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Abstract

Locating (efficiently) a robot in an environment based on its observa-
tions is a hot topic in Robotics. There are several issues which have to be
kept in mind like noise, computational power, ambiguity of observations
et cetera. Based on an overview of current used localization methods in
the RoboCup Soccer Standard Platform League, this thesis proposes a
method which performs localization using a tree-like structure. The first
part of the paper will show and compare in a short overview the current
used methods and their issues and limitations. In the second part the
proposed method is explained and justified. This is followed by test in
re-allocation speed (when kidnapped) and accuracy, using the Gutmann
data-set [7]. The results are compared with previous results of other meth-
ods tested with the used data-set, resulting in a short conclusion about
the performance of the proposed method. Finally a discussion is presented
which enumerates open issues and limitations which need further research.
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1 Introduction

The year 2050,
Human vs. Humanoids,
The top of both worlds.

That’s the ultimate goal of the RoboCup. In their way towards it, the
RoboCup slowly grows and introduces different ‘side’ games like Robo Rescue
and Dance. The Soccer League in its turn also got divided into several different
leagues, each with its own set of rules. One of those league is the Standard
Platform League (SPL) where each competing team competes with exact the
same robots. Currently the Nao of Aldebaran is used1.

In Robocup Soccer, things like soccer-field size and the color of the goals
and lines are pre-determined. This makes it possible to do localization with an
a priori known map. Moving at a field, a robot observes features. Features are
specific points which identify a specific location. For example: a yellow pole
can only be seen at the location of the yellow goal. In almost all localization
algorithms such feature observations are described by the distance and angle
to the feature seen from the robot-heading. Since such measurements are noisy
(due to incorrect feature classification or incorrect distance or angle estimation)
localization can become a difficult task.

As a thesis subject for the bachelor Artificial Intelligence of the University
of Amsterdam, research towards localization in the SPL is done. Localization
in this league is more interesting than other leagues because all teams have the
exact same hardware configuration. Including the limited resources (memory
and computational power), building or designing a localization-method which
out-performs other methods and teams makes the challenge even more challeng-
ing.

The next sections will explain issues and limitations of current used systems,
a description of the proposed method, test results and a conclusion with ideas
for future research which can be done. A glossary of the used abbreviations is
added after the “future research” section.

2 Related Work

In the RoboCup Soccer SPL 2011 are 28 teams competing. Most of the teams
use different algorithms with different extensions with different limitations. In
Table 1 a short overview is presented of the used methods together with the
main pro’s and con’s2. A more detailed version can be found in Appendix A.

1http://www.aldebaran-robotics.com/
2As can be noted: the table does not contain all team-methods because some teams do not

have a localization method while others do not describe it.
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Used Method Pro’s Con’s Teams using
(augmented) Proven to be accurate, Comp. expensive! Austrian-Kangaroos,

MCL Can handle kidnap problem, B-Human,
Can handle complex belief. Cerberus,

Edinferno,
Noxious-Kouretes,
TJArk

MCL & MOsr Better results than MCL/sr CMurfs
MCL & neg. Inf. Faster elimination of TT-UT Austin Villa

particles than MCL
MCL & KF Less comp. exp. than MCL rUNSWift

AUX PF & SIR SPQR+UChile
distance to Simple Not accurate L3M,
goal poles NTU RobotPal

UKF & MH Smooth and performs well Nao Devils Dortmund
muliple EKFs Low computation cost SPIteam

Constraint Low computational cost, Nao Team Humboldt
localization More adequate than PF

Rao-Black & KF Low computational cost UPennalizers
Fast (re)localization

Location Simple Reliability issues Wrighteagle Unleashed!
Sensitive
Behavior

Local Model Simple No communication WPI Warriors
between the robots

Cox &CI & UKF High potential Not yet stable RoboEireann

Table 1: Short overview of used methods in SPL 2011

As can be seen from Table 1, most teams are using a Particle Filter approach
(Austrian-Kangaroos, B-Human, Cerberus, Edinferno, Noxious-Kouretes, TJArk,
CMurfs, TT-UT Austin Villa, rUNSWift and SPQR+UChile). Based on these
findings it could be concluded that a Particle Filter would be the best option
for localization. It is also proven that such a method can result in accurate
localization. This however comes at a cost: it is more computational expensive,
compared to other methods. There are some extensions developed to decrease
the complexity, but still, there is the question if a less computational method
could result in similar performance.

Another thing which is not well handled in a basic PF is kidnapping (putting
a robot at a different location when is tries to estimated its current position).
This problem is removed with the use of, for example, random re-sampling of the
state space [13]. The same problem does occur in methods based on a (dynamic)
set of Kalman Filters (Nao Devils Dortmund, SPIteam and UPennalizers). The
source of poor response towards kidnapping is because these methods sample
the state space. Placing the robot at a location were no samples describe the
state space results in poor (or incorrect) pose-estimation. Random re-sampling
makes sure that even when the system has converged to a specific location,
the rest of the state space is described, and thus, theoretical, can re-locate the
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robot at a new position. A better solution would be to incorporate all possible
states. Such an solution requires however a fundamental different approach.
A method which has such a fundamental different approach is Constraint Lo-
calization (used by Team Humboldt), which estimate a position based on the
overlapping space of regions in which certain features at certain distances can
be found.

Besides kidnapping and sampling of the data, feature ambiguity can also be
a problem: how is it possible to determine at which feature the robot is look-
ing when there are more of such features in the environment? One solution is
to only incorporate unambiguous data, like detecting only a yellow or blue goal
(done by L3M and NTU RobotPal). The problem with such an approach is that
much (potential valuable) data is ignored, resulting in a pose estimation which is
likely to contain larger errors compared to methods including all data. Solving
such an problem can be done by calculating the relative distance between two
features and the distance towards the robot, or by estimating the distance to
all individual features, and calculating the intersection between these distances.
The first system requires that two features are seen in the same observation,
while the latter ignores this information. The best solution for this would be to
combine both systems.

3 Proposed Method

To drop the need of state re-sampling, a different way the represent a belief
needs to be created. The proposed method does not model the belief as an
exact position of the robot, but it creates a region with a probability that the
robot is in that region. When an environment is divided into small regions, each
having the same size, Grid-Localization [20] would be the method to use. This
method however has a large drawback: to estimate the position of a robot in
an accurate way, the map needs to be divided into small regions, resulting in
the need of much memory. An unwanted effect of such a representation is, is
that regions having a low probability are maintained with the same accuracy as
regions with a high probability.

A solution for this problem would be to recursively divide the map into
smaller regions (in essence, creating a kd-tree). If the probability of a certain
region (a parent) is above a threshold (or if the region meets a set of rules),
the region is expanded (creating children). When the probability gets below an
another threshold (or if the region meets a different set of rules), the children
of that region are removed. In this way a position of a robot can be estimated
with high accuracy, while at the same time memory costs stay low. The rules to
expand or collapse can be adjusted easily to incorporate values of neighbors, par-
ents, grandparents et cetera. In theory, this method should be easily extendable.

Other (assumed) advantages of such a Dynamic Tree Localization (DTL)
method, are:

• A complex belief can be easily represented: two children of the same parent
can be expanded at the same time.
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• The online computation cost can be reduced by building the tree-structure
in advance: nodes can be set on/off to determine if it is used or not3.

• Convergence to the correct location can go quick: when using a k-nary
Dynamic Tree of depth d, the node at depth d is 1

kd of the size of the
root-node.

• Large lists of past observations are not needed: all information is processed
in the probability of a node in the tree.

• Representing the complete state-space with probabilities makes the system
able to handle noisy data and kidnapping.

The next sub-sections will describe the method in a more detailed way.

3.1 Description of the Method

The method is build around a tree-like structure. Each node in this tree repre-
sents a specific area or region of the field. Throughout this thesis such a node
will be called a ‘block’ or ‘node’. In Algorithm 1 to 4 the pseudo-code of the
DTL method is shown.

Algorithm 1 Main structure of the Dynamic Tree Algorithm

tree = CreateRootAndRootChildren()
loop

observation = GetObservation()
tree = UpdateTree(tree, observation)
tree = CheckCollapse(tree)
tree = CheckExpand(tree, maxTreeDepth)

end loop

Algorithm 2 UpdateTree(tree, observation)

for all obs ∈ observation do
for all node ∈ tree do

if IsIn(obs, node.range) then
p = ProbObsInNode(obs, node)
node += p
sibling(node).prob -= (p / number of siblings)
node.heading = UpdateHeading(obs, node)

end if
end for

end for
return tree

The main program only consists of four basic functions: retrieving a list of
observed features, updating the probabilities of the tree with these observations

3This will however consume more memory than a grid-localization approach
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Algorithm 3 CheckCollapse(tree)

for all node ∈ tree do
if node.prob ∪ COLLAPSE RULES then

node.RemoveChildrenTree()
end if

end for
return tree

Algorithm 4 CheckExpand(tree)

for all node ∈ tree do
if node.prob ∪ EXPAND RULES then

children(node) = MakeChildren(node, NUM OF CHILDREN)
for all child ∈ children(node) do

child.range = CalcDistAngleRange(field, child)
child.prob = CalcChildProb(node)

end for
end if

end for
return tree

and collapsing or expanding the tree.

Like almost all localization methods, the list of observed features contains
the signature of the feature, the estimated distance towards it and the angle seen
from the heading of the robot. All observed features are propagated through
all nodes in the current belief (the tree). Using the distance and heading of
each feature the probability of a block is updated (Algorithm 2). An update
consists of calculating the probability that a feature can be seen at the given
distance from a block, scaling and adding this to the probability of that block
and decreasing the probability of the block-siblings. Adding and subtracting
the probability makes it possible to update the blocks a-synchronous: it does
not matter which block is updated first. Updating in such a way also requires
that the calculation of ProbObsInNode(obs, node) does not include the current
probability. After updating (increasing) the probability of a node, the proba-
bility of the siblings of the node is decreased to keep the total probability of all
siblings to 1:

1 = P (node1|parent(node1), parent(parent(node1))...root)+

P (node2|parent(node2), parent(parent(node2))...root)+

...+ P (noden|parent(noden), parent(parent(noden))...root)

With the use of such a structure, universal collapse- and expand- rules can be
made (they do not have to adjust for example thresholds to compensate the
depth of a node).

To estimate the complete pose of a robot, each block contains an estimate
of the current heading of the robot.
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Once all observations are propagated through the tree, sets of rules determine
if a block needs to be expanded or collapsed. Collapsing a block results in the
removal of all the (grand)children which entails that the accuracy of the area
described by the block (and its children) decreases. Expanding works the other
way around. When a block is expanded it has to be ensured that the total of
the surface described by the children equals the surface described by the block
itself (otherwise the belief is corrupt: parts of potential states are missing):

surface(child1)⊕ surface(child2)⊕ ...⊕ surface(childn) = surface(parent)

If the children are created, a list with all minimum and maximum distances
towards all features in the environment is created. Having such a list makes it
easy to check if a feature is observable from a certain block, which increases the
(online) speed of the method. Besides a distance range, also the angle range is
calculated, seen from a so-called 0-heading (the angle towards the point where
the heading of the robot is set to be 0) . This range can be used to estimate
the complete pose of the robot.

4 Implementation

The complete system is programmed with Python 2.6.14. For pose-estimation
OpenCv 2.1 was used and the GUI is build using Pygame 1.9.1. The next couple
of sections will describe the implementations of the routines used for DTL.

4.1 Field, Observation and Orientation representation

The field is represented as a list with signatures of features. Features which
looks the same, but are placed at different locations have the same signature.
This makes it possible to create only a few “chunks” which contain all detectable
features in a field. Per signature a list is made which contains the coordinates
of all features with that signature:

Sig1 = [[x1, y1], [x2, y2], [x3, y3], ..., [xn, yn]]

Sig2 = [[x1, y1], [x2, y2], [x3, y3], ..., [xm, ym]]

...

Sigk = [[x1, y1], [x2, y2], [x3, y3], ..., [xl, yl]]

These lists are then combine into one list, called “Field”, where each index of
“Field” represents the signature of a feature:

Field = [Sig1, Sig2, ..., Sigk]

The x and y positions of a feature are calculated with the origin at the bottom-
left corner. The position along the horizontal axis (width of the field) is de-
scribed by x, while the position along the vertical axis (height) is described
by y. The heading of a robot is 0 when it looks in the vertical direction (the

4Python 2.6.1 is used because the current installed naoqi (1.10.44) is using this. Using a
newer Python version would result in the risk of creating programs which can not be run on
the Nao
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0-heading). An angle left of this direction is represented with a value between
−π and 0. An angle right of this direction is described with a value between 0
and π.

The representation of an observation (e.g. a snapshot with a camera) is also
an list, which has the following format:

Observation = [Sig1, R1, θ1, Sig2, R2, θ2, ..., Sign, Rn, θn]

Were n is the number of features found in a observation, R is the distance be-
tween the robot and the observed feature, θ the angle between the feature and
the current heading of the robot and Sig is the signature of the feature. The
used dataset is first transformed into such a structure, before it is fed to the
algorithm.

4.2 Tree Representation and Creation

With no clue of how fast node-expanding online would be, the complete tree is
made in advance. Therefore each node-structure contains more (and different)
information than a node-structure for online computation would have. The used
structure looks like:

Structure: Block

parent: <Block-Object>

child: [<Block-Object>, <Block-Object>, ...]

probability: <0-1>

childActive: <0 (nonactive) or 1 (active) >

centerlocation: [x,y]

heading: [\theta, [obs1, obs2, ... , obsN]]

depth: <0-MaxDepth>

ID: <To discrinate between nodes>

featurelist: <same as Field-Representation, but now [x,y]

of each feauture is changed in

[R_{low}, R_{up}, \theta_{low}, \theta_{up}] >

The parent and child variables points to respectively the parent of the node
and all the children (the latter is a list of pointers). The childActive variable
holds the information if the children of the node are currently incorporated in
the belief of the robot. By default all blocks are set non-active (beside the root-
block and its children) with an even distributed probability. Estimation of the
heading is done by keeping track of the last n observations which are assumed
to be seen from this block. The first value in this list is the estimation, the other
values are the last n observations (in the programmed system, this value is set
to 5)5. The estimate is calculated by weight-averaging the observations: the
last observation gets the highest weight, the first observation the lowest (from
1/3 to 0)6. Determining if a node is at the maximum depth is done using the
depth variable. Calculation the ranges of all features in featurelist is done using
Figure 1 and Table 2. A derivation and a more detailed description of the rules
can be found in Appendix B.

5Seemed to be a nice number: other values could also be used
6This is also a ‘feel-good’ - value: no tests are done to adjust (improve) it
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Figure 1: Regions around a Block in which a feature can be

Table 2: Rules for determining the correct ranges

Region Distance Range note: Angle Range max. range (degrees)
1 |c1→ F | < distance < |c3→ F | - c2 < angle < c4 −90 < angle < 0
2 |top→ F | < distance < |c3→ F | F < middle c2 < angle < c1 −90 < angle < +90
2 |top→ F | < distance < |c4→ F | F > middle c2 < angle < c1 −90 < angle < +90
3 |c2→ F | < distance < |c4→ F | - c3 < angle < c1 0 < angle < +90
4 |left→ F | < distance < |c1→ F | F < middle c3 < angle < c2 0 < angle < +180
4 |left→ F | < distance < |c4→ F | F > middle c3 < angle < c2 0 < angle < +180
5 |c3→ F | < distance < |c1→ F | - c4 < angle < c2 +90 < angle < +180
6 |bottom→ F | < distance < |c2→ F | F < middle c4 < angle < c3 +90 < angle < −90
6 |bottom→ F | < distance < |c1→ F | F > middle c4 < angle < c3 +90 < angle < −90
7 |c4→ F | < distance < |c2→ F | - c1 < angle < c3 −180 < angle < −90
8 |right→ F | < distance < |c2→ F | F < middle c1 < angle < c4 −180 < angle < 0
8 |right→ F | < distance < |c3→ F | F > middle c1 < angle < c4 −180 < angle < 0

4.3 Probability Estimation

Besides the tree-structure, the probability estimation for a block plays a major
role in the whole system. The used calculation is not mathematical justified, it
is only a pure intuitive implementation which, with experimenting and adjust-
ing some values, seemed to work.

The basic idea to calculate the probability is to include several things:
(o = feature observation, b = block, p = all parents&grandparents)

• p(o|b)

• p(o|p)

• p(o)

With Bayes rule, p(b|o) can be calculated, which after scaling could be added
to the current p(b|∀o).
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p(o|b)
This probability is calculated by creating a Gaussian:

p(o|b) = minp + (maxp −minp) ∗ e
(d−c)2

2∗(1/4∗w)2

In this formula, c is center of the distance-range of a block to a observed feature,
w is the total width of the range and d is the observed distance towards the
feature. The idea behind this setup is that if the measured distance is close to
the the edge of the block, it is more probable that the measurement does not
belong to the assumed block, but to its neighbor. The resulting Gaussian is
scaled to a probability of 1 (maxp), if the distance is the distance to the center
of the block and roughly 0.1 (minp) if it is at the end of the range.

p(b|p)
Since all probabilities of the children sums up to 1, the probability p(b|p) can
be transformed to 1/NumberOf(parent(node).children)).

p(o)
It can be reasoned that the accuracy of a distance-estimation at a long distance
is more inaccurate than the measurement of a distance close-by. To model this,
the relation between the inaccuracy of the measured distance is assumed to be
linear: if the distance is twice as far, the inaccuracy is twice as big. To define
the boundaries of the output, the maximum measurable distance (from corner
to corner of the soccer-field) is first calculated. This distance is assumed to have
a probability of 0.1. Distances between 0.0 and 1.0 meter are assumed to have
a probability of 0.9 (no distance-calculation is perfect). All values in-between
are linear scaled.

Putting the above described calculations together with Bayes rule, p(b|o)
can be calculated:

p(b|o) =
p(o|b)(p(b|p)

p(o)

Since this output is to big to add to the current probability of a the block, it
is divided by 15. This value is experimentally determined (just like all above
described values).

4.4 Expanding and Collapsing

The rules for expanding and collapsing the tree are set to the bare minimum. A
block is collapsed if the probability is below a threshold, independent of values
of other blocks. Expanding is done when the probability is above a different
threshold, also independent of other blocks. This set-up is chosen to be able
to make a stronger claim about the potential of the method: the more naive
and basic the method is implemented, the more potential a method has if it
performs accurate or acceptable.

After expanding a block, the calculation of the probability of the new (child)
blocks are done by first setting all probabilities equal, and then propagating the
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last 5 overall observations7 (not the last observations used for heading estima-
tion). This is done to get a faster convergence and a lower massive-expanding
rate if the expand threshold is below 1/num of childs. The heading estima-
tion of the children-block is set equal to the heading estimation of the parent.
The heading-observations are not included. Setting this estimate overcomes the
problem of a temporally estimation of an initial value (since the heading needs
a value).

5 Testing

The next couple of sections describe the way of testing the proposed method
and what data-set is used.

5.1 The used dataset

For a dataset the Gutmann-dataset is used [7]. The data-set is a 58 minute
recording of a walking AIBO ERS 2100 (equipped with a CMOS camera). The
robot walked multiple times an 8-figure in a 3x2m environment. In this envi-
ronment 6 different color beacons were placed for recognition. The robot was
joy-sticked around 5 different mark points. Each time the robot passed a mark-
point, a tag was added to the dataset. Besides the distance and angle towards
the color-beacons, the odometry estimation of the robot got also recorded. Gut-
mann et. al. also made modified versions of this dataset to test on accuracy,
re-location (kidnapping), noise handling and data sparseness.

Besides all datasets, Gutmann et. al. also included their best path-estimation.
This estimation is used to test kidnap-performance. There is however a small in-
consistence between several time-steps in the reference-log and the observation-
logs. To be able to use the datasets to test the DTL method, all inconsistent
data is removed (from all files). Besides removing the inconsistent data, also
all measurements which do not include a feature observation are removed. This
is done because the implemented system does not incorporate such data in any
way. In total 8197 (from 51667 lines to 43470) records of the used observation-
log are deleted and 4110 records (from 25948 to 21838) from the kidnap-log.

5.2 Comparing estimates

Because DTL does not return a pose-estimation, and the reference log does, a
filter is build which takes in the tree and returns the most likely pose. For this
calculation the field is represented as an image, in which the centers of all final
nodes are printed. The value of a center is calculated with the block probability
(p(b|field) and not p(b|p)) multiplied by the inversed block size with respect to
the field size:
(k = number of children per block, d = depth of block)

center = p(b|field) ∗ kd

After printing all final-node centers, the image is smoothed, followed by a search
to the pixel with the highest value. It is assumed that this pixel represents the

7Just like many other values: determined by doing a few simple tests

13



current location of the robot.

To compute the heading direction, the heading-estimates of all blocks of
which the center lies within a certain distance from the estimated robot position
are averaged. Each heading is averaged with the same weight.

5.3 Used parameters and tests

The method is tested on its accuracy and re-location time, using the script and
utilities provided by Gutmann et. al. Since the dataset does not contain a
ground truth, the accuracy of the method is tested based on its distance error
towards each mark. This error is not the ‘true’ error of the method: walking
the robot at the mark position in not 100 percent accurate. It is also possible
that there are small time-delays in writing the marks to the log-file. These er-
rors are not an issue, since the tests Gutmann et. al. performed also included
these errors. Testing the re-location time is done by comparing the markers,
the reference log, and the resulting log of DTL.

All tests are done using a binary tree of different depths. The accuracy of
the pose-estimation image is set to 1 pixel per cm. Smoothing is done with a
25 pixel (cm) wide 2D Gaussian with a standard deviation of 10. The distance
between the positions estimate and a block center for calculating the heading
of the pose is set to 10cm.

Determining the best values for the tree depth (4, 6, 8, 10 or12) and the
expand (0.4 to 0.85 in steps of 0.05) and collapse threshold (0.1 to 0.6 in steps
of 0.1) is done by brute force. The best parameters are then used to test the
re-location time needed when the robot is kidnapped.

6 Results

In Figure 2 the results are printed (with a 95% confidence) of the accuracy tests
(in Appendix C the tables of these results can be found).

As expected, the accuracy of all tree increases when the collapse and ex-
pand thresholds are increased. Increasing the expand threshold makes it harder
to split block: the robot has to be more certain it is in that block before the
accuracy is increased. If the collapse-threshold is set too high, the system re-
moves too quick too much data, therefore the system cannot converge towards
an accurate position. Remarkable is that the best accuracy distances of all trees
are close to each other, while the block-size is quite different (as can be seen in
Table 3).

The distance error of the DTL implementation is roughly twice as big as
the best implementation of Gutmann et. al. Their absolute distance errors lay
between 87 and 122 mm.
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Figure 2: Accuracy-test results with different tree-depths and expand/collapse conditions.

tree depth block size best absolute error
6 187 x 250 mm 220 mm
8 94 x 125 mm 194 mm
10 47 x 63 mm 193 mm
12 23 x 31 mm 193 mm

Table 3: Smallest block sizes at different tree depths

From the graphs, it is also possible to read that there are no ‘best’-parameters:
the smallest absolute errors lay all between each other confidence bounds. Nonethe-
less, for kidnapping the parameters with the smallest absolute errors are chosen:
expanding > 0.45 and collapsing < 0.2.

The results for re-location after kidnapping can be found in Table 4.
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tree depth time taken 95% confidence
6 4.0 sec 0.9 sec
8 4.1 sec 0.8 sec
10 4.8 sec 1.2 sec

Table 4: Time needed for relocation Re-location using: exp > 0.45, col < 0.2

The decrease of the needed time to re-locate when using a smaller tree can be
assigned to the idea that a smaller tree needs less observations to expand fully
and a new location. The implemented system only expand or collapse nodes
after an observation update. So the minimum observations needed to re-locate
at maximum accuracy, is for a tree with depth 6, 6 observations, while it is for
a tree of depth 8, 8 observations. This, because in used rules a root-node may
collapse while its children are expanded.

Comparing the results of kidnapping in DTL with the results of the tests
performed with Gutmann et. al., DTL can be placed in the middle range of the
tested methods. (see Figure 3)

Figure 3: Results of tests performed by Gutmann et. al. (Reprint of Fig. 7
from [7]).

7 Discussion and Conclusion

Based on the current used methods in the Robocup Soccer Standard Platform
League and their issues and limitations a different localization approach is pre-
sented. For this approach a kd-tree is adapted resulting in: Dynamic Tree
Localization. DTL has the advantages that it incorporates all possible states in
the state space (no ‘fix’ for kidnapping needed). It can also represent a complex
belief, is robust against noise and has a fast convergence towards small regions.
Tests on accuracy and kidnap-recovery show that DTL can be placed between
current state of the art techniques: localization is done with an accuracy of 20
cm and re-location after kidnapping is done in 4 seconds. The results are brute-
force created by testing several parameters: de maximum dept of the tree, the
expansion threshold and the collapse threshold. The smallest absolute error is
returned with a tree of a maximum depth of 10 (representing block with a size
of 47 x 63 mm) and an expansion threshold of p > 0.45 and a collapse thresh-
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old of p < 0.2. Since these tests are done with a basic ad-hoc implementation,
extensions can be easily made to further increase the accuracy and performance.

The used data-set does not include solid information about the heading a
the robot. Therefore it is hard to validate the implemented method for heading-
estimation. Watching the GUI, it looks like the estimation algorithm estimates
the heading quite well.

8 Future Research

As mentioned above, some extensions can be made to further increase the ac-
curacy of DTL.

The implemented probability calculation is quite ad hoc. A look at this
calculation could have a positive effect on the current performance. The imple-
mented system does also not incorporate a smoothness function at the edge of
block. If a feature is observed at the edge of one block, just out of the range of
a neighbors block, the neighbors probability should also be updated since the
measurement is noisy and the feature could belong to this neighbors block.

The sets of rules to expand and collapse can also be improved by adding
more rules. It is likely to occur that a parent (representing a large region) has
a low probability, while one of its grand children (representing a small region
at the edge of a parent) has high probability, which is correct. Including infor-
mation about parents or siblings to determine if a node needs to expand can
also result in faster expanding (lower threshold) when needed, while blocks with
exact the same probability are not expanded.

In this thesis, tests are only done with a binary tree. When more children
are used, the size of a block at a certain depth does decrease much faster. If
this decreasing results in better (faster) localization and re-localization should
be tested.

An another extensions would be to incorporate in the range-calculations of
a block, a special feature: the no-observation feature. Seeing no feature also
tells the robot something about its heading and position.

Above all, the most valuable test would probably be to test the method on
a robot. Current tests are only done off-line with a data-set.
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10 Glossary

DTL Dynamic Tree Localization
SPL Standard Platform League
KF Kalman Filter
UKF Unscented Kalman Filter
EKF Extended Kalman Filter
MCL Monte Carlo Localization
PF Particle Filter
AUX PF Auxiliary Particle Filter
SIR Sample Importance Re-sampling
MH Multi Hypothesis
Rao-Black Rao-Blackwellized
Cox Cox algorithm
CI Coveriance Intersection
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[15] N. Özkucur and H. Akın. Localization with non-unique landmark observa-
tions. RoboCup 2010: Robot Soccer World Cup XIV, pages 72–81, 2011.

[16] M. Quinlan and R. Middleton. Multiple model kalman filters: A localization
technique for robocup soccer. RoboCup 2009: Robot Soccer World Cup
XIII, pages 276–287, 2010.

[17] M.J. Quinlan, SP Nicklin, N. Henderson, R. Fisher, F. Knorn, SK Chalup,
RH Middleton, and R. King. The 2006 nubots team report. School of Elec-
trical Engineering & Computer Science Technical Report, The University
of Newcastle, Australia, 2007.
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A An Overview of used Localization Methods
in the RoboCup Soccer Standard Platform
League 2011

A.1 Teams and their localization

A.1.1 Austrian-Kangaroos

URL: http://www.austrian-kangaroos.com/
TQP 2011: http://www.austrian-kangaroos.com/downloads/tqp2011 austrian-
kangaroos.pdf
TDP 2010: https://sites.google.com/a/austrian-kangaroos.com/public en
/download/tdp2010 austrian-kangaroos.pdf?attredirects=0&d=1

In their 2011 Team Qualification Documen, the Austrian Kangaroos state
that they will improve their current used localization method, which (as de-
scribed in the Team Description Paper of 2010) is an implementation of Monte-
Carlo Localization as described in [20]. Further they state that they will use a
line detection method as described in [19].

A.1.2 B-Human

URL: http://www.b-human.de/
Code Release 2010: http://www.b-human.de/file download/33
/bhuman10 coderelease.pdf

As described in their 2010 Code-Release, B-Human uses a Monte Carlo Lo-
calization method as described in [4]. This, as described in [18] is proven to
provide accurate results in the RoboCup Soccer Standard Platform League and
can deal with the kidnapped robot problem. The exact implementation is the
augmented MCL version [7].

The used filter, uses (during an update) only 6 randomly chosen perceptions
received from its sensors. These perceptions include: goal posts (ambiguous
as well as unambiguous ones), line segments (of which only the endpoints are
matched to the Field model), line crossings (of three different types: L, T,
and X), and the center circle. To increase reliability, B-human also introduces
a Pose-Validation method. This method computes a translation and rotation
based on the current sensor input (goals, center circle and seen lines). With the
use of a two-dimensional Kalman Filter the translation is filtered (using current
sensor input and MCL output) and with the use of one-dimensional Kalman
filter the rotation is filtered (also using current sensor input and MCL output).

For ball tracking (velocity and position) a particle filter is used [12]. The
particle filter first estimates both values. Then, twelve different Kalman filters
determine the exact values. From these twelve filters, only one is chosen to be the
”most true” (based on the covariance -smaller is better- and how well the‘seen’
position matches the estimated position). The Kalman filters are further divided
into two sets: one for rolling balls and one for stationary balls. After each frame-
update the worst distribution of a set is replaced by a new initialization.

When a ball is stopped by a robot, the Kalman Filter with the best probabil-
ity (most-true) distribution is ‘clipped’ onto the robot’s feet. The new calculated
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values for velocity and position are calculated (and depending) from the motion
of the feet.

In [1], B-Human shows some calculated Parameters for Self-Localization for
a Particle Filter.

A.1.3 Burst

URL: http://shwarma.cs.biu.ac.il/robocup
-

A.1.4 Cerberus

URL: http://robot.cmpe.boun.edu.tr/∼cerberus/wiki/
TDP 2011: http://robot.cmpe.boun.edu.tr/∼cerberus/wiki/uploads/
Downloads/Cerberus2011-TDP.pdf

Cerberus uses also MCL. The have extended their MCL method with ‘prac-
tical extensions’ described in [11]. Their implementation uses unidentified ob-
servations (inspired by FastSLAM [14] and Multi-Hypothesis tracking [20]) re-
sulting in a: Switching Observation Model [2]. Observed objects which look
the same (but could be different objects) are places in similar groups (identified
with the same identifier). For example: a T-type of field line intersection can be
found at 6 different locations in a field. All these locations are labeled with the
same identifier. At a location multiple identifiers from different groups can be
seen, which makes a certain location more probable than other locations. More
about this method can be found in [15].

A.1.5 CMurfs

URL: -
TDP 2011: recieved from email

In combination with Multi-Observation sensor resetting [3], CMurfs is using
a MCL implentation. Besides updates by odometry and observations (lines and
goals), MCL is also updated when the state of the game change (penalty, start)
or when the state of the robot does change (falling over). The Multi-Observation
sensor resetting extention is added because converges more efficiently to the true
robot position and it is less sensitive to noise than standard sensor restting.

For ball localization multiple hypothesis from all robots are combined and
maintained. The hypothesis with the highest probability is chosen to be true.

A.1.6 Dutch Nao Team

URL: http://www.dutchnaoteam.nl/

Localization method is described in this thesis.

A.1.7 Edinferno

URL: http://www.ipab.inf.ed.ac.uk/robocup/
TDP 2010: http://www.ipab.inf.ed.ac.uk/robocup/pubs/EdinfernoTDDoc.pdf
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MCL is also used by Edinferno. The system detects in real time goal lo-
cations, line intersections and the inner circle. The filter implemented is the
augmented version [20] to avoid problems such as kidnapping and false conver-
gence. For a motion model, odometry information is used.

A.1.8 L3M

URL: http://www.lisv.uvsq.fr/∼hugel/robocup/robocup.htm/
Team Report 2011: http://www.lisv.uvsq.fr/∼hugel/robocup/qualification/
2010/2010 SPL L3M Team Report.pdf
TQP 2011: http://www.lisv.uvsq.fr/∼hugel/robocup/qualification/2011/
research description.pdf

Currently, the localization system of L3M is only based on the goal-poles:
the lines on the field are not yet supported/recognized. The system simply
calculates the distance and angle between the two blue or yellow poles and
estimates the position of the robot on these values. This however results in
poor localization when the poles can not be seen or are obstructed by other
robots. For improvement the idea is to use the green borders or the green seen
polygon of the field and map this to a top view to use correlation techniques
for a rough estimate. The white lines are used for near localization such a for
positioning the goal keeper or a attacker in the middle of the field.

A.1.9 Mi-Pal

URL: http://www.mipal.net.au/
-

A.1.10 MRL-SPL

URL: ?
-

A.1.11 Nao Devils Dortmund

URL: http://www.nao-devils.de/
Team Report 2011: http://www.irf.tu-dortmund.de/nao-devils/download/
2010/TeamReport-2010-NaoDevilsDortmund.pdf

For localization, the Nao Devils Dortmund use line intersections (L, T and
X-type), the inner circle and both goals. The used method is a combination of a
Unscented Kalman Filter and a Multi-Hypothesis system [16]. This combination
is chosen because of it’s “smoothness and performance”. The Multi-Hypothesis
system is needed to recover from large localization errors due position changes
(kidnapping / bumping onto other robots / falling over) or errors in odometry
without correction provided by observation. The inaccuracy of the odometry
(when the robot does “fast biped walking”) amplifies the error-problems.

For filter updating they use the most likely data association: each observed
feature is combined with a probability (unique things - like, a goal - gets a higher
probability). Creating such a data association is in itself also a problem: how
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is determined which data is best? For this, a solution is described in [16]]: each
Gaussian is split en several new ones, each representing different association
choices, which are applied to all hypothesis. The Nao Devils came up with a
more efficient (in memory complexity) way:

They only generate a few new hypotheses at positions with a high probability,
based on recent sensor information. The new generated hypothesis are only
updated when the data lies inside a certain (expected) threshold. In combination
with some other approximations and simplification they are able to create a
method which is an order of magnitude faster than the -by them- previously
used particle filter, while providing superior localization quality and increased
robustness to false positive perceptions.

A.1.12 Nao-Team HTWK

URL: http://robocup.imn.htwk-leipzig.de/
-

A.1.13 Nao Team Humboldt/

URL: http://www.naoth.de
Team Report 2009: http://www.naoteamhumboldt.de/wp-content/uploads/
2010/02/NaoTH09Report final.pdf
TDP 2010: http://www.naoteamhumboldt.de/wp-content/uploads/2010/02/
NaoTH10Description.pdf

In the 2009th team report, team Humboldt state that they are using a
Kalman filter for local ball localization. Global locations of the ball are commu-
nicated between the Nao’s. Constraint localization is used for self-localization.

This team state that in earlier years a particle filter performed adequate
for self localization, however due to the increased complexity of the localization
(colored flag removal, increasing field size) the number of particles necessary gets
to a computational limit. Using to low particle numbers, complex belief can’t
be represented anymore. Therefore Team Humboldt started using localization
based on constraints [5] [6].

Perception is taken from flags, goals and lines. The shape of the constraint
depends on the kind of data (a line percept result in is rectangle shaped con-
straint, a flag or goal in a circle/ellipse) and noise (depending on percept dis-
tance). Handling all resulting constraints is done as follow (quote is from their
2010 TDP):

After having generated all constraints, we propagate the constraints
with each other as long as there are no more constraints or the
resulting solution space becomes empty. The position belief of the
robot is stored in form of constraints as well and propagated with
the sensory constraints as well. If, for some steps, the belief doesn’t
fit to the sensory constraints, or even if no new sensory data are
available, the belief constraint boarders are increased at first. If
sensory data remain inconsistent, we reset the belief to the sensor
data constraints.
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A.1.14 Northern Bites

URL: http://robocup.bowdoin.edu/blog/
-

A.1.15 Noxious-Kouretes

URL: http://www.kouretes.gr/
TQP 2011: http://www.intelligence.tuc.gr/kouretes/docs/2011-noxious-kouretes-
application.pdf

The Noxioud-Kouretes are using MCL. Their belief is represented by (x, y, θ)
and updating the belief is done by an auxiliary particle filter. For the motion
model, odometry of the robot is used (exhibiting all locomotion) and for a sensor
model a landmark model for both goals is used. Re-sampling of the particles
is done by a linear time re-sampler with including a selection with replacement
implementation. The robot’s pose is chosen to be the particle with the highest
weight.

A.1.16 NTU RobotPal

URL: http://www.csie.ntu.edu.tw/ bobwang/RoboCupSPL/index.html
TDP 2009: http://www.csie.ntu.edu.tw/ bobwang/RoboCupSPL/
NTU Robot PAL 09Report.pdf

In their 2009 team description paper , NTU RobotPal described that they
wanted to use a MCL implementation. Due to insufficient time, they, in 2009,
used a much simpler method: tracking the goal positions and calculating the
localization with respect to the goals.

A.1.17 NUbots

URL: http://robots.newcastle.edu.au/
-

A.1.18 Portuguese Team

URL: http://www.ieeta.pt/portugueseteam
-

A.1.19 RoboEireann

URL: http://www.eeng.nuim.ie/robocup/
RoboEireann works on a slightly new approch8: a variant of Cox’s algorithm

together with Covariance Intersection and an Uncented Kalman Filter [21]. The
performance of this method (as described in [21]) is so-far not optimal, but
performs equal or better then by-them tested localization methods.

8This information is gained from e-mail
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A.1.20 rUNSWift

URL: http://cgi.cse.unsw.edu.au/∼robocup/2010site/
Team Report 2010: http://www.cse.unsw.edu.au/∼robocup/2010site/
reports/report2010.pdf

The combination of a Monte Carlo Particle Filter and a Uni-Modal Kalman
Filter is used by rUNSWift. In the initial position of the robot the particle
filter is used to converge the belief to a single location. Once converged, this
location is the starting point of the Kalman filter. They maintain a so-called
kidnap factor which is the discrepancy between the observations and the Kalman
filter’s state. If this values exceeds a certain threshold, the more computational
expensive particle filter is used to converge again. In this way, they take the
best of both methods. In their team-report they explain more details about
their implementation.

A.1.21 SPIteam

URL: http://www.spiteam.org/
TQP 2011: http://www.teamchaos.es/documents/
SPIteam-qualification-2011.pdf

The SPIteam uses multiple EKFs for localization. They have chosen this
method over a particle filter due to computational costs. The idea to overcome
problems such as kidnapping is to use and maintain a dynamic population of
EKFs, each representing the belief about a particular position of the robot. This
population is maintained and varied in several ways:

• New EKFs are created to describe a position were the robot could be, but
which is not yet described by an EKF;

• EKFs which have proven to be credible are removed from the population;

• When different EKFs describe similar positions, they are combined.

SPIteam claims that this method is“extensively tested and the results show how
it is a reliable, robust and computationally inexpensive method to calculate the
robot position at the RoboCup Field.

A.1.22 SPQR+UChile

URL: ?
TDP 2011: https://www.tzi.de/spl/pub/Website/Teams2011/
spqruchile TDP.pdf

SPQR is using an Auxiliary Variable Particle Filter and Sample Importance
Re-sampling. They further have integrated information/hints when to use sen-
sor resetting and when to uses which method. This results in a system which
picks the most suitable strategy/parameters for a specific situation. UChile has
improved localization by estimating independently and in addition to the robots
pose, the pose of static and mobile objects. This makes it possible to use dy-
namic landmarks (temporally and spatially local objects). They state that this

26



is especially valuable when attention-demanding tasks (e.g. ball tracking) are
performed and that (using this feature) the robot is able to correct its odom-
etry even when it is lost (which goes into the direction of human-like ways of
localization).

note: some how there are no references in the TDP while they do refer to
articles.

A.1.23 TeamNanyang

URL: http://sites.google.com/site/teamnanyang
-

A.1.24 TJArk

URL: http://see.tongji.edu.cn/TJArk/English/contact.html
TQP 2011: http://see.tongji.edu.cn/TJArk/download/papers/
TJArkNaoApp2011.pdf

TJArk uses -just like many others- MCL for localization. The used motion
model uses the calculated odometry of the robot. For the observation model
all objects perceived (goals, center circle, lines and intersections) are used. Ball
tracking is also done with a MCL implementation. Tracking information is
shared with the team mates if a Nao knows quite certain where the ball is.

A.1.25 TT-UT Austin Villa

URL: http://www.cs.utexas.edu/∼AustinVilla/?p=naol
TDP 2010: http://www.cs.utexas.edu/∼stone/Papers/bib2html-links/
UTAITR1101-spl10.pdf

Again, MCL is used for localization. In their TDP they also show some
enhancements they introduced in MCL: incorporating negative information and
line information [8]. Negative information is for example the expectation to
have a certain observation, but not having that observation. If this happens,
it is likely to be the case that the robot is not in the position it thinks it is.
Using this information, particles can be eliminated even when no landmarks are
observed. More about this method can be found in [10] [9].

Ball tracking and localization is done using a 4-state Kalman filter and with
respect to the robot. This method is based on the 7-state Kalman filter pre-
sented in [17].

TT-UT Austin Villa further keeps track of 3 opponents. If an observed
opponent is within three meters of a previous detected opponent, the global
location of that robot is updated, otherwise it is replaced by the observed one.
The system also assumes that - when kicking a ball - all robots stay at their
current location for 6 seconds.

A.1.26 UPennalizers

URL: http://fling.seas.upenn.edu/∼robocup/wiki/
Team Report 2010: http://www.seas.upenn.edu/∼robocup/files/
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upennalizers team research report 2010.pdf

The UPennalizers state that “complex probabilistic models can be difficult
to implement in real-time due to lack of processing power on board of the
robots”. They address this problem with an algorithm that “incorporates a
hybrid Rao-Blackwellized representation that reduces computational time while
still providing high level of accuracy”. The algorithm models the uncertainty of
the pose as a distribution over a set of heading angles (discrete) and translational
coordinates (continuous). The heading angle is described/updated with discrete
Markov updates while the translation of the robot is updated with a Kalman
Filter. When implemented, the system results in quick localization, even after
a robot is kidnapped and replaced.

A.1.27 WPI Warriors

URL: http://users.wpi.edu/∼soniac/RoboCup/

The WPI Warriors don’t have a localization method yet9. Instead they
create a local world model based on their vision system, which worked quite
well: they were able to win two games at the US open 2011. However, they
hope to have a localization method at the World Cup, but which is yet to
determine.

A.1.28 Wrighteagle Unleashed!

URL: http://wrighteagleunleashed.org/l
Team Report: http://wrighteagleunleashed.org/

Wrighteagle Unleashed! have experimented with non traditional approaches,
resulting in a system of location-sensitive behaviors. This system works accord-
ing three principles:

• for each observed object the robot calculates the position of the object
relative the its torso (using the altitude of the object -ball is lies on the
ground-);

• By default, the robot walks in the direction of the ball;

• Simultaneously the robot tries to line up for a kick towards the goal.

Having designed “reliable and straight kicks” this system is quite effective. It
has however some weaknesses: e.g. if the robot is near/inside the goal area it
has some reliability issues.

9This information is gatherd via email
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A.2 Summary

Of all 28 teams, 19 descriptions for localization are found. These can be sum-
marized as follow:

Used Method Pro’s Con’s Teams using
(augmented) Proven to be accurate, Comp. expensive! Austrian-Kangaroos,

MCL Can handle kidnap problem, B-Human,
Can handle complex belief. Cerberus,

Edinferno,
Noxious-Kouretes,
TJArk

MCL & MOsr Better results than MCL/sr CMurfs
MCL & neg. Inf. Faster elimination of TT-UT Austin Villa

particles than MCL
MCL & KF Less comp. exp. than MCL rUNSWift

AUX PF & SIR SPQR+UChile
distance to Simple Not accurate L3M,
goal poles NTU RobotPal

UKF & MH Smooth and performs well Nao Devils Dortmund
muliple EKFs Low computation cost SPIteam

Constraint Low computational cost, Nao Team Humboldt
localization More adequate than PF

Rao-Black & KF Low computational cost UPennalizers
Fast (re)localization

Location Simple reliability issues Wrighteagle Unleashed!
Sensitive
Behavior

Local Model Simple No communication WPI Warriors
between the robots

Cox &CI & UKF high potential not yet stable RoboEireann

Table 5: Short overview of used methods in SPL 2011
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B Derivation: Determining Distance and Angel
range towards a feature, seen from a Block

All space around a block in a field is divided into 8 different regions, as can be
seen in Figure 4 (R1-R8). This is done to make it more easily to determine the
angle-range to see a feature, given the 0-heading.

Figure 4: Imaginary regions around a block

B.1 Distances

This sections uses Figure 5.

Figure 5: Distances from features to corners/sides of a block

B.1.1 The range of region 1, 3, 5 and 7

Assume that there is a feature F in Region 1. It is now possible to draw a
straight line between F and a point B and C. These drawn lines are perpen-
dicular to the 0-heading. From Pythagoras we know that in a triangle yields:
c2 = a2+b2, where a and b are perpendicular to each other. Using this, |C1→ F |
can be described as:

|C1→ F |2 = |B → C1|2 + |B → F |2
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From the figure, it is easy to see that |F → C| > |F → B| and |B → C4 >
|B → C1|, therefore the distance between F and C1 is the shortest from all
possible points int the block.

Determining the largest distance is done using the same comparison ( |F → C| >
|F → B| and |B → C4 > |B → C1|) and the equation: |B → C4| = |C → C3|
and |B → C| = |C4 → C3| it can be concluded that C3 is the furthest away
from the seen feature in Region 1.

Since all corner-regions are in some way a mirrored version of each other, this
proof can used do determine the other ranges. This results into:

Region Distance-range
1 |c1→ F | < distance < |c3→ F |
3 |c2→ F | < distance < |c4→ F |
5 |c3→ F | < distance < |c1→ F |
7 |c4→ F | < distance < |c2→ F |

B.1.2 The range of region 2, 4, 6 and 8

For this proof, a feature is assumed to be in Region 4.

Again, using Pythagoras, it can be seen that the distance |D → F | is the
shortest of all, independent where F is in R4. Computing the farest distance is
however depending on the location in R4.

If F is above the middle of R4 (|E → C1| < |E → C4|), the distance |C4→ F |
is the largest of all (Pythagoras..).If the feature is however below the middle of
R4, the largest distance is |C1 → F |. Again, this reasoning can be applied to
all non-corner regions, which results into:

Region Distance-range note
2 |top→ F | < distance < |c3→ F | F < middle
2 |top→ F | < distance < |c4→ F | F > middle
4 |left→ F | < distance < |c1→ F | F < middle
4 |left→ F | < distance < |c4→ F | F > middle
6 |bottom→ F | < distance < |c2→ F | F < middle
6 |bottom→ F | < distance < |c1→ F | F > middle
8 |right→ F | < distance < |c2→ F | F < middle
8 |right→ F | < distance < |c3→ F | F > middle

B.2 Angles

B.2.1 The range of region 1, 3, 5 and 7

Since all corners are in some way the mirrored version of each other, only a
proof is give for one region.

First a arbitrary feature in region 1 is assumed. Then, a triangle can be
drawn between C1, C2 and F (see Figure 6, left image). Because the two gray
lines pointing towards the 0-heading are parallel to each other, the angle c2 can
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be re-written at the gray line on the left. Now is can be easily determined that
c2 is always bigger than c1:

c1 + .+ ∗10 = 180 = c2 + .11 ⇒ c2 = c1 + ∗ ⇒ c2 > c1

Because the relation between C4 and C3 equals the relation between C1 and
C2, but only lowerd, it is justified to state that c3 > c4.

Determining if c1 is bigger than c4 (or c2 bigger than C3) is easily done, the
same method as above can be applied (see Figure 6, right image):

c4 + .+ ∗12 = 180 = c1 + .13 ⇒ c1 = c4 + ∗ ⇒ c1 > c4

Having proven that c2 > c1 > c4 and c3 > c2, it can now be stated
that the angle range to see F in region 1 is described by: [c4, c2], where
c4 < observation angle < c2.

Figure 6: Traingles desrcibed by the corners of a block and a feature

In the used application, all angles at left of the 0-heading are described as
being negative (from 0 to -180 degrees). Therefore the angle-range to see feature
F has to be rewritten as: [c2, c4], where c2 < observation angle < c4 (with a
maximum range of: −90 < observation angle < 0degrees).

A feature in region 3 inherits the same reasoning as a feature in region 1, only
the angles are now positive: ranging from 0 to +180 degrees. The angle-range
for region 3 is thus described with: [c3, c1], where c3 < observation angle < c1
(with a maximum range of: 0 < observation angle < +90degrees).

Reflecting the desribed ideas to region 7 creates an output which is described
by the range [c3, c1]. Just like a feature in region 1, the angles are negative,
changing the range into [c1, c3], where c1 < observation angle < c3 (with a
maximum range of: −180 < observation angle < −90degrees).

10sum of corners in a triangle
11corner of a straight line
12sum of corners in a triangle
13corner of a straight line
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Table 6: Rules for determining the correct ranges

Region Distance Range note: Angle Range max. range (degrees)
1 |c1→ F | < distance < |c3→ F | - c2 < angle < c4 −90 < angle < 0
2 |top→ F | < distance < |c3→ F | F < middle c2 < angle < c1 −90 < angle < +90
2 |top→ F | < distance < |c4→ F | F > middle c2 < angle < c1 −90 < angle < +90
3 |c2→ F | < distance < |c4→ F | - c3 < angle < c1 0 < angle < +90
4 |left→ F | < distance < |c1→ F | F < middle c3 < angle < c2 0 < angle < +180
4 |left→ F | < distance < |c4→ F | F > middle c3 < angle < c2 0 < angle < +180
5 |c3→ F | < distance < |c1→ F | - c4 < angle < c2 +90 < angle < +180
6 |bottom→ F | < distance < |c2→ F | F < middle c4 < angle < c3 +90 < angle < −90
6 |bottom→ F | < distance < |c1→ F | F > middle c4 < angle < c3 +90 < angle < −90
7 |c4→ F | < distance < |c2→ F | - c1 < angle < c3 −180 < angle < −90
8 |right→ F | < distance < |c2→ F | F < middle c1 < angle < c4 −180 < angle < 0
8 |right→ F | < distance < |c3→ F | F > middle c1 < angle < c4 −180 < angle < 0

The last corner-region to desribe, is region 5. Just as region 3 is the positive-
angle version of region 1, region 5 is the postive-angle version of region 7. The
range is thus described by: [c4, c2], where c4 < observation angle < c2 (with a
maximum range of: 90 < observation angle < 180degrees).

B.2.2 The range of region 2, 4, 6 and 8

From the proof of the previous section (Figure 6, right image) it is known
that (for region 2) c1 is always bigger than c4 and c2 always bigger than c3.
Since angles left of the 0-heading are defined as negative, and the maximum
range has to be found, c1 and c2 are used for defining the range for region 2.
In region 2, c2 has always a negative angle, therefore the range is described
as: [c2, c1], where c2 < observation angle < c1 (with a maximum range of:
−90 < observation angle < +90degrees).

Region 6 is the mirrored version of region 2, so, the range of region 6 is
described with: [c4, c3], where c4 < observation angle < c3 (with a maximum
range of: +90 < observation angle < −90degrees). This means that the angle
should be bigger than 90 degrees (between 90 and 180) or smaller than -90 de-
grees (between -90 and -180). The resulting construction is however something
which has to be kept in mind during programming.

Region 8 and 4 are rotations of 90 degrees of region 2. This lets the
range easily be described. For region 8, the range is: [c1, c4] where c1 <
observation angle < c4 (with a maximum range of: −180 < observation angle <
0degrees). Region 4 is described by: [c3, c2] where c3 < observation angle < c2
(with a maximum range of: 0 < observation angle < +180degrees)

B.3 Conclusion

With angles left the the 0-heading described as -180 to 0, and angles at the
right of the heading with 0 to 180, the angle and distance range for a feature in
a region is described by:
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C Accuracy Results

Figure 7: Accuracy-test results with different tree-depths and expand/collapse conditions.

The above shown figures are created with the Tables on the next page (Table
7a to Table 7d. These results show the accuracy (average error) of multiple
trees with different maximum depths and different parameters for collapsing
and expanding the tree. As can be seen the accuracy of all trees is around
20mm. Increasing the thresholds for expanding and collapsing also results in an
increase of the inaccuracy. The confidence bounds are set of 95 percent.

34



(a
)

D
is

ta
n
ce

er
ro

r
(i

n
m

m
)

a
n
d

9
5
%

co
n
fi
d
en

ce
(i

n
m

m
)

o
f

a
tr

ee
w

it
h

a
d
ep

th
o
f

6

co
l
\e

x
p

p
>

0
.4

p
>

0.
45

p
>

0.
5

p
>

0.
5
5

p
>

0.
6

p
>

0.
6
5

p
>

0.
7

p
>

0.
7
5

p
>

0
.8

p
>

0.
8
5

p
<

0.
1

21
9.

8
/

14
.8

22
2.

2
/

14
.4

22
1.

0
/

1
4
.8

2
2
5
.6

/
1
4
.7

2
3
8
.0

/
1
6
.4

2
4
2
.8

/
1
7
.8

2
5
9
.0

/
2
1
.0

2
6
8
.2

/
2
3
.2

2
9
7
.9

/
2
8
.3

3
0
8
.0

/
3
0
.7

p
<

0.
2

21
7.

8
/

14
.5

22
0.

1
/

14
.2

21
6.

8
/

1
4
.2

2
3
4
.2

/
2
0
.1

2
4
6
.2

/
1
9
.9

2
5
1
.6

/
2
0
.8

2
7
2
.0

/
2
3
.5

2
8
3
.4

/
2
5
.4

3
1
1
.1

/
2
9
.9

3
2
3
.3

/
3
1
.9

p
<

0.
3

21
9.

7
/

14
.6

22
0.

8
/

14
.0

21
8.

0
/

1
4
.1

2
3
5
.3

/
2
0
.8

2
4
8
.0

/
2
0
.3

2
6
6
.8

/
2
3
.3

2
8
3
.3

/
2
5
.2

2
9
2
.9

/
2
7
.2

3
1
8
.9

/
3
1
.0

3
2
7
.7

/
3
2
.1

p
<

0.
4

x
23

8.
2

/
18

.3
22

4.
8

/
1
5
.5

2
5
3
.2

/
2
3
.3

2
7
7
.5

/
2
6
.6

3
0
8
.8

/
2
9
.6

3
1
6
.7

/
2
8
.1

3
2
9
.9

/
3
0
.5

3
5
1
.7

/
3
2
.8

3
5
4
.9

/
3
3
.4

p
<

0.
5

x
x

x
2
9
1
.5

/
2
9
.0

3
1
3
.5

/
3
1
.7

3
3
0
.0

/
3
1
.6

3
3
3
.9

/
3
0
.5

3
5
0
.2

/
3
2
.0

3
6
8
.5

/
3
3
.8

3
7
1
.6

/
3
4
.3

p
<

0.
6

x
x

x
x

x
3
8
2
.5

/
3
4
.0

3
8
2
.9

/
3
4
.4

3
9
0
.4

/
3
4
.1

4
0
1
.0

/
3
4
.9

1
4
0
3
.1

/
3
5
.2

(b
)

D
is

ta
n
ce

er
ro

r
(i

n
m

m
)

a
n
d

9
5
%

co
n
fi
d
en

ce
(i

n
m

m
)

o
f

a
tr

ee
w

it
h

a
d
ep

th
o
f

8

co
l
\e

x
p

p
>

0
.4

p
>

0.
45

p
>

0.
5

p
>

0.
5
5

p
>

0.
6

p
>

0.
6
5

p
>

0.
7

p
>

0.
7
5

p
>

0.
8

p
>

0
.8

5
p
<

0.
1

19
8.

6
/

16
.6

19
7.

2
/

15
.7

19
9.

8
/

1
6
.2

2
0
6
.9

/
1
7
.5

2
1
5
.6

/
1
7
.3

2
2
9
.2

/
1
9
.0

2
4
9
.6

/
2
1
.5

2
6
1
.6

/
2
3
.8

2
9
4
.4

/
2
9
.0

3
0
6
.0

/
3
1
.2

p
<

0.
2

19
4.

7
/

16
.2

19
4.

3
/

15
.5

19
5.

5
/

1
5
.5

2
1
6
.6

/
2
2
.9

2
2
7
.5

/
2
1
.0

2
3
7
.0

/
2
1
.7

2
6
3
.5

/
2
4
.4

2
7
6
.5

/
2
6
.0

3
0
7
.1

/
3
0
.6

3
2
0
.7

/
3
2
.4

p
<

0.
3

19
6.

3
/

16
.0

19
4.

7
/

15
.1

19
6.

0
/

1
5
.3

2
1
8
.3

/
2
2
.7

2
2
9
.6

/
2
1
.0

2
5
5
.3

/
2
4
.3

2
7
5
.8

/
2
6
.0

2
8
7
.4

/
2
8
.0

3
1
5
.3

/
3
1
.7

3
2
5
.2

/
3
2
.7

p
<

0.
4

x
21

4.
5

/
20

.3
20

3.
5

/
1
7
.3

2
4
0
.8

/
2
5
.0

2
6
1
.0

/
2
7
.5

3
0
0
.7

/
3
0
.5

3
1
0
.5

/
2
8
.9

3
2
5
.3

/
3
1
.1

3
4
8
.8

/
3
3
.4

3
5
2
.8

/
3
3
.9

p
<

0.
5

x
x

x
2
7
6
.8

/
3
0
.7

3
0
1
.8

/
3
2
.9

3
2
3
.3

/
3
2
.5

3
2
9
.1

/
3
1
.4

3
4
7
.0

/
3
2
.5

3
6
5
.6

/
3
4
.4

3
6
9
.8

/
3
4
.7

p
<

0.
6

x
x

x
x

x
3
7
8
.9

/
3
4
.6

3
7
9
.5

/
3
5
.0

3
8
7
.3

/
3
4
.7

3
9
7
.6

/
3
5
.5

4
0
0
.7

/
3
5
.7

(c
)

D
is

ta
n
ce

er
ro

r
(i

n
m

m
)

a
n
d

9
5
%

co
n
fi
d
en

ce
(i

n
m

m
)

o
f

a
tr

ee
w

it
h

a
d
ep

th
o
f

1
0

co
l
\e

x
p

p
>

0
.4

p
>

0.
45

p
>

0.
5

p
>

0.
5
5

p
>

0.
6

p
>

0.
6
5

p
>

0.
7

p
>

0.
7
5

p
>

0.
8

p
>

0
.8

5
p
<

0.
1

19
7.

0
/

16
.9

19
6.

4
/

16
.0

19
9.

9
/

1
6
.3

1
9
9
.3

/
1
7
.0

2
1
7
.9

/
1
7
.6

2
2
9
.9

/
1
9
.2

2
4
9
.0

/
2
1
.5

2
6
1
.4

/
2
3
.8

2
9
4
.3

/
2
9
.0

3
0
6
.0

/
3
1
.2

p
<

0.
2

19
3.

6
/

16
.5

19
3.

1
/

15
.7

19
7.

8
/

1
6
.5

2
1
3
.0

/
2
3
.0

2
2
7
.0

/
2
1
.2

2
3
7
.1

/
2
1
.7

2
6
2
.6

/
2
4
.4

2
7
6
.1

/
2
6
.1

3
0
6
.9

/
3
0
.6

3
2
0
.2

/
3
2
.4

p
<

0.
3

19
2.

4
/

16
.3

19
3.

2
/

15
.7

19
6.

6
/

1
5
.6

2
1
4
.3

/
2
3
.0

2
2
8
.1

/
2
1
.0

2
5
4
.8

/
2
4
.4

2
7
4
.8

/
2
6
.1

2
8
7
.0

/
2
8
.0

3
1
5
.2

/
3
1
.7

3
2
5
.0

/
3
2
.7

p
<

0.
4

x
21

4.
4

/
24

.9
20

2.
8

/
1
7
.8

2
3
6
.0

/
2
5
.2

2
5
9
.1

/
2
7
.6

2
9
9
.4

/
3
0
.6

3
0
9
.6

/
2
9
.0

3
2
5
.0

/
3
1
.1

3
4
8
.8

/
3
3
.4

3
5
2
.8

/
3
3
.9

p
<

0.
5

x
x

x
2
7
4
.9

/
3
0
.9

3
0
0
.6

/
3
3
.0

3
2
2
.7

/
3
2
.6

3
2
9
.0

/
3
1
.7

3
4
7
.0

/
3
2
.5

3
6
5
.5

/
3
4
.4

3
6
9
.8

/
3
4
.7

p
<

0.
6

x
x

x
x

x
3
7
8
.8

/
3
4
.6

3
7
9
.3

/
3
5
.0

3
8
7
.2

/
3
4
.7

3
9
7
.6

/
3
5
.5

4
0
0
.7

/
3
5
.7

(d
)

D
is

ta
n
ce

er
ro

r
(i

n
m

m
)

a
n
d

9
5
%

co
n
fi
d
en

ce
(i

n
m

m
)

o
f

a
tr

ee
w

it
h

a
d
ep

th
o
f

1
2

co
l
\e

x
p

p
>

0
.4

p
>

0.
45

p
>

0.
5

p
>

0.
5
5

p
>

0.
6

p
>

0.
6
5

p
>

0.
7

p
>

0.
7
5

p
>

0.
8

p
>

0
.8

5
p
<

0.
1

20
0.

8
/

16
.6

19
9.

6
/

15
.8

20
3.

2
/

1
6
.3

2
0
2
.9

/
1
7
.3

2
2
1
.4

/
1
8
.0

2
3
0
.4

/
1
9
.3

2
4
9
.2

/
2
1
.5

2
6
1
.4

/
2
3
.8

2
9
4
.3

/
2
9
.0

3
0
5
.9

/
3
1
.2

p
<

0.
2

19
7.

2
/

16
.4

19
3.

7
/

15
.6

19
8.

6
/

1
6
.8

2
1
3
.0

/
2
3
.0

2
2
7
.2

/
2
1
.3

2
3
7
.2

/
2
1
.7

2
6
2
.8

/
2
4
.4

2
7
6
.1

/
2
6
.1

3
0
7
.0

/
3
0
.6

3
2
0
.2

/
3
2
.4

p
<

0.
3

19
3.

7
/

16
.3

19
8.

2
/

15
.6

19
7.

0
/

1
5
.9

2
1
2
.9

/
2
2
.5

2
2
7
.9

/
2
1
.1

2
5
4
.9

/
2
4
.4

2
7
4
.9

/
2
6
.1

2
8
7
.0

/
2
8
.0

3
1
5
.2

/
3
1
.7

3
2
5
.0

/
3
2
.7

p
<

0.
4

x
21

5.
6

/
24

.9
20

2.
9

/
1
8
.0

2
3
5
.2

/
2
5
.3

2
5
8
.9

/
2
7
.7

2
9
9
.5

/
3
0
.6

3
0
9
.6

/
2
9
.0

3
2
5
.0

/
3
1
.1

3
4
8
.8

/
3
3
.4

3
5
2
.8

/
3
3
.9

p
<

0.
5

x
x

x
2
7
3
.7

/
3
0
.9

3
0
0
.5

/
3
3
.0

3
2
2
.7

/
3
2
.6

3
2
9
.0

/
3
1
.4

3
4
7
.0

/
3
2
.5

3
6
5
.5

/
3
4
.4

3
6
9
.8

/
3
4
.7

p
<

0.
6

x
x

x
x

x
3
7
8
.8

/
3
4
.6

3
7
9
.3

/
3
5
.0

3
8
7
.2

/
3
4
.7

3
9
7
.6

/
3
5
.5

4
0
0
.7

/
3
5
.7

35


