
Active target tracking

using a mobile robot in the USARSim

Aksel Ethembabaoglu
0154644

aethemba@science.uva.nl

June 29, 2007

Supervised by Arnoud Visser

in partial fulfillment of the requirements

for the degree of

Bachelor of Science in Artificial Intelligence

1

Abstract

In this thesis the Mean-shift tracker is analyzed by quantitative measure-
ments in the USARSim. The Mean-Shift tracker is combined with a basic
PD control structure for active tracking. The aim is to expose the limi-
tations of the tracker in the simulation and to suggest improvements for
future work.
The results of the experiments indicate that the Mean-Shift tracker is not
robust enough as a reliable tracker in the simulation.

2

Contents

1 Introduction 4
1.1 Research goals . 4
1.2 Thesis organization . 4

2 RoboCup Rescue 5

3 Tracking a human 5
3.1 A basic description of the Mean-Shift algorithm 5
3.2 Alternative tracking algorithms 6
3.3 Mean Shift tracking - A mathematical model 6

3.3.1 Target representation . 7
3.3.2 Target model . 7
3.3.3 Target candidates . 8
3.3.4 Target localization . 8

4 USARSim and tracker implementation 8
4.1 USARSim Overview . 8
4.2 Organization . 9

4.2.1 Mean-Shift Tracker module in USARSim 10

5 Experiments 10
5.1 Experimental setup . 10

5.1.1 Active Vision . 11
5.1.2 Condition I: changing the target speed 12
5.1.3 Condition II: changing lighting 12

5.2 Results . 13
5.2.1 Results Condition I: changing the target speed 13
5.2.2 Results condition II: varying lighting conditions 14

5.3 Overall results with Active tracking 15
5.4 Suggestions for improvements . 16

6 Conclusions 16

7 Future work 17

3

1 Introduction

This thesis describes the graduation project for the Bachelor of Science in Arti-
ficial Intelligence (AI) at the University of Amsterdam (UvA). It comprises four
weeks in which the student is required to work full-time on an AI related project.
For this project I contacted Arnoud Visser who supervises the RoboCup Rescue
team of the UvA. During this project I focused on the analysis of the Mean-Shift
tracking algorithm.

1.1 Research goals

The primary goal of the research is to quantitatively test the usability and
the limitations of the Mean-Shift tracking algorithm in a controlled simulation
environment. This thesis will be concluded with suggestions to improve the
algorithm.
A long term goal of the project is the analysis of more sophisticated tracking
algorithms in a controlled environment. The controlled testing environment
provides a proving ground for new developed algorithms and their use in the
RoboCup.

1.2 Thesis organization

The organization of this thesis will now briefly be discussed. In the following
section the relevance of the research is illustrated by discussing the RoboCup
Rescue competition. Next, various aspects of the Mean-Shift tracker will be
discussed. This includes alternative algorithms, pseudo-code and a mathemat-
ical model. In the section thereafter the system architecture of the simulation
will be described. In section five the experiments and the results are discussed.
Finally, the thesis is concluded with suggestions on future work.

4

2 RoboCup Rescue

In the RoboCup Rescue virtual robot competition, robots are placed in an
unknown environment where they need to locate victims of a disaster. The
environments come in three difficulties related to a certain challenge. For the
Victim Detection challenge the Yellow, Orange and Red Arena represent en-
vironments in which victims can be located with increasing difficulty. In the
Red Arena, victims could be moving around. This is were the tracking algo-
rithm becomes useful. More information on RoboCup Rescue can be found at:
http://www.robocuprescue.org/

3 Tracking a human

The ability to track a human being is valuable in a number of applications
besides the RoboCup Rescue. Human-computer interaction, surveillance, mili-
tary purposes and medical applications are examples of areas where this ability
proves useful. The main tasks in tracking a human are, distinguishing moving
objects from static objects and differentiating between target objects and other
moving objects. To track successfully, it is vital that the tracker is robust, i.e.
it should be able to operate under a variety of conditions. Influential conditions
include, among other things, target distance and lighting. These conditions are
not always easy to reproduce which makes the proper testing of algorithms a
daunting task.
A variety of algorithms have been developed to track a human. These will be
discussed in the following subsection.

3.1 A basic description of the Mean-Shift algorithm

The basic idea of the Mean-Shift algorithm is very simple. Given a certain color
distribution (histogram)of a target, find, in the image, the most similar color
distribution within a certain window. This window will be referred to as a ker-
nel or region of interest. This kernel is located over an image to track, in the
original image, similar color distributions as provided by the target histogram.
The Mean-Shift algorithm creates a back projection image in which pixels of the
image that are similar to the target histogram are colored white. This produces
a binary image with white clouds or blobs of white pixels. The mean is given as
the location in the kernel from which the average distance to all white pixels is
minimal. When the target model moves, this blob, or cloud, of pixels is trans-
lated in the backprojection of the next frame. This will yield a new location of
the mean. The algorithm tracks a target by placing the center of the kernel on
the new mean.
The algorithm can be enhanced by performing a number of mean-shift itera-
tions. After an initial new mean has been found, rather then moving the kernel
immediately, the algorithm again performs a new mean calculation based on the
previously calculated mean location. Eventually, the shifting of a new mean lo-
cation will be below a certain threshold indicating the algorithm to terminate.
Alternatively, a maximum number of iterations can be given. This method
will allow the algorithm to track faster moving objects because it is able to
track clouds of pixels that have shifted farther away, it comes however at a

5

computational cost. This suggested improvement proved insignificant in our
implementation.
The pseudo-code for the Mean-Shift algorithm is depicted in algorithm 1.

Algorithm 1 Calculate Mean-Shift
1: Initialize color-model of a target object using a kernel over the image

2: Compute the color-model of the target object on the current center position
of the target

3: Match color-model of target with pixel values of image in the kernel

4: Calculate movement, by calculating the new mean, of the target object and
correct current center of kernel

5: Optionally, repeat step 2 to 4, until movement of new kernel location falls
below a certain threshold

6: Continue on next frame

3.2 Alternative tracking algorithms

The Mean-Shift tracker is a kernel based tracking algorithm. It tracks objects
on an image by use of a kernel. Tracking a color distribution of a target over a
series of frames is not the only tracking approach.
An alternative is the feature point tracker [1]. Here, feature points are detected
on an image and these are tracked over a seriess of images.
Yet another alternative is the Kalman filter [2] which estimates a targets position
and velocity based given previous observations. It can also be used for control
functions.
The Mean-Shift tracker was chosen as a suitable candidate for analysis because
of the relative simple and efficient design. It was also expected to provide a
robust performance when a distinctive histogram of the target object was given.

3.3 Mean Shift tracking - A mathematical model

In the next subsections the Mean-Shift algorithm described earlier will be math-
ematically formalized.
Mean-shift tracking is a kernel based tracking algorithm. It is designed to track
a target by masking it spatially with an isotropic kernel, defining a similarity
function, and then searching the basin of attraction of this function to perform
target localization. Because of the similarity function, gradient descent search-
ing can be performed to localize the target. The Bhattacharyya coefficient is
used to determine the similarity between the target model and the target can-
didate in the next frame.

6

3.3.1 Target representation

To track an object, a target first has to be defined and for this a feature space
needs to be chosen. Next, the target model is then identified by its probability
density function q in the feature space. For this tracker the color feature of the
target was used. The target is considered to reside on spatial location y0. In
the next frame, a target candidate is defined at location y1. This target can-
didate is characterized by the color distribution p(y1). The color distributions
are computed using m-bin histograms. Histograms are used to comply to low
computational costs for real-time processing.
This can be denoted as follows:

Target model: q̂ = {q̂u}u=1...m with
m∑

u=1

q̂u = 1

Target candidate: p̂(y1) = {p̂u(y1)}u=1...m with
m∑

u=1

ˆpu(y1) = 1

We will further denote:

p̂(y) = ρ[p̂(y), q̂] =
m∑

u=1

√
p̂u(y)q̂u (1)

Equation 1 denotes a similarity function between p̂ and q̂. Here, p̂(y) has the
role of a likelihood and the local maxima of this function indicates the presence
of an object in the second frame that has a similar representation as q̂, as defined
in the predefined histogram.
The similarity function is regularized by masking the object with an isotropic
kernel in the spatial domain. When the kernel weights which carry continuous
spatial information, are used p̂(y) becomes a smooth function in y.

3.3.2 Target model

Let {x∗i }i=1...n be the normalized pixel locations in the region defined as the
target model. The region is centered at location 0. An isotropic kernel is used
with a convex and a monotonic decreasing kernel profile k(x). In our case a
Gaussian kernel is used. The reliability of the density function is now increased
because peripheral pixels are considered less reliable. They are considered less
reliable because they are more vulnerable to background noise and clutter.
The function b : R2 → {1...m} associates to the pixel at location x∗i the index
b(x∗i) of its bin in the quantized feature space. The probability of the feature,
u = 1...m, in the target model is then computed as:

q̂u(y) = C
n∑

i=1

k(‖x∗i ‖2)δ[b(x∗i)− u] (2)

where δ is the Kronecker delta function. The normalization constant C is de-

rived by imposing the condition
m∑

u=1

q̂u = 1 where

C =
1∑n

i=1 k(‖x∗i ‖2)
, (3)

7

since the summation of delta functions u = 1...m is equal to 1.

3.3.3 Target candidates

Let {xi}i=1...nh
be the normalized pixel locations of the target candidate cen-

tered at y1 in the current frame. The normalization is inherited from the frame
containing the target model. Using the same kernel profile k(x) but with a
bandwidth h, the probability of the feature u = 1...m in the target candidate is
given by

p̂u(y) = Ch

nh∑
i=1

k

(
‖y − xi

h
‖2

)
δ[b(xi)− u], (4)

where
Ch =

1∑nh

i=1 k(‖y−xi

h ‖2)
(5)

is the normalization constant. The bandwidth h defines the scale of the target
candidate, i.e., the number of pixels considered in the localization process.

3.3.4 Target localization

An object is localized by maximizing the similarity function between the two
probability density functions. The search for the new target location is starts
from location y0 of the target in the previous frame. Then, the kernel is recur-
sively moved from the location y0 to the new location y1, therefore:

ŷ1 =

∑nh

i=1 xi.wi.g
(
‖ ŷ0−xi

h ‖2
)

∑nh

i=1 wi.g
(
‖ ŷ0−xi

h ‖2
) (6)

where g(x) = −k′(x). The mean shift algorithm calculates the similarity func-
tion for the target model and target candidate in subsequent frames and then
uses equation 6 to localize the target candidate. The process is repeated un-
til the similarity function goes down and the estimated location of the target
changes less then a certain threshold.

4 USARSim and tracker implementation

The USARSim is used as a controlled environment for quantitative analysis the
Mean-Shift tracker. The USARSim is designed as a high fidelity simulator of
urban search and rescue (USAR) robots and environments as a tool for research.
The simulator is build on top of the Unreal game engine which provides real-
istic graphics with accurate physics. This design enables researchers to focus
primarily on robot control.

4.1 USARSim Overview

The USARSim will not be discussed in detail in this thesis, however, some
knowledge is needed to properly understand the workings of the simulation and
its environment. In figure 4.1 the system architecture is shown.

8

Figure 1: System architecture

For the USARSim environment [3], a framework by the name of USARComman-
der, has been developed by the UvA RoboCup team. USARCommander com-
municates with the USARSim Unreal Engine by sending and receiving strings of
messages. USARCommander is being developed and improved on a daily basis
and now covers most low-level control operations on the simulated robots. For
accuracy and realism, there are no high-level controllers in the basic architec-
ture. A few high-level controllers have been developed (MOAST, Pyro, Player),
but generally users are required to develop their own controllers. Currently,
there is no high-level controller publicly available for the ERS-7 AIBO robot or
other legged robot.

4.2 Organization

The processes in USARSim consists of two main parts. The first is the simula-
tor server, the second part are the clients. The clients control the robot in the
simulated world, each client controls one robot. Clients can easily connect to
the server due to the network organization of the simulation. This decentral-
ized distribution of computational operations allows for efficient client handling
enabling more robots in the simulator.
Rendering of visual camera data is done by a separate game client. It does so by
raeding images directly from the graphics card buffer. These images are caught

9

Figure 2: Organization of USARSim processes

by an image server, who compresses them and sends them to the appropriate
client.
The organization is depicted in figure 4.2.

4.2.1 Mean-Shift Tracker module in USARSim

Client processes control the virtual robots. Such a process is also referred to as
an Agent, controlling a single robot. The Agent organizes many tasks, e.g. it
communicates with the simulator by hosting the network connection, it receives
sensor data from the simulator, and it keeps track of all connected sensors and
actuators. The Mean-Shift tracker works as a specialized agent with vision
capabilities working on the received camera sensor images.

5 Experiments

The main goal of this research project was a quantitative analysis of the Mean-
Shift tracker. Two experiments have been conducted to perform the analysis.

5.1 Experimental setup

The limitations and the usability of the Mean-Shift tracker are investigated us-
ing experiments in a controlled environment. The USARSim enabled changing
individual conditions, so experiments could easily be reproduced. The algo-
rithm is quantitatively tested on two conditions, the target speed, and various
lighting conditions. Besides varying these conditions, we also tweaked internal
parameters to obtain optimal performance. During each experiment we used
the P2AT robot 3 as the tracker, and the ATRVJr 4 as the target robot. The
tracker robot is equipped with a histogram of the target robot and does not
need to acquire new histograms of the target. Active Vision is added to let the
mobile robot adjust his view of the target.

10

Figure 3: P2AT robot Figure 4: ATRVJr robot

The tracker receives images from the image server, which is set to deliver good
quality jpegds sized at 480*360. The frame rate is set at 6 images per second to
allow for real-time processing. For each experiment a frame rate of 6 frames per
second has been used. A higher frame-rate influences the trackers performance
and is therefore kept constant. This influence is omitted in the results below
because this factor has remained constant during all testing.

The 3D histograms were constructed with 30 bins for every color dimension in
RGB color space with range (0,255). Manual tweaking showed that 30 bins was
an effective discretization of the color space. An image of the RGB cube is
depicted in 5.1. Note that the RGB cube in the image uses 8 bins for each color
dimension.

Figure 5: The RGB color cube

5.1.1 Active Vision

The Active Vision component enabled the tracker robot to adjust himself to
keep the target centered in his view. For this, a simple proportional-derivative
(PD) controller [4] was developed to adjust the speed of rotation to center the
target in the field of view. The equation used for determining the output, in
this case the rotation speed, is given by:

Output(t) = Pcontrib + Dcontrib

11

where P and D are the feedback values of the controller.
P gives the amount of error between the desired signal and the measured signal.
An image width of 480 was used, centering the target implied centering the
region of interest to pixel location 240. The value of P thus gives the amount
of pixels the region of interest is away from the center in a single frame. This
value can be multiplied by a proportional gain to emphasize significance. A
higher value for P means a higher output and thus yields a faster response of
the controller. Such a constant was not used.
The D value contributes to the equation by adding the derivative of the error
vs. time. This ensures that the tracker adapts its rotation speed when a target
accelerates or decelerates. More formally:

Dcontrib = Td
de

dt

where Td is the derivative of time and was set at 5. The derivative of the last 3
frames was used.
The Active Vision component was manually tweaked for optimal performance.

5.1.2 Condition I: changing the target speed

The speed of the target and the ability to track it relates to one important
factor, the distance of the target. In the experiments, the target starts in the
center of the trackers field of view and always leaves the field of view of the
tracker with the same angle. However, at a short distance this angle is traveled
faster when the speed of the target remains the same. The distance of the
tracker to the target can thus cause large gaps of movement of the target in
the recorded frames. When these gaps become too large, the tracker loses the
target. The measurements are quantified by varying the speed of the target to a
fixed distance and measured the ability to keep track of the target during each
frame. We repeated the experiment for several distances. A screen shot of the
setup is shown in 5.1.2.

Figure 6: Experiment setup

5.1.3 Condition II: changing lighting

One of the advantages of working in a controlled simulation is the ease of repro-
ducing experiments. The advantage of implementing the tracker in the USAR-

12

Simulation is largely due to ease of reproducing lighting conditions. Lighting
conditions are hard to control in real environments.
In order to utilize the advantage of working in a simulator we need to change
the lighting conditions within the simulator, rather then editing the images
received from the image server. This can be done using a map with varying
lighting conditions. We used 5 different maps, each with a different lighting
condition. The optimal distance and speed are repeatedly used, measured with
the first experiment, to determine the effect of a lighting condition.

5.2 Results

In the following subsections the results from the experiments are given.

5.2.1 Results Condition I: changing the target speed

The speed of the target was varied at a fixed distance between the target and
the stationary tracker. Distances in the experimental maps are expressed in
Unreal Units. 250 Unreal Units correspond to 1 meter.
Active vision was not disabled during the experiment because it influenced the
quantified measurement of the performance of the tracker. However, the Active
vision calculations were performed but not signaled to the actuators to account
for the active trackers total performance.
The performance is measured by dividing the number of frames that the tracker
successfully tracks the target by the total amount of frames the target was in
sight, successfultrackedframes

Totalframes . The measurements are repeated at different dis-
tances. The results are depicted in table 1.

Wheel speed in radials per second
Distance (m) 0.5 0.75 1.0 1.25 1.5 1.75 2.0
2 1 1 4

7
2
5

2
4

2
4

1
3

4 1 1 1 4
7

3
6

3
6

1
4

6 1 1 1 1 4
7

4
7

3
7

8 1 1 1 5
10

2
8

2
8

1
5

10 1 1 1 9
12

8
12

6
12

5
12

Table 1: Results varying target speed and distance

The results are plotted in figure 7.

13

Figure 7: Plotted results

The results show that a target at 6m is tracked relatively long at a high speed.
With this distance the target is perfectly in sight of the tracker’s region of
interest. A degrading performance is displayed when the target is at close range
or far away. At close range, the tracker can become unstable because every
movement of the region of interest finds the histogram of the target. When the
target is far away, the size of the target is so small in the trackers region of
interest that the tracker becomes sensitive to background noise.

5.2.2 Results condition II: varying lighting conditions

To test the effect of different lighting conditions, a distance of 6m and a wheel
speed of 1 radials per second was used. These were optimal conditions for the
tracker in the previous experiment.
Five different lighting conditions were used, standard lighting, hardly any light-
ing, standard outdoor lighting, forest lighting, and snow lighting. These condi-
tions were easily producible using different simulator maps.
For each lighting condition, the tracker successfully tracked all frames, even
when there was hardly any lighting. A table with results is omitted as every
entry contained the value 1.
A screen shot is depicted in figure 8.
Lighting conditions are a serious obstacle in real world tracking applications.

The conducted experiments might not have entirely captured that difficulty as
the provided target histogram was very distinct, even with poor lighting. One
may expect a degrading performance if the background colors are more similar
to the target histogram. Lighting can distort background colors making them
look similar to target histogram colors, however the current histogram was so
distinct this effect seems to be evaded. As a result the performance of the
tracker was not affected.

14

Figure 8: Hardly any lighting

5.3 Overall results with Active tracking

The experiments have been conducted to analyze the performance of the Mean-
Shift tracker by itself. When the Mean-Shift tracker was combined with the
Active vision component the tracker robot was autonomous able to track a
target. The robot was released in the simulator and was following the target
robot.
The behavior of the robot with active tracking confirmed the results from the
experiments. When the target robot was moving fast the tracker robot would
lose the target. Active Vision could sometimes correct the failing tracker by
accidentely overshooting the target, the target would then pass through the
region of interest of the tracker and the tracker was able to successfully track
again. However, it could also backfire, the tracker could overshoot and, because
of the local target search, could not relocate the target again if it did not pass
through the region of interest.
The framerate of 8 frames per second also allowed for great changes of the
target object between frames. This is due to the other computations of the
USARCommander. A higher framerate would increase performance because
movement changes of the target would be Besides losing a target based on the
targets speed, the tracker could also lose the target when a background color
distribution showed great similarity with the targets color distribution. In such
a case the new mean location would not entirely translate to the center of the
target but only by a limited amount. In the frames thereafter the tracker would
lose the target object because the target object had shifted increasingly out of
the trackers region of interest.
The results illustrated the importance of a typical distance. To maintain an
optimal distance to the target a simple pixel counter was used that counted the
amount of red pixels in the region of interest. The hue range, 355-360, 0-5, was
used to detect red values. A low amount of red pixels indicated the target was
moving away. The tracker robot responded by moving forward. When the red
pixel count fell below a threshold the target was considered not in sight and a
global search was perform to relocate the target.
Despite the attempts to maintain an optimal distance the tracker robot often

15

lost the target robot.

5.4 Suggestions for improvements

The target speed appeared to be a decisive factor in successful tracking. Ideally,
the target robot should remain at a certain distance to cope with fast move-
ment. The tracker is less affected by fast movement when the target robot is
further away.
An improvement would be to calculate the distance of the robot based on the
size of the region of interest. A small region of interest would then indicate
a distant target. Another improvement would be to use a different shape of
the region of interest, for instance an ellipsoidal shape. A varying shape could
indicate different angles of a robot, e.g. when it turns. This information could
then be used for more efficient and robust positioning.
A method for a varying kernel size and shape was developed by [5]. This ap-
proach is currently being developed on in the USARCommander framework. A
more reliable tracking performance is expected with this approach.
[6] optimized the Mean-Shift tracker by using masked histograms. This however
is not a robust solution for the RoboCup Rescue domain because many kernel
templates would be required.
Another improvement is the combination of two different tracking approaches.
Martijn Liem research [7] is currently combining a KLT feature tracker with the
varying shape and size of the kernel method mentioned earlier. This approach
should yield enormous improvements because the new method would comple-
ment the strengths of the two different tracking approaches. The USARSim
with the USARCommander framework is an excellent platform to quantita-
tively measure the performance of the new approach.

6 Conclusions

The Mean-Shift tracker has been tested with quantitative measurements on tar-
get speed and lighting conditions. The results indicate that the tracker depends
heavily on the targets speed and distance. The results illustrate the degrading
performance when the target speed increases and when the target distance is
low or high.
The results of varying lighting conditions proved another interesting observation.
Because the target histogram was predefined, it was a very clear and explicit
color distribution. Such a histogram was easy to track, even in poor lighting
conditions. In a real world setting, such an explicit target histogram is hard
to acquire. Eventually, the robot has to make real-time dynamic histograms of
targets, in case of the RoboCup Rescue of victims. The results illustrate the
importance of a good histogram. A good histogram implies an explicit represen-
tation of the target in the color space. A good histogram can greatly increase
the robustness of the tracker. In the RoboCup Rescue, indicators of a victim,
like the RFID sensor, could assist in the positioning of the robot for the creation
of a victim histogram.
When the tracker robot was released in the simulator it did not track the tar-
get robot on a reliable basis. Overshooting, background distraction, and a fast

16

moving target would make the tracker robot lose the target. It would then try
to relocate the target robot but would again soon lose it.
Clearly, the current approach to track a moving target does not qualify as a
reliable tracking method. Because of this, the current approach is not suitable
for use in the RoboCup Rescue Virtual Robot competition.
A number of improvements have been mentioned, use of a dynamic kernel, and
combining two tracking approaches. Implementations of these improvements
could easily by analyzed in the USARSim with the USARCommander frame-
work.

7 Future work

Much remains to be done for a reliable USARSim tracker for the RoboCup
Rescue Virtual Robot competition. The current USARCommander framework
lacks a great deal of standard Computer Vision functions and libraries. These
functions and libraries should be developed to allow for greater complexity of
future tracking algorithms. The extension of the math library would be a good
start.
For a more pleasant testing experience the user interface of USARCommander
can be enhanced. The interface is currently sufficient but more flexible control
would allow easier testing. The USARCommander can also be extended by
incorporting high-level procedures for robot control. There is currently no high-
level robot control for virtual legged robots, like the ERS-7 AIBO or QRIO.
Developing walking-models for such robots would expand the range of capabil-
ities of the USARCommander.
When the USARCommander framework extends, more complex tracking algo-
rithms can be incorporated. These more complex algorithms, like the EM-Shift
tracker, the KLT feature tracker or the fusion algorithm of Martijn would en-
able better tracking of a target. When incorporated in USARCommander these
algorithms can be used for the RoboCup Rescue to provide a more reliable
tracker. For researchers the performance of these algorithms can be measured
quantitatively under a variety of easily reproducible conditions available in the
USARSim.

References

[1] C. Tomasi and T. Kanade, School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-CS-91–132 (1991).

[2] G. Welch and G. Bishop, ACM SIGGRAPH 2001 Course Notes (2001).

[3] J. Wang and S. Balakirsky, USARSim Sourceforge homepage -
http://sourceforge.net/projects/usarsim .

[4] D. Sellers, (2001).

[5] Z. Zivkovic and B. Krose, Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference
on 1, .

17

[6] E. Ben-Israel, Project report .

[7] M. Liem, Master thesis progress report .

18

