Coalgebras and Coalgebra Automata

Yde Venema ILLC-UvA http://staff.science.uva.nl/~yde

October 13, 2006 Japan Advanced Institute of Science and Technology

Overview of talk

- ► Examples
- ► Coalgebra
- ► Automata for coalgebras
- ► Finally, . . .

A stream (stream coalgebra) is a pair $\mathbb{S} = \langle S, \sigma : S \to C \times S \rangle$.

E.g. model an infinite word $c_0c_1c_2...$ as $\langle \omega, \lambda n.(c_n, n+1) \rangle$.

A stream (stream coalgebra) is a pair $\mathbb{S} = \langle S, \sigma : S \to C \times S \rangle$.

E.g. model an infinite word $c_0c_1c_2...$ as $\langle \omega, \lambda n.(c_n, n+1) \rangle$.

Write $\sigma(s) = (\operatorname{col}(s), \operatorname{nxt}(s)).$

Streams as Coalgebras

A stream (stream coalgebra) is a pair $\mathbb{S} = \langle S, \sigma : S \to C \times S \rangle$.

E.g. model an infinite word $c_0c_1c_2...$ as $\langle \omega, \lambda n.(c_n, n+1) \rangle$.

Write $\sigma(s) = (\operatorname{col}(s), \operatorname{nxt}(s)).$

Behaviour: $Beh(s) = col(s)col(nxt(s))col(nxt^2(s))...$

Examples: streams

Behavioral equivalence

Behavioral equivalence

Behavioral equivalence

 $s'_0 \xrightarrow{s'_1} \underbrace{s'_2} s'_3$

$$= \operatorname{Beh}(s'_0)$$

Definition: s in S is behaviorally equivalent to s' in S' if Beh(s) = Beh(s').

 $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

- 1. $\operatorname{col}(s) = \operatorname{col}(s')$,
- 2. $(nxt(s), nxt(s') \in Z.$

s in S and s' in S' are bisimilar if linked by some bisimulation Z.

Bisimilarity ct'd

 $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

- 1. $\operatorname{col}(s) = \operatorname{col}(s')$,
- 2. $(nxt(s), nxt(s') \in Z.$

s in S and s' in S' are bisimilar if linked by some bisimulation Z.

Bisimilarity ct'd

 $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

- 1. $\operatorname{col}(s) = \operatorname{col}(s')$,
- 2. $(nxt(s), nxt(s') \in Z.$

s in \mathbb{S} and s' in \mathbb{S}' are bisimilar if linked by some bisimulation Z.

Theorem: bisimilarity = behavioral equivalence

Bistreams

Suppose now every state has two successors: a left and a right one.

Bistreams

Suppose now every state has two successors: a left and a right one.

A bistream is a pair $\mathbb{S} = \langle S, \sigma : S \to C \times S \times S \rangle$. Write $\sigma(s) = (\operatorname{col}(s), \operatorname{lft}(s), \operatorname{rgt}(s))$.

Bistreams

Suppose now every state has two successors: a left and a right one.

A bistream is a pair $\mathbb{S} = \langle S, \sigma : S \to C \times S \times S \rangle$. Write $\sigma(s) = (\operatorname{col}(s), \operatorname{lft}(s), \operatorname{rgt}(s))$.

Bistreams bisimulations

Definition: Let \mathbb{S} and \mathbb{S}' be two bistreams.

 $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

- 1. $\operatorname{col}(s) = \operatorname{col}(s')$,
- 2. $(Ift(s), Ift(s')) \in Z$ and $(rgt(s), rgt(s')) \in Z$,

Definition: An infinite *C*-labeled binary tree is regular iff it is bisimilar to a finite bistream

Kripke structure: pair $\mathbb{S} = \langle S, \sigma : S \to \wp \mathsf{Prop} \times \wp S \rangle$, with

• $\sigma(s) = (\sigma_V(s), \sigma_R(s))$ given by

Kripke structure: pair $\mathbb{S} = \langle S, \sigma : S \to \wp \mathsf{Prop} \times \wp S \rangle$, with

•
$$\sigma(s) = (\sigma_V(s), \sigma_R(s))$$
 given by

 $\sigma_V(s) \subseteq$ Prop is the set of variables true at s,

Kripke structure: pair $\mathbb{S} = \langle S, \sigma : S \to \wp \mathsf{Prop} \times \wp S \rangle$, with

•
$$\sigma(s) = (\sigma_V(s), \sigma_R(s))$$
 given by

 $\sigma_V(s) \subseteq$ Prop is the set of variables true at s,

 $\sigma_R(s) \subseteq S$ is the set of successors of s.

Kripke structure: pair $\mathbb{S} = \langle S, \sigma : S \to \wp \mathsf{Prop} \times \wp S \rangle$, with

•
$$\sigma(s) = (\sigma_V(s), \sigma_R(s))$$
 given by

 $\sigma_V(s) \subseteq$ Prop is the set of variables true at s,

 $\sigma_R(s) \subseteq S$ is the set of successors of s.

Abbreviate $\mathsf{K}S := \wp \mathsf{Prop} \times \wp S$.

Definition: Let \mathbb{S} and \mathbb{S}' be two Kripke structures.

• $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

Definition: Let \mathbb{S} and \mathbb{S}' be two Kripke structures.

► $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

1. $\sigma_V(s) = \sigma'_V(s')$

Definition: Let \mathbb{S} and \mathbb{S}' be two Kripke structures.

• $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

1.
$$\sigma_V(s) = \sigma'_V(s')$$

2. $(\sigma_R(s), \sigma'_R(s')) \in \overline{\wp}(Z)$, i.e.

Definition: Let \mathbb{S} and \mathbb{S}' be two Kripke structures.

- $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:
 - 1. $\sigma_V(s) = \sigma'_V(s')$
 - 2. $(\sigma_R(s), \sigma'_R(s')) \in \overline{\wp}(Z)$, i.e.
 - $\forall t \in \sigma_2(s) \exists t' \in \sigma'_2(s').Ztt'$ and
 - $\forall t' \in \sigma'_2(s') \exists t \in \sigma_2(s).Ztt'.$

Definition: Let S and S' be two Kripke structures.

- $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:
 - 1. $\sigma_V(s) = \sigma'_V(s')$
 - 2. $(\sigma_R(s), \sigma'_R(s')) \in \overline{\wp}(Z)$, i.e.
 - $\forall t \in \sigma_2(s) \exists t' \in \sigma'_2(s').Ztt'$ and
 - $\forall t' \in \sigma'_2(s') \exists t \in \sigma_2(s).Ztt'.$
- ▶ s and s' are bisimilar, notation: $S, s \cong S', s'$ if there is a bisimulation Z with $(s, s') \in Z$.

Definition: Let S and S' be two Kripke structures.

- $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:
 - 1. $\sigma_V(s) = \sigma'_V(s')$
 - 2. $(\sigma_R(s), \sigma'_R(s')) \in \overline{\wp}(Z)$, i.e.
 - $\forall t \in \sigma_2(s) \exists t' \in \sigma'_2(s').Ztt'$ and
 - $\forall t' \in \sigma'_2(s') \exists t \in \sigma_2(s).Ztt'.$
- ▶ s and s' are bisimilar, notation: $\mathbb{S}, s \cong \mathbb{S}', s'$ if there is a bisimulation Z with $(s, s') \in Z$.
- ► $Z \subseteq S \times S'$ is a local bisimulation for $\sigma(s) \in KS$ and $\sigma'(s') \in KS'$ if (1) and (2) hold

Definition: Let \mathbb{S} and \mathbb{S}' be two Kripke structures.

• $Z \subseteq S \times S'$ is a bisimulation if for all $(s, s') \in Z$:

1.
$$\sigma_V(s) = \sigma'_V(s')$$

- 2. $(\sigma_R(s), \sigma'_R(s')) \in \overline{\wp}(Z)$, i.e.
 - $\forall t \in \sigma_2(s) \exists t' \in \sigma'_2(s').Ztt'$ and
 - $\forall t' \in \sigma'_2(s') \exists t \in \sigma_2(s).Ztt'.$
- ► s and s' are bisimilar, notation: $\mathbb{S}, s \cong \mathbb{S}', s'$ if there is a bisimulation Z with $(s, s') \in Z$.
- ► $Z \subseteq S \times S'$ is a local bisimulation for $\sigma(s) \in \mathsf{K}S$ and $\sigma'(s') \in \mathsf{K}S'$ if (1) and (2) hold

Proposition: Let $Z \subseteq S \times S'$ for two Kripke structures S and S'. Z is a bisimulation iff it is a local bisimulation for $(\sigma(s), \sigma'(s'))$ whenever $(s, s') \in Z$.

With Kripke structures $\mathbb{S}=\langle S,\sigma\rangle$ and $\mathbb{S}'=\langle S',\sigma'\rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

With Kripke structures $\mathbb{S}=\langle S,\sigma\rangle$ and $\mathbb{S}'=\langle S',\sigma'\rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

▶ at position (s, s'), \exists chooses a local bisimulation Z for $\sigma(s)$ and $\sigma'(s')$;

With Kripke structures $\mathbb{S} = \langle S, \sigma \rangle$ and $\mathbb{S}' = \langle S', \sigma' \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

- ▶ at position (s, s'), \exists chooses a local bisimulation Z for $\sigma(s)$ and $\sigma'(s')$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(t, t') \in Z$.

With Kripke structures $\mathbb{S} = \langle S, \sigma \rangle$ and $\mathbb{S}' = \langle S', \sigma' \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

- ▶ at position (s, s'), \exists chooses a local bisimulation Z for $\sigma(s)$ and $\sigma'(s')$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(t, t') \in Z$.

Winning conditions:

With Kripke structures $\mathbb{S} = \langle S, \sigma \rangle$ and $\mathbb{S}' = \langle S', \sigma' \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

- ▶ at position (s, s'), \exists chooses a local bisimulation Z for $\sigma(s)$ and $\sigma'(s')$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(t, t') \in Z$.

Winning conditions:

► finite matches are lost by the player who gets stuck,
Bisimilarity game

With Kripke structures $\mathbb{S} = \langle S, \sigma \rangle$ and $\mathbb{S}' = \langle S', \sigma' \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

- ▶ at position (s, s'), \exists chooses a local bisimulation Z for $\sigma(s)$ and $\sigma'(s')$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(t, t') \in Z$.

Winning conditions:

- ► finite matches are lost by the player who gets stuck,
- infinite matches are won by \exists .

Bisimilarity game

With Kripke structures $\mathbb{S} = \langle S, \sigma \rangle$ and $\mathbb{S}' = \langle S', \sigma' \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{S}, \mathbb{S}')$ is played by \exists and \forall :

- ▶ at position (s, s'), \exists chooses a local bisimulation Z for $\sigma(s)$ and $\sigma'(s')$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(t, t') \in Z$.

Winning conditions:

- ► finite matches are lost by the player who gets stuck,
- infinite matches are won by \exists .

Theorem: For all $s, s': (s, s') \in Win_{\exists}(\mathcal{B})$ iff $\mathbb{S}, s \hookrightarrow \mathbb{S}', s'$.

Examples: Kripke structures

Overview

- ► Examples
- ► Coalgebra
- ► Automata for coalgebras
- ► Finally, . . .

Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems

- Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems
- ► It provides a natural framework for notions like
 - behavior

- Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems
- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence

- Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems
- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants

- Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems
- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- A coalgebra is a structure $\mathbb{S} = \langle S, \sigma : S \to FS \rangle$, where F is the type of the coalgebra.

- Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems
- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- A coalgebra is a structure S = ⟨S, σ : S → FS⟩, where F is the type of the coalgebra.
- Sufficiently general to model notions like: input, output, non-determinism, interaction, probability, . . .

- Universal Coalgebra (Rutten, 2000) is
 a general mathematical theory for evolving systems
- ► It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- ► A coalgebra is a structure S = ⟨S, σ : S → FS⟩, where F is the type of the coalgebra.
- Sufficiently general to model notions like: input, output, non-determinism, interaction, probability, . . .
- ► A pointed F-coalgebra is a pair (S, s₀) where S is a coalgebra, and s₀ is a designated point in S.

Examples

- streams: $FS = C \times S$
- ► bi-streams: $FS = C \times S \times S$
- Kripke frames: $FS = \wp(S)$
- Kripke models: $FS = \wp(\mathsf{Prop}) \times \wp(S)$

Examples

- streams: $FS = C \times S$
- ► bi-streams: $FS = C \times S \times S$
- Kripke frames: $FS = \wp(S)$
- Kripke models: $FS = \wp(\mathsf{Prop}) \times \wp(S)$
- ► finite words: $FS = C \times (S \uplus \{\downarrow\})$

Examples

- streams: $FS = C \times S$
- ► bi-streams: $FS = C \times S \times S$
- Kripke frames: $FS = \wp(S)$
- Kripke models: $FS = \wp(\mathsf{Prop}) \times \wp(S)$
- ▶ finite words: $FS = C \times (S \uplus \{\downarrow\})$
- ► finite trees: $FS = C \times ((S \times S) \uplus \{\downarrow\})$

► deterministic automata: $FS = \{0, 1\} \times S^C$

- ► deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$

- ► deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$
- (non-wellfounded) sets: $FS = \wp S$

- deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$
- ▶ (non-wellfounded) sets: $FS = \wp S$
- topologies: $FS = \wp \wp(S)$

Coalgebras over other base categories than \mathbf{Set} :

- deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$
- ▶ (non-wellfounded) sets: $FS = \wp S$
- topologies: $FS = \wp(S)$

Coalgebras over other base categories than Set:

► Harsanyi type space (game theory),

- deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$
- (non-wellfounded) sets: $FS = \wp S$
- topologies: $FS = \wp(S)$

Coalgebras over other base categories than Set:

- ► Harsanyi type space (game theory),
- descriptive general frames (modal logic)

- deterministic automata: $FS = \{0, 1\} \times S^C$
- ► labeled transition systems: $FS = (\wp S)^A$
- (non-wellfounded) sets: $FS = \wp S$
- topologies: $FS = \wp \wp(S)$

Coalgebras over other base categories than Set:

- ► Harsanyi type space (game theory),
- descriptive general frames (modal logic)

▶ . . .

Relation between algebra & coalgebra characterized by both similarities and dualities

- construction vs observation
 - $$\begin{split} \mathbb{A} &= \langle A, \alpha : A {\leftarrow} \mathsf{F} A \rangle \\ \mathbb{C} &= \langle C, \gamma : C {\rightarrow} \mathsf{F} C \rangle \end{split}$$

- construction vs observation $A = \langle A, \alpha : A \leftarrow \mathsf{F}A \rangle$ $\mathbb{C} = \langle C, \gamma : C \rightarrow \mathsf{F}C \rangle$
- congruence vs bisimulation

- construction vs observation $A = \langle A, \alpha : A \leftarrow \mathsf{F}A \rangle$ $\mathbb{C} = \langle C, \gamma : C \rightarrow \mathsf{F}C \rangle$
- congruence vs bisimulation
- induction vs coinduction

- construction vs observation $A = \langle A, \alpha : A \leftarrow \mathsf{F}A \rangle$ $\mathbb{C} = \langle C, \gamma : C \rightarrow \mathsf{F}C \rangle$
- congruence vs bisimulation
- induction vs coinduction
- varieties vs covarieties

- construction vs observation $A = \langle A, \alpha : A \leftarrow \mathsf{F}A \rangle$ $\mathbb{C} = \langle C, \gamma : C \rightarrow \mathsf{F}C \rangle$
- congruence vs bisimulation
- induction vs coinduction
- varieties vs covarieties

^{▶ . . .}

Coalgebras and their morphisms

Definition: Let F be a set functor.

Coalgebras and their morphisms

Definition: Let F be a set functor.

• An F-coalgebra is a pair $\mathbb{S} = \langle S, \sigma : S \to \mathsf{F}S \rangle$.

Coalgebras and their morphisms

Definition: Let F be a set functor.

- An F-coalgebra is a pair $\mathbb{S} = \langle S, \sigma : S \to \mathsf{F}S \rangle$.
- A coalgebra homomorphism between two coalgebras S and S' is a map $f: S \to S'$ such that $\sigma' \circ f = Ff \circ \sigma$:

Overview of talk

- ► Examples
- ► Coalgebra
- Automata for coalgebras
- ► Finally, . . .

Venema

automata: finite devices classifying potentially infinite objects

- automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata

- automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ► rich history: Büchi, Rabin, Janin & Walukiewicz, . . .

- automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ► rich history: Büchi, Rabin, Janin & Walukiewicz, . . .
- ► applications in model checking

- automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ▶ rich history: Büchi, Rabin, Janin & Walukiewicz, . . .
- ► applications in model checking
- ► here: coalgebraic perspective
Automata Theory

- automata: finite devices classifying potentially infinite objects
- strong connections with (fixpoint/second order) logic
 Slogan: formulas are automata
- ► rich history: Büchi, Rabin, Janin & Walukiewicz, . . .
- ► applications in model checking
- ► here: coalgebraic perspective

Claim: Coalgebra is a **natural** level of generality for studying automata

(Local) Bisimulation revisited

Definition: Let A and S be two coalgebras of type F, let $\alpha \in FA$ and $\sigma \in FS$.

(Local) Bisimulation revisited

Definition: Let A and S be two coalgebras of type F, let $\alpha \in FA$ and $\sigma \in FS$.

Then $Z \subseteq A \times S$ is a local bisimulation for α and σ , if . . .

Fix a coalgebra type F.

Fact: Any relation $Z \subseteq S \times S'$ can be lifted to a relation $\overline{\mathsf{F}}(Z) \subseteq \mathsf{F}S \times \mathsf{F}S'$.

Fix a coalgebra type F.

Fact: Any relation $Z \subseteq S \times S'$ can be lifted to a relation $\overline{\mathsf{F}}(Z) \subseteq \mathsf{F}S \times \mathsf{F}S'$.

Examples

streams (FS =
$$C \times S$$
)
((c, t), (c', t')) $\in \overline{\mathsf{F}}(Z)$ iff $c = c'$ & (t, t') $\in Z$.

Fix a coalgebra type F.

Fact: Any relation $Z \subseteq S \times S'$ can be lifted to a relation $\overline{\mathsf{F}}(Z) \subseteq \mathsf{F}S \times \mathsf{F}S'$.

Examples

streams (FS =
$$C \times S$$
)
((c, t), (c', t')) $\in \overline{F}(Z)$ iff $c = c' \& (t, t') \in Z$.

bistreams (FS = $C \times S \times S$) ($(c, t_L, t_R), (c', t'_L, t'_R)$) $\in \overline{F}(Z)$ iff $c = c' \& ((t_L, t'_L), (t_R, t'_R)) \in Z$.

Fix a coalgebra type F.

Fact: Any relation $Z \subseteq S \times S'$ can be lifted to a relation $\overline{\mathsf{F}}(Z) \subseteq \mathsf{F}S \times \mathsf{F}S'$.

Examples

streams (FS =
$$C \times S$$
)
((c, t), (c', t')) $\in \overline{\mathsf{F}}(Z)$ iff $c = c' \& (t, t') \in Z$.

bistreams (FS = $C \times S \times S$) ($(c, t_L, t_R), (c', t'_L, t'_R)$) $\in \overline{\mathsf{F}}(Z)$ iff $c = c' \& ((t_L, t'_L), (t_R, t'_R)) \in Z$.

Kripke models (FS = $\wp(\operatorname{Prop}) \times \wp(S)$) ($(\pi, T), (\pi', T')$) $\in \overline{\mathsf{F}}(Z)$ iff $\pi = \pi' \& (T, T') \in \overline{\wp}(Z)$.

Coalgebra Automata

Bisimulation via relation lifting

Definition: Let A and S be two coalgebras of type F, let $\alpha \in FA$ and $\sigma \in FS$.

Bisimulation via relation lifting

Definition: Let A and S be two coalgebras of type F, let $\alpha \in FA$ and $\sigma \in FS$.

Then $Z \subseteq A \times S$ is a local bisimulation for α and σ , if $(\alpha, \sigma) \in \overline{\mathsf{F}}(Z)$.

Bisimulation via relation lifting

Definition: Let A and S be two coalgebras of type F, let $\alpha \in FA$ and $\sigma \in FS$.

Then $Z \subseteq A \times S$ is a local bisimulation for α and σ , if $(\alpha, \sigma) \in \overline{\mathsf{F}}(Z)$.

 $Z \subseteq A \times S$ is a bisimulation iff $(\alpha(a), \sigma(s)) \in \overline{\mathsf{F}}(Z)$ whenever $(a, s) \in Z$.

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

▶ at position (a, s), \exists chooses a local bisimulation Z for $\alpha(a)$ and $\sigma(s)$;

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

- ▶ at position (a, s), \exists chooses a local bisimulation Z for $\alpha(a)$ and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

- ▶ at position (a, s), \exists chooses a local bisimulation Z for $\alpha(a)$ and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

- ▶ at position (a, s), \exists chooses a local bisimulation Z for $\alpha(a)$ and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

► finite matches are lost by the player who gets stuck,

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

- ▶ at position (a, s), \exists chooses a local bisimulation Z for $\alpha(a)$ and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

- ► finite matches are lost by the player who gets stuck,
- infinite matches are won by \exists .

With F-coalgebras $\mathbb{A} = \langle A, \alpha \rangle$ and $\mathbb{S} = \langle S, \sigma \rangle$,

the bisimilarity game $\mathcal{B}(\mathbb{A}, \mathbb{S})$ is played by \exists and \forall :

- ▶ at position (a, s), \exists chooses a local bisimulation Z for $\alpha(a)$ and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

- ► finite matches are lost by the player who gets stuck,
- infinite matches are won by \exists .

Theorem: For all $a, s: (a, s) \in Win_{\exists}(\mathcal{B})$ iff $\mathbb{A}, a \cong \mathbb{S}, s$.

Coalgebra Automata

Venema

Change of perspective

Think of one structure (A) as classifying the other (S):

Think of one structure (A) as classifying the other (S):

Turn \mathbbm{A} into an automaton by the following three modifications:

Think of one structure (A) as classifying the other (S):

Turn \mathbbm{A} into an automaton by the following three modifications:

► A must be finite

Think of one structure (A) as classifying the other (S):

Turn \mathbb{A} into an automaton by the following three modifications:

- ► A must be finite
- \blacktriangleright Some infinite matches may be won by \forall

Think of one structure (A) as classifying the other (S):

Turn \mathbb{A} into an automaton by the following three modifications:

- ► A must be finite
- Some infinite matches may be won by \forall

Implement by (Büchi/Muller/...) acceptance condition $Acc \subseteq A^{\omega}$.

Think of one structure (A) as classifying the other (S):

Turn \mathbb{A} into an automaton by the following three modifications:

- ► A must be finite
- Some infinite matches may be won by ∀
 Implement by (Büchi/Muller/...) acceptance condition Acc ⊆ A^ω.
- Introduce nondeterminism on $\mathbb{A} = \langle A, \Delta, Acc \rangle$ by putting $\Delta : A \to \wp \mathsf{F}A$.

Think of one structure (A) as classifying the other (S):

Turn \mathbb{A} into an automaton by the following three modifications:

- ► A must be finite
- Some infinite matches may be won by ∀
 Implement by (Büchi/Muller/...) acceptance condition Acc ⊆ A^ω.
- Introduce nondeterminism on $\mathbb{A} = \langle A, \Delta, Acc \rangle$ by putting $\Delta : A \to \wp \mathsf{F}A$.

Definition A coalgebra automaton of type F is a triple $\mathbb{A} = \langle A, \Delta, Acc \rangle$.

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

- ► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;
- ▶ at position $(\alpha, s) \in FA \times S$, ∃ chooses a local bisimulation Z for α and $\sigma(s)$;

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

- ► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;
- ▶ at position $(\alpha, s) \in FA \times S$, ∃ chooses a local bisimulation Z for α and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

- ► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;
- ▶ at position $(\alpha, s) \in FA \times S$, \exists chooses a local bisimulation Z for α and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

- ► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;
- ► at position $(\alpha, s) \in FA \times S$, \exists chooses a local bisimulation Z for α and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

► finite matches are lost by the player who gets stuck,

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

- ► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;
- ► at position $(\alpha, s) \in FA \times S$, \exists chooses a local bisimulation Z for α and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

- ► finite matches are lost by the player who gets stuck,
- ▶ infinite matches are won as specified by *Acc*.

With A an F-automaton and S an F-coalgebra, \exists and \forall may play the following acceptance game $\mathcal{B}(\mathbb{A}, \mathbb{S})$:

- ► at position $(a, s) \in A \times S$, \exists chooses an element α of $\Delta(a)$; the new position is (α, s) ;
- ► at position $(\alpha, s) \in FA \times S$, \exists chooses a local bisimulation Z for α and $\sigma(s)$;
- ▶ at position $Z \subseteq A \times S$, \forall chooses $(b, t) \in Z$

Winning conditions:

- ► finite matches are lost by the player who gets stuck,
- ▶ infinite matches are won as specified by *Acc*.

Definition: A pointed F-automaton (\mathbb{A}, a) accepts a pointed F-coalgebra (\mathbb{S}, s) if $(a, s) \in Win_{\exists}(\mathcal{B}(\mathbb{A}, \mathbb{S}))$.

Coalgebra automata

Existing automata on words, trees, graphs, etc, are all special instances of coalgebra automata.

Coalgebra automata

Existing automata on words, trees, graphs, etc, are all special instances of coalgebra automata.

Nondeterministic tree automata are usually presented as $\mathbb{A} = \langle A, \Delta : A \times C \to \wp(A \times A), Acc \rangle.$

Coalgebra automata

Existing automata on words, trees, graphs, etc, are all special instances of coalgebra automata.

Nondeterministic tree automata are usually presented as $\mathbb{A} = \langle A, \Delta : A \times C \to \wp(A \times A), Acc \rangle.$

This is equivalent to our presentation where $\Delta : A \to \wp(C \times A \times A)$:
Coalgebra automata

Existing automata on words, trees, graphs, etc, are all special instances of coalgebra automata.

Nondeterministic tree automata are usually presented as $\mathbb{A} = \langle A, \Delta : A \times C \to \wp(A \times A), Acc \rangle.$

This is equivalent to our presentation where $\Delta : A \to \wp(C \times A \times A)$:

$$(A \times C) \to \wp(A \times A) \cong (A \times C) \to ((A \times A) \to 2)$$
$$\cong (A \times C \times A \times A) \to 2$$
$$\cong A \to (C \times A \times A) \to 2)$$
$$\cong A \to \wp(C \times A \times A)$$

- Coalgebra automata are similar to the coalgebras themselves:

- Coalgebra automata are similar to the coalgebras themselves:
- Acceptance generalizes bisimilarity.

- Coalgebra automata are similar to the coalgebras themselves:
- Acceptance generalizes bisimilarity.
- Separate the combinatorics (Acc) from the dynamics (Δ) .

(The following are joint results with Clemens Kupke)

(The following are joint results with Clemens Kupke)

Theorem: Let F be an arbitrary set functor preserving weak pullbacks.

► Finite Model Property If an nondeterministic F-automaton A accepts some coalgebra then it accepts a finite one.

(The following are joint results with Clemens Kupke)

- ► Finite Model Property If an nondeterministic F-automaton A accepts some coalgebra then it accepts a finite one.
- Closure Properties The recognizable languages (classes of F-coalgebras that are accepted by some F-automaton) are closed under
 - union
 - intersection
 - projection modulo bisimulation

(The following are joint results with Clemens Kupke)

- ► Finite Model Property If an nondeterministic F-automaton A accepts some coalgebra then it accepts a finite one.
- Closure Properties The recognizable languages (classes of F-coalgebras that are accepted by some F-automaton) are closed under
 - union
 - intersection
 - projection modulo bisimulation
- Determinization There is a construction transforming an alternating F-automaton into an equivalent nondeterministic one.

(The following are joint results with Clemens Kupke)

- ► Finite Model Property If an nondeterministic F-automaton A accepts some coalgebra then it accepts a finite one.
- Closure Properties The recognizable languages (classes of F-coalgebras that are accepted by some F-automaton) are closed under
 - union
 - intersection
 - projection modulo bisimulation
- Determinization There is a construction transforming an alternating F-automaton into an equivalent nondeterministic one.
- ► Logic The above results have various corollaries in fixpoint logics.

What is this good for?

conceptual clarification

- conceptual clarification
 - separate combinatorics from dynamics

- conceptual clarification
 - separate combinatorics from dynamics
 - right level of abstraction

- conceptual clarification
 - separate combinatorics from dynamics
 - right level of abstraction
 - coalgebraic automata constructions

- conceptual clarification
 - separate combinatorics from dynamics
 - right level of abstraction
 - coalgebraic automata constructions
- uniform proofs

- conceptual clarification
 - separate combinatorics from dynamics
 - right level of abstraction
 - coalgebraic automata constructions
- uniform proofs
- apply theory in new settings

 B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction Bull. of the European Association for Theoretical Computer Science, 62:222–259, 1997.

- B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction Bull. of the European Association for Theoretical Computer Science, 62:222–259, 1997.
- ► J. Rutten. Universal coalgebra: A theory of systems Theoretical Computer Science, 249:3–80, 2000.

- B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction Bull. of the European Association for Theoretical Computer Science, 62:222–259, 1997.
- ► J. Rutten. Universal coalgebra: A theory of systems Theoretical Computer Science, 249:3–80, 2000.
- A. Kurz. Coalgebras and modal logic Lecture Notes for ESSLLI'01; available from http://www.cs.le.ac.uk/people/akurz.
- Y. Venema. Algebras and Coalgebras
 In van Benthem, Blackburn & Wolter (eds.), Handbook of Modal Logic, 2006.

- B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction Bull. of the European Association for Theoretical Computer Science, 62:222–259, 1997.
- ► J. Rutten. Universal coalgebra: A theory of systems Theoretical Computer Science, 249:3–80, 2000.
- A. Kurz. Coalgebras and modal logic Lecture Notes for ESSLLI'01; available from http://www.cs.le.ac.uk/people/akurz.
- Y. Venema. Algebras and Coalgebras
 In van Benthem, Blackburn & Wolter (eds.), Handbook of Modal Logic, 2006.
- Y. Venema. Automata and fixed point logic: a coalgebraic perspective Information and Computation, 204 (2006) 637–678.
- C. Kupke and Y. Venema. Closure properties of coalgebra automata LICS 2005, 199–208.