in this
system. But in order to use it to generate multilevel structure, a way to combine
different delta trees into one consensus tree is needed.

Another open problem is how we should deal with multiple voices. Some
proposals have been made in this field. Tae Hun Kim et al. [9] split a piece
into melody, bass and harmony and use separate probabilistic models for each
of them. When using different expression for different voices, another problem
presents itself, namely how to synchronize the voices so that the performance
still sounds like it is played by one performer or a group of performers with an
adequate mastery of timing. Pop-e [6] uses an automatic analysis to determine
the attentive part in music: the voice of the music perceived as melody at any
point in the piece. It uses this information to synchronize expression in different

19

voices.
As we mentioned in our evaluation, our system ignores expressive markings.

The result is that depending on the corpus, the performance renderer has un-
wanted biases. A possible approach to incorporating expressive markings in
the system is to determine what, given an expressive mark in the score, is the
average way to play a given note and normalize this out of the corpus. Say stac-
cato notes are played, on average, half length notated in the score, we specify
articulation deviation relative to this half duration instead of the full duration.
That way the system now recognizes the note as a normal staccato note instead
of an extremely short legato note.

We hope that in the future, as the CrestMusePEDB project develops, data
sparsity will be less of a problem. For now however, we are left with having to do
discretization and smoothing. The smoothing technique we used, Good-Turing
smoothing, is arguably not the best way to smooth the corpus. Good-Turing
smoothing assigns equal probabilities to all unseen score features. It is likely
that unseen score features that are very similar to score features that we have
seen should also be played in a similar way as the score features they resemble.
A different smoothing technique may be able to use this information. We could
use a smoothing technique similar to Katz-Backoff [8]: Upon encountering an
unseen feature vector, discretize again the corpus into increasingly larger bins
until we do find the feature vector in our corpus.

The system would certainly benefit from a notion of repetition and similar-
ity. Repetition is a very good indicator of constituent breaks. Repetition and
similarity could also be used to improve expressiveness of performances. It is
probably telling when a phrase is repeated three times and then slightly altered
the fourth time. Although finding similarity and musically significant repeti-
tion is a subject of its own, the delta framework could help to define repetition
arbitrarily of transposition or rhythm. A list of pitch deltas can for example
be used to detect repetition independent of transposition and a list of duration
deltas can be used to detect repetition of rhythm independent of the notes used.

The YQX system defines expressive tempo implicitly by predicting the log-
arithmic ratio of the IOI in a performance and the IOI in a score. Timing
alterations of notes are always defined relative to the base tempo. This does
not correspond to the intuition that the the tempo itself is altered during the
performance, resulting in a local tempo, and that rhythmic changes should be
seen relative to this local tempo. The same applies to the way YQX looks at
loudness. This is specified as the logarithmic ratio between the notes loudness
and the mean loudness of the performance.

An integration of constituent level expression and note level expression can
provide a solution to this problem. We can define expressive tempo relative
and dynamics relative to the expression parameters of the constituent. A pos-
sible approach is to first define constituent level expression and use a note level
expression system on each constituent separately.

As we mentioned in section 3 the ability of the system to characterize con-
stituents and their relations to other constituents in a musically relevant way is
an important factor influencing the results. We do not have the illusion that a
set of four score features and bigram transition probabilities are a valid model
of human musical intuition, let alone producing highly expressive performances.
A better notion of repetition, a notion of key, harmony and general musical
knowledge are the least that seems to be required for that purpose.

20

Finally we would like to make a small comment about the possible value of
performance rendering in an artistic sense. Computer generated performance,
and in a broader view, computer generated art, is often criticized for merely
copying a very specific human behavior and not really contributing something
new. We think a very small hint at the way computer generated performances
may one day be able to provide a really new perspective on music performance,
is given by our system: when listening to the performances of the systems we
noticed sometimes the system made surprising phrase transitions or suggested
a phrase transition at a surprising point in the music. Surprising, because no
pianist would probably think about making these expressive decisions, yet they
did not sound bad, making the performance truly unique. This closing note
gives us hope that the field of computer generated performances not only copies
human performances but humans may one day learn from computer generated
performances.

21

References

[1] S. Flossmann, M. Grachten, and G. Widmer. Expressive performance
rendering: Introducing performance context. In Proceedings of the SMC
20096th Sound and Music Computing Conference, pages 155–160, 2009.

[2] G.D. Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–
278, 1973.

[3] A. Friberg, V. Colombo, L. Frydén, and J. Sundberg. Generating musical
performances with director musices. Computer Music Journal, 24(3):23–29,
2000.

[4] W.A. Gale and G. Sampson. Good-turing frequency estimation without
tears. Journal of Quantitative Linguistics, 2(3):217–237, 1995.

[5] M. Hashida, T. Matsui, and H. Katayose. A new music database describing
deviation information of performance expressions. In Proc. of the 9th In-
ternational Conference on Music Information Retrieval (ISMIR). Philadel-
phia, 2008.

[6] M. Hashida, N. Nagata, and H. Katayose. Pop-e: A performance ren-
dering system for the ensemble music that considered group expression.
In Proceedings of 9th International Conference on Music Perception and
Cognition, pages 526–534, 2006.

[7] R. Hiraga, M. Hashida, K. Hirata, and H. Katayose. Rencon: toward a
new evaluation method for performance rendering systems. 2002.

[8] S. Katz. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. Acoustics, Speech and Signal
Processing, IEEE Transactions on, 35(3):400–401, 1987.

[9] T.H. Kim, S. Fukayama, T. Nishimoto, and S. Sagayama. Performance
rendering for polyphonic piano music with a combination of probabilistic
models for melody and harmony. In Proceedings of the 7th International
Conference of Sound and Music Computing (SMC2010), pages 23–30, 2010.

[10] F. Lerdahl, R. Jackendoff, and R.S. Jackendoff. A generative theory of tonal
music. The MIT Press, 1996.

[11] E. Narmour. The analysis and cognition of basic melodic structures: The
implication-realization model. University of Chicago Press, 1990.

[12] M.J. van den Berg. Aspects of a Formal Theory of Music Cognition. Dis-
sertation, University of Amsterdam, 1996.

22

