
Geometries (1).

We call a structure 〈P,L, I〉 a plane geometry if
I ⊆ P × L is a relation.

We call the elements of P “points”, the elements of L
“lines” and we read pI` as “p lies on `”.

If ` and `∗ are lines, we say that ` and `∗ are parallel if
there is no point p such that pI` and pI`∗.

Example. If P = R2, then we call ` ⊆ P a line if

` = {〈x, y〉 ; y = a · x+ b}

for some a, b ∈ R. Let L be the set of lines. We write pI`
if p ∈ `. Then 〈P,L, I〉 is a plane geometry.
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Geometries (2).

(A1) For every p 6= q ∈ P there is exactly one ` ∈ L such
that pI` and qI`.

(A2) For every ` 6= `∗ ∈ L, either ` and `∗ are parallel, or
there is exactly one p ∈ P such that pI` and pI`∗.

(N) For every p ∈ P there is an ` ∈ L such that p doesn’t
lie on ` and for every ` ∈ L there is an p ∈ P such that p
doesn’t lie on `.

(P2) For every ` 6= `∗ ∈ L, there is exactly one p ∈ P

such that pI` and pI`∗.

A plane geometry that satisfies (A1), (A2) and (N) is called
a plane. A plane geometry that satisfies (A1), (P2) and (N)
is called a projective plane.
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Geometries (3).

(A1) For every p 6= q ∈ P there is exactly one ` ∈ L such that pI` and qI`.

(A2) For every ` 6= `∗ ∈ L, either ` and `∗ are parallel, or there is exactly one p ∈ P

such that pI` and pI`∗.

(N) For every p ∈ P there is an ` ∈ L such that p doesn’t lie on ` and for every ` ∈ L

there is an p ∈ P such that p doesn’t lie on `.

Let P := 〈R2,L,∈〉. Then P is a plane.

(WE) (“the weak Euclidean postulate”) For every ` ∈ L and every
p ∈ P such that p doesn’t lie on `, there is an `∗ ∈ L

such that pI`∗ and ` and `∗ are parallel.

(SE) (“the strong Euclidean postulate”) For every ` ∈ L and every
p ∈ P such that p doesn’t lie on `, there is exactly one
`∗ ∈ L such that pI`∗ and ` and `∗ are parallel.

P is a strongly Euclidean plane.
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Geometries (4).

Question. Do (A1), (A2), (N), and (WE) imply (SE)?

It is easy to see what a positive solution would be, but a
negative solution would require reasoning over all possible
proofs.

Semantic version of the question. Is every weakly
Euclidean plane strongly Euclidean?
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Syntactic versus semantic.

Does Φ imply ψ? Does every Φ-structure satisfy ψ?

Positive Give a proof Check all structures

∃ ∀
Negative Check all proofs Give a counterexample

∀ ∃
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Euclid’s Fifth Postulate.

“the scandal of elementary geometry” (D’Alembert 1767)
“In the theory of parallels we are even now not further than Euclid. This is a shameful part of
mathematics...” (Gauss 1817)

Johann Carl Friedrich Gauss Nikolai Ivanovich Lobachevsky János Bolyai

(1777-1855) (1792-1856) (1802-1860)

1817 1829 1823
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A non-Euclidean geometry.

Take the usual geometry P = 〈R2,L,∈〉 on the Euclidean
plane.

Consider U := {x ∈ R2 ; ‖x‖ < 1}. We define the restriction
of L to U by LU := {` ∩ U ; ` ∈ L}.

U := 〈U,LU,∈〉.

Theorem. U is a weakly Euclidean plane which is not
strongly Euclidean.
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Cantor (1).

Georg Cantor
(1845-1918)
studied in Zürich, Berlin, Göttingen
Professor in Halle

Work in analysis leads to the notion of cardinality
(1874): most real numbers are transcendental.

Correspondence with Dedekind (1831-1916): bijection
between the line and the plane.

Perfect sets and iterations of operations lead to a notion
of ordinal number (1880).
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Cantor (2).

Georg Cantor (1845-1918)

1877. Leopold Kronecker (1823-1891) tried to prevent
publication of Cantor’s work.

Cantor is supported by Dedekind and Felix Klein.

1884: Cantor suffers from a severe depression.

1888-1891: Cantor is the leading force in the foundation
of the Deutsche Mathematiker-Vereinigung.

Development of the foundations of set theory:
1895-1899.
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Cardinality (1).

The natural numbers 0
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5 6 7 8 ...

The even numbers 0 2 4 6 8 ...

There is a 1-1 correspondence (bijection) between N

and the even numbers.

There is a bijection between N × N and N.

There is a bijection between Q and N.

There is no bijection between the set of infinite 0-1
sequences and N.

There is no bijection between R and N.
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Cardinality (2).

Theorem (Cantor). There is no bijection between the set of
infinite 0-1 sequences and N.

Theorem (Cantor). There is a bijection between the real
line and the real plane.
Proof. Let’s just do it for the set of infinite 0-1 sequences and the set of pairs of infinite 0-1
sequences:
If x is an infinite 0-1 sequence, then let

x0(n) := x(2n), and

x1(n) := x(2n+ 1).

Let F (x) := 〈x0, x1〉. F is a bijection. q.e.d.

Cantor to Dedekind (1877): “Ich sehe es, aber ich glaube
es nicht!”
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Transfiniteness (1).

If X ⊆ R is a set of reals, we call x ∈ X isolated in X if no
sequence of elements of X converges to x.

Cantor’s goal: Given any set X, give a construction of a
nonempty subset that doesn’t contain any isolated points.

Idea: Let X isol be the set of all points isolated in X, and
define X ′ := X\X isol.

Problem: It could happen that x ∈ X ′ was the limit of a
sequence of points isolated in X. So it wasn’t isolated in X,
but is now isolated in X ′.

Solution: Iterate the procedure: X0 := X and
Xn+1 := (Xn)′.
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Transfiniteness (2).

X′ := X\X isol; X0 := X and Xn+1 := (Xn)′.

Question: Is
⋂

n∈NXn a set without isolated points?

Answer: In general, no!

So, you could set X∞ :=
⋂

n∈NXn, and then X∞+1 := (X∞)′;
in general, X∞+n+1 := (X∞+n)′.

The indices used in transfinite iterations like this are called
ordinals.
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Sets (1).

The notion of cardinality needs a general notion of function
as a special relation between sets. In order to make the
notion of an ordinal precise, we also need sets.

What is a set?
Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)
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Sets (2).

Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge
unserer Anschauung oder unseres Denkens zu einem Ganzen. (Cantor 1895)

Example. Call a linear ordering ≤ on a set X a wellorder if
any nonempty set A ⊆ X has a ≤-least element.
Question. Can we define a wellorder on the set R of real
numbers?
Answer (Zermelo 1908). Yes! The proof uses the following
statement about sets: “Whenever I is an index set and for
each i ∈ I, the set Xi is nonempty, then the set C of
functions f : I →

⋃
Xi such that for all i, we have f(i) ∈ Xi

is nonempty as well.”

 Problems in the Foundations of Mathematics (next week)
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Syllogistics versus Propositional Logic.

Deficiencies of Syllogistics:

Not expressible:
Every X is a Y and a Z. Ergo... Every X is a Y .

Deficiencies of Propositional Logic:

XaY can be represented as Y → X.

XeY can be represented as Y → ¬X.

Not expressible:
XiY and XoY .
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Frege.

Gottlob Frege
1848 - 1925

Studied in Jena and Göttingen.

Professor in Jena.

Begriffsschrift (1879).

Grundgesetze der Arithmetik (1893/1903).

“Every good mathematician is at least half a philosopher, and every good philosopher is at
least half a mathematician. (G. Frege)”
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Frege’s logical framework.

“Everything is M ” ∀xM(x)

“Something is M ” ∃xM(x) ≡ ¬∀x¬M(x)

“Nothing is M ” ∀x¬M(x)

“Some P is an M ” ∃x (P (x) ∧M(x))

≡ ¬∀x (P (x) → ¬M(x))

Second order logic allowing for quantification over
properties.
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Frege’s importance.

Notion of a formal system.

Formal notion of proof in a formal system.

Analysis of number-theoretic properties in terms of
second-order properties.
 Russell’s Paradox
(Grundlagekrise der Mathematik )
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Hilbert (1).

David Hilbert (1862-1943)
Student of Lindemann
1886-1895 Königsberg
1895-1930 Göttingen

1899: Grundlagen der Geometrie
“Man muss jederzeit an Stelle von ‘Punkten’, ‘Geraden’, ‘Ebenen’ ‘Tische’, ‘Stühle’,
‘Bierseidel’ sagen können.”
“It has to be possible to say ‘tables’, ‘chairs’ and ‘beer mugs’ instead of ‘points’, ‘lines’ and
‘planes’ at any time.”

Core Logic – 2006/07-1ab – p. 22/34



Hilbert (2).

1928: Hilbert-Ackermann
Grundzüge der Theoretischen Logik

Wilhelm Ackermann (1896-1962)
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First order logic (1).

A first-order language L is a set {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} of
function symbols and relation symbols together with a
signature σ : I ∪ J → N.

σ(ḟi) = n is interpreted as “ḟi represents an n-ary
function”.

σ(Ṙi) = n is interpreted as “Ṙi represents an n-ary
relation”.

In addition to the symbols from L, we shall be using the
logical symbols ∀, ∃, ∧, ∨, →, ¬, ↔, equality =, and a set of
variables Var.
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First order logic (2).

We fix a first-order language L = {̇fi ; i ∈ I} ∪ {Ṙj ; j ∈ J} and a signature σ : I ∪ J → N.

Definition of an L-term.

Every variable is an L-term.

If σ(ḟi) = n, and t1, ..., tn are L-terms, then ḟi(t1, ..., tn) is
an L-term.

Nothing else is an L-term.

Example. Let L = {×̇} be a first order language with a
binary function symbol.

×̇(x, x) is an L-term (normally written as x×̇x, or x2).

×̇(×̇(x, x), x) is an L-term (normally written as (x×̇x)×̇x, or x3).
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First order logic (3).

Definition of an L-formula.

If t and t∗ are L-terms, then t = t∗ is an L-formula.

If σ(Ṙi) = n, and t1, ..., tn are L-terms, then Ṙi(t1, ..., tn)
is an L-formula.

If ϕ and ψ are L-formulae and x is a variable, then ¬ϕ,
ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, ∀x (ϕ) and ∃x (ϕ) are
L-formulae.

Nothing else is an L-formula.

An L-formula without free variables is called an L-sentence.
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