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A stream (stream coalgebra) is a pair S = 〈S, σ : S → C × S〉.
E.g. model an infinite word c0c1c2 . . . as 〈ω, λn.(cn, n + 1)〉.
Write σ(s) = (col(s), nxt(s)).

Behaviour: Beh(s) = col(s)col(nxt(s))col(nxt2(s)) . . .

Examples: streams 3
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Beh(s0) = ••••••• · · ·

= Beh(s′0)

Definition: s in S is behaviorally equivalent to s′ in S′ if Beh(s) = Beh(s′).

Examples: streams 4
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Z ⊆ S × S′ is a bisimulation
if for all (s, s′) ∈ Z:
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2. (nxt(s), nxt(s′) ∈ Z.

s in S and s′ in S
′ are bisimilar if

linked by some bisimulation Z.
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Z ⊆ S × S′ is a bisimulation
if for all (s, s′) ∈ Z:

1. col(s) = col(s′),

2. (nxt(s), nxt(s′) ∈ Z.

s in S and s′ in S
′ are bisimilar if

linked by some bisimulation Z.

Theorem: bisimilarity = behavioral equivalence

Examples: streams 6
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A bistream is a pair S = 〈S, σ : S → C × S × S〉.
Write σ(s) = (col(s), lft(s), rgt(s)).

E.g. model an
infinite C-labeled
binary tree

γ : {0, 1}∗ → C as
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Bistreams bisimulations

Definition: Let S and S′ be two bistreams.

Z ⊆ S × S′ is a bisimulation if for all (s, s′) ∈ Z:

1. col(s) = col(s′),

2. (lft(s), lft(s′)) ∈ Z and (rgt(s), rgt(s′)) ∈ Z,

Definition: An infinite C-labeled binary tree is regular iff it is bisimilar to
a finite bistream

Examples: bistreams 8
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Examples: Kripke models 9
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Kripke structure: pair S = 〈S, σ : S → ℘Prop × ℘S〉, with

• σ(s) = (σV (s), σR(s)) given by

σV (s) ⊆ Prop is the set of variables true at s,

σR(s) ⊆ S is the set of successors of s.

Abbreviate KS := ℘Prop × ℘S.

Examples: Kripke models 9
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Proposition: Let Z ⊆ S × S′ for two Kripke structures S and S′.
Z is a bisimulation iff it is a local bisimulation for (σ(s), σ′(s′)) whenever
(s, s′) ∈ Z.

Coalgebra 12
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Bisimilarity game

With Kripke structures S = 〈S, σ〉 and S′ = 〈S′, σ′〉,
the bisimilarity game B(S, S′) is played by ∃ and ∀:

� at position (s, s′), ∃ chooses a local bisimulation Z for σ(s) and σ′(s′);

� at position Z ⊆ A × S, ∀ chooses (t, t′) ∈ Z.

Winning conditions:

� finite matches are lost by the player who gets stuck,

� infinite matches are won by ∃.

Theorem: For all s, s′: (s, s′) ∈ Win∃(B) iff S, s ↔ S
′, s′.

Examples: Kripke structures 13
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Coalgebra

� Universal Coalgebra (Rutten, 2000) is
a general mathematical theory for evolving systems

� It provides a natural framework for notions like

• behavior
• bisimulation/behavioral equivalence
• invariants

� A coalgebra is a structure S = 〈S, σ : S → FS〉,
where F is the type of the coalgebra.

� Sufficiently general to model notions like:
input, output, non-determinism, interaction, probability, . . .

� A pointed F-coalgebra is a pair (S, s0) where S is a coalgebra, and s0 is
a designated point in S.
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Coalgebras and their morphisms

Definition: Let F be a set functor.

� An F-coalgebra is a pair S = 〈S, σ : S → FS〉.
� A coalgebra homomorphism between two coalgebras S and S

′ is a map
f : S → S′ such that σ′ ◦ f = Ff ◦ σ:

FS

S

FS′

S′

� �
�

�

σ σ′

f

Ff
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Venema JAIST 2006

Overview of talk

� Examples

� Coalgebra

� Automata for coalgebras

� Finally, . . .

Coalgebra Automata 20



Venema JAIST 2006

Automata Theory

Coalgebra Automata 21



Venema JAIST 2006

Automata Theory

� automata: finite devices classifying potentially infinite objects

Coalgebra Automata 21



Venema JAIST 2006

Automata Theory

� automata: finite devices classifying potentially infinite objects

� strong connections with (fixpoint/second order) logic
Slogan: formulas are automata

Coalgebra Automata 21



Venema JAIST 2006

Automata Theory

� automata: finite devices classifying potentially infinite objects

� strong connections with (fixpoint/second order) logic
Slogan: formulas are automata
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� strong connections with (fixpoint/second order) logic
Slogan: formulas are automata

� rich history: Büchi, Rabin, Janin & Walukiewicz, . . .

� applications in model checking

� here: coalgebraic perspective

Claim: Coalgebra is a natural level of generality for studying automata
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((c, t), (c′, t′)) ∈ F(Z) iff c = c′ & (t, t′) ∈ Z.

bistreams (FS = C × S × S)
((c, tL, tR), (c′, t′L, t′R))∈F(Z) iff c=c′ & ((tL, t′L), (tR, t′R))∈Z.
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((c, t), (c′, t′)) ∈ F(Z) iff c = c′ & (t, t′) ∈ Z.

bistreams (FS = C × S × S)
((c, tL, tR), (c′, t′L, t′R))∈F(Z) iff c=c′ & ((tL, t′L), (tR, t′R))∈Z.

Kripke models (FS = ℘(Prop) × ℘(S))
((π, T ), (π′, T ′)) ∈ F(Z) iff π = π′ & (T, T ′) ∈ ℘(Z).
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Bisimulation via relation lifting

Definition: Let A and S be two coalgebras of type F, let α ∈ FA and
σ ∈ FS.

Then Z ⊆ A × S is a local bisimulation for α and σ, if (α, σ) ∈ F(Z).

Z ⊆ A × S is a bisimulation iff (α(a), σ(s)) ∈ F(Z) whenever (a, s) ∈ Z.
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Bisimilarity game

With F-coalgebras A = 〈A, α〉 and S = 〈S, σ〉,
the bisimilarity game B(A, S) is played by ∃ and ∀:

� at position (a, s), ∃ chooses a local bisimulation Z for α(a) and σ(s);

� at position Z ⊆ A × S, ∀ chooses (b, t) ∈ Z

Winning conditions:

� finite matches are lost by the player who gets stuck,

� infinite matches are won by ∃.

Theorem: For all a, s: (a, s) ∈ Win∃(B) iff A, a ↔ S, s.
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Change of perspective

Think of one structure (A) as classifying the other (S):

Turn A into an automaton by the following three modifications:

� A must be finite

� Some infinite matches may be won by ∀
Implement by (Büchi/Muller/. . . ) acceptance condition Acc ⊆ Aω.

� Introduce nondeterminism on A = 〈A,∆,Acc〉 by putting ∆ : A → ℘FA.

Definition A coalgebra automaton of type F is a triple A = 〈A, ∆,Acc〉.
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Acceptance game
With A an F-automaton and S an F-coalgebra, ∃ and ∀ may play the
following acceptance game B(A, S):

� at position (a, s) ∈ A × S, ∃ chooses an element α of ∆(a); the new
position is (α, s);

� at position (α, s)∈FA × S, ∃ chooses a local bisimulation Z for α and
σ(s);

� at position Z ⊆ A × S, ∀ chooses (b, t) ∈ Z

Winning conditions:

� finite matches are lost by the player who gets stuck,

� infinite matches are won as specified by Acc.

Definition: A pointed F-automaton (A, a) accepts a pointed F-coalgebra
(S, s) if (a, s) ∈ Win∃(B(A, S)).
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coalgebra automata.
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Coalgebra automata

Existing automata on words, trees, graphs, etc, are all special instances of
coalgebra automata.

Nondeterministic tree automata are usually presented as
A = 〈A, ∆ : A × C → ℘(A × A),Acc〉.
This is equivalent to our presentation where ∆ : A → ℘(C × A × A):

(A × C) → ℘(A × A) ∼= (A × C) → ((A × A) → 2)
∼= (A × C × A × A) → 2
∼= A → (C × A × A) → 2)
∼= A → ℘(C × A × A)
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General picture

Key observations

� Coalgebra automata are similar to the coalgebras themselves:

F-coalgebra S = 〈S, σ : S → FS〉
F-automaton A = 〈A, ∆ : A → ℘(FA),Acc〉

� Acceptance generalizes bisimilarity.

� Separate the combinatorics (Acc) from the dynamics (∆).
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Results in Universal Coalgebra
(The following are joint results with Clemens Kupke)

Theorem: Let F be an arbitrary set functor preserving weak pullbacks.

� Finite Model Property If an nondeterministic F-automaton A accepts
some coalgebra then it accepts a finite one.

� Closure Properties The recognizable languages (classes of F-coalgebras
that are accepted by some F-automaton) are closed under

• union
• intersection
• projection modulo bisimulation

� Determinization There is a construction transforming an alternating
F-automaton into an equivalent nondeterministic one.

� Logic The above results have various corollaries in fixpoint logics.
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What is this good for?

� conceptual clarification

• separate combinatorics from dynamics
• right level of abstraction
• coalgebraic automata constructions

� uniform proofs

� apply theory in new settings
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