Core Logic

1st Semester 2006/2007, period a & b

Dr Benedikt Löwe

Aristotle's work on logic.

The **Organon**.

- Categories
- On Interpretation
- Prior Analytics
- Posterior Analytics
- Topics
- On Sophistical Refutations (De Sophisticis Elenchis)

The Categories.

Aristotle, Categories: The ten categories (1b25).

Substance When

Quality Position

Quantity Having

Relation Action

Where Passion

The two ways of predication.

- essential predication: "Socrates is a human being"; "human IS SAID OF Socrates" Grice: IZZing
- accidental predication: "Socrates is wise"; "wisdom IS IN Socrates" Grice: HAZZing

Essential predication.

- "essential": You cannot deny the predicate without changing the meaning of the subject.
 - "animal IS SAID OF human".
 - "human IS SAID OF Socrates".
- IS SAID OF is a transitive relation.
- Related to the category tree:

Substances.

Universal substances	Universal accidents
human, animal	wisdom
Particular substances	Particular accidents
Socrates, Aristotle	

- Plato (↑). The universal substances are the (only) real things.
- Aristotle (↓). Without the particular substances, nothing would exist.

Matter & Form.

- Categories / De anima: There are three kinds of substance: matter, form and the compound of the two.
- Matter is potentiality; form is actuality.
- Aristotle in the *Metaphysics*: *Primary substances* cannot be compounds, not even of matter and form. Matter cannot be *primary*, therefore, the *primary* substance is the form.
- Metaphysics Z (1037a6): "it is also clear that the soul is the primary substance, the body is matter, and man or animal is composed of the two as universal."

The intricate connection between the analysis of predication (philosophy of language, semantics, logic) and the analysis of 'the soul' will become important in the medieval context.

The most famous syllogism.

Every man is mortal.

Socrates is a man.

Socrates is mortal.

Proper name / "Particular substance"

A more typical syllogism.

Every animal is mortal. Every man is an animal.

Every man is mortal.

Every B is an A. Every C is a B.

"a valid mood" mood = *modus*

Every C is an A.

"Barbara"

Another valid mood.

Every philosopher is mortal. Some teacher is a philosopher.

Some teacher is mortal.

Every B is an A. Some C is a B.

Some C is an A.

"Darii"

A similar but invalid mood.

"Darii"

Every B is an A. Some C is a B. Every A is a B. Some C is a B.

Some C is an A.

Some C is an A.

Every philosopher is mortal. Some nonphilosopher is mortal.

Some nonphilosopher is a philosopher.

Yet another very similar mood.

"Darii" The invalid mood "Datisi"

Every B is an A. Every A is a B. Every B is a A. Some C is a B. Some C is an C.

Some C is an C. Some C is an C. Some C is an C. Some C is an C. Some C is an C. Some C is an C. Some C is an C. Some C is an C. Some C is an C. Some C is an C. Every C is an C are intuitively equivalent. "Every C is an C and "Every C is a C" are intuitively equivalent.

A first conversion rule.

This yields a simple formal (syntactical) conversion rule:

"Some X is a Y" can be converted to "Some Y is an X."

This rule is validity-preserving and syntactical.

Back to Darii and Datisi.

Methodology of Syllogistics.

- Start with a list of obviously valid moods (perfect syllogisms ≅ "axioms")...
- ...and a list of conversion rules,
- derive all valid moods from the perfect syllogisms by conversions,
- and find counterexamples for all other moods.

Notation (1).

Syllogistics is a term logic, not propositional or predicate logic.

We use capital letters A, B, and C for terms, and sometimes X and Y for variables for terms.

Terms (termini) form part of a categorical proposition. Each categorical proposition has two terms:

a subject and a predicate, connected by a copula.

Every B is an A.

Notation (2).

There are four copulae:

The universal affirmative: Every — is a —.
The universal negative: No — is a —.
The particular affirmative: Some — is a —.
The particular negative: Some — is not a —.

Every B is an A. \rightsquigarrow AaBNo B is an A. \rightsquigarrow AeBSome B is an A. \rightsquigarrow AiBSome B is not an A. \rightsquigarrow AoB

Contradictories: a-o & e-i.

Notation (3).

```
Every B is an A A a B

Barbara Every C is a B B a C

Every C is an A A a C
```

Each syllogism contains three terms and three categorial propositions. Each of its categorial propositions contains two of its terms. Two of the categorial propositions are premises, the other is the conclusion.

The term which is the predicate in the conclusion, is called the major term, the subject of the conclusion is called the minor term, the term that doesn't occur in the conclusion is called the middle term.

Notation (4).

```
Every B is an A A a B

Every C is a B B a C

Every C is an A A a C
```

Major term / Minor term / Middle term

Only one of the premises contains the major term. This one is called the major premise, the other one the minor premise.

Ist Figure IInd Figure
$$A \longrightarrow B, \ B \longrightarrow C: A \longrightarrow C \quad B \longrightarrow A, \ B \longrightarrow C: A \longrightarrow C$$
 IIIrd Figure IVth Figure
$$A \longrightarrow B, \ C \longrightarrow B: A \longrightarrow C \quad B \longrightarrow A, \ C \longrightarrow B: A \longrightarrow C$$

Notation (5).

If you take a figure, and insert three copulae, you get a mood.

Combinatorics of moods.

With four copulae and three slots, we get

$$4^3 = 64$$

moods from each figure, *i.e.*, $4 \times 64 = 256$ in total. Of these, 24 have been traditionally seen as valid.

```
A a B , B i C : A i C \longrightarrow Darii A a B , C i B : A i C \longrightarrow Datisi
```

The 24 valid moods (1).

```
Ist fi gure
           AaB
                     BaC
                               AaC
                                      Barbara
           AeB
                                      Celarent
                     BaC
                               AeC
                     BiC
                                      Darii
           AaB
                               AiC
           AeB
                     BiC
                                      Ferio
                               AoC
           AaB
                     BaC
                               AiC
                                      Barbari
           AeB
                     BaC
                               AoC
                                      Celaront
IInd fi gure
                     BaC
           BeA
                               AeC
                                      Cesare
           BaA
                    BeC
                               AeC
                                      Camestres
                                      Festino
           BeA
                     BiC
                               AoC
           BaA
                     BoC
                               AoC
                                      Baroco
           BeA
                     BaC
                               AoC
                                      Cesaro
           BaA
                                      Camestrop
                     BeC
                               AoC
```

The 24 valid moods (2).

```
IIIrd fi gure
           AaB
                     CaB
                               AiC
                                      Darapti
           AiB
                     CaB
                               AiC
                                      Disamis
           AaB
                     CiB
                               AiC
                                      Datisi
           AeB
                     CaB
                               AoC
                                      Felapton
           AoB
                     CaB
                                      Bocardo
                               AoC
           AeB
                     CiB
                               AoC
                                      Ferison
IVth fi gure
           BaA
                     CaB
                               AiC
                                      Bramantip
           BaA
                     CeB
                                      Camenes
                               AeC
           BiA
                     CaB
                               AiC
                                      Dimaris
           BeA
                     CaB
                               AoC
                                      Fesapo
           BeA
                     CiB
                                      Fresison
                               AoC
           BaA
                     CeB
                               AoC
                                      Camenop
```

Reminder.

In syllogistics, all terms are nonempty. **Barbari.** AaB, BaC: AiC.

Every unicorn is a white horse. Every white horse is white.

Some unicorn is white. In particular, this white unicorn exists.

The perfect moods.

Τέλειον μὲν οὖν καλῶ συλλογισμὸν τὸν μηδενὸς ἄλλου προσδεόμενον παρὰ τὰ εἰλημμένα πρὸς τὸ φανῆναι τὸ ἀναγκαῖον. $(An.Pr.\ I.i)$

Aristotle discusses the first figure in *Analytica Priora* I.iv, identifies **Barbara**, **Celarent**, **Darii** and **Ferio** as *perfect* and then concludes

 Δ ῆλον δὲ καὶ ὅτι πάντες οἱ ἐν αὐτῷ συλλογισμοὶ τέλειοἱ εἰσι ... καλῶ δὲ τὸ τοιοῦτον σχῆμα πρῶτον. $(An.Pr.\ I.iv)$

Axioms of Syllogistics.

So the Axioms of Syllogistics according to Aristotle are:

Barbara. AaB, BaC: AaC

Celarent. AeB, BaC: AeC

Darii. AaB, BiC: AiC

Ferio. AeB, BiC: AoC

Simple and accidental conversion.

- Simple (simpliciter).
 - $XiY \rightsquigarrow YiX$.
 - $XeY \rightsquigarrow YeX$.
- Accidental (per accidens).
 - $XaY \rightsquigarrow XiY$.
 - $XeY \rightsquigarrow XoY$.

Syllogistic proofs (1).

We use the letters t_{ij} for terms and the letters k_i stand for copulae. We write a mood in the form

$$t_{11} k_1 t_{12} t_{21} k_2 t_{22} t_{31} k_3 t_{32},$$

for example,

for **Barbara**. We write M_i for t_{i1} k_i t_{i2} and define some operations on moods.

Syllogistic proofs (2).

- For $i \in \{1, 2, 3\}$, the operation s_i can only be applied if k_i is either 'i' or 'e'. In that case, s_i interchanges t_{i1} and t_{i2} .
- For $i \in \{1, 2\}$, let p_i be the operation that changes k_i to its subaltern (if it has one), while p_3 is the operation that changes k_3 to its superaltern (if it has one).
- Let m be the operation that exchanges M_1 and M_2 .
- For $i \in \{1, 2\}$, let c_i be the operation that first changes k_i and k_3 to their contradictories and then exchanges M_i and M_3 .
- Let per_{π} be the permutation π of the letters A, B, and C, applied to the mood.

Syllogistic proofs (3).

Given any set $\mathfrak B$ of "basic moods", a $\mathfrak B$ -proof of a mood $M=M_1,M_2:M_3$ is a sequence $\langle \mathsf o_1,...,\mathsf o_n\rangle$ of operations such that

- Only o₁ can be of the form c₁ or c₂ (but doesn't have to be).
- The sequence of operations, if applied to M, yields an element of \mathfrak{B} .

Syllogistic proofs (4).

 $\langle s_1, m, s_3, per_{AC} \rangle$ is a proof of **Disamis** (from **Darii**) :

 $\langle s_2 \rangle$ is a proof of **Datisi** (from **Darii**) :

$$\begin{array}{c}
AaB \\
CiB \\
\hline
AiC
\end{array}
\xrightarrow{s_2}
\begin{array}{c}
AaB \\
BiC \\
\hline
AiC
\end{array}$$

Syllogistic proofs (5).

 $\langle c_1, per_{BC} \rangle$ is a proof of **Bocardo** by contradiction (from **Barbara**) :

Syllogistic proofs (6).

Let \mathfrak{B} be a set of moods and M be a mood. We write $\mathfrak{B} \vdash M$ if there is \mathfrak{B} -proof of M.

Mnemonics (1).

Bárbara, Célarént, Darií, Ferióque prióris, Césare, Cámestrés, Festíno, Baróco secúndae. Tértia Dáraptí, Disámis, Datísi, Felápton, Bocárdo, Feríson habét. Quárta ínsuper áddit Brámantíp, Camenés, Dimáris, Fesápo, Fresíson.

"These words are more full of meaning than any that were ever made." (Augustus de Morgan)

Mnemonics (2).

- The fi rst letter indicates to which one of the four perfect moods the mood is to be reduced: 'B' to Barbara, 'C' to Celarent, 'D' to Darii, and 'F' to Ferio.
- The letter 's' after the ith vowel indicates that the corresponding proposition has to be simply converted, i.e., a use of si.
- The letter 'p' after the *i*th vowel indicates that the corresponding proposition has to be accidentally converted ("per accidens"), *i.e.*, a use of p_i .
- The letter 'c' after the first or second vowel indicates that the mood has to be proved indirectly by proving the contradictory of the corresponding premiss, *i.e.*, a use of c_i .
- The letter 'm' indicates that the premises have to be interchanged ("moved"), i.e., a use of m.
- All other letters have only aesthetic purposes.

A metatheorem.

We call a proposition negative if it has either 'e' or 'o' as copula.

Theorem (Aristotle). If M is a mood with two negative premises, then

 $\mathfrak{B}_{\mathrm{BCDF}} \not\vdash M$.

Metaproof (1).

Suppose $o := \langle o_1, ..., o_n \rangle$ is a \mathfrak{B}_{BCDF} -proof of M.

- The s-rules don't change the copula, so if M has two negative premises, then so does $s_i(M)$.
- The superaltern of a negative proposition is negative and the superaltern of a positive proposition is positive. Therefore, if M has two negative premises, then so does $p_i(M)$.
- The m-rule and the per-rules don't change the copula either, so if M has two negative premises, then so do $\mathsf{m}(M)$ and $\mathsf{per}_\pi(M)$.

As a consequence, if $o_1 \neq c_i$, then o(M) has two negative premisses. We check that none of **Barbara**, **Celarent**, **Darii** and **Ferio** has two negative premisses, and are done, as o cannot be a proof of M.

Metaproof (2).

So, $o_1 = c_i$ for either i = 1 or i = 2. By defi nition of c_i , this means that the contradictory of one of the premisses is the conclusion of $o_1(M)$. Since the premisses were negative, the conclusion of $o_1(M)$ is positive. Since the other premiss of M is untouched by o_1 , we have that $o_1(M)$ has at least one negative premiss and a positive conclusion. The rest of the proof $\langle o_2, ..., o_n \rangle$ may not contain any instances of c_i .

Note that none of the rules s, p, m and per change the copula of the conclusion from positive to negative.

So, o(M) still has at least one negative premiss and a positive conclusion. Checking **Barbara**, **Celarent**, **Darii** and **Ferio** again, we notice that none of them is of that form. Therefore, o is not a \mathfrak{B}_{BCDF} -proof of M. Contradiction.

Other metatheoretical results.

- If M has two particular premises (i.e., with copulae 'i' or 'o'), then $BCDF \not\vdash M$ (**Exercise 10**).
- If M has a positive conclusion and one negative premiss, then $BCDF \not\vdash M$.
- If M has a negative conclusion and one positive premiss, then $BCDF \not\vdash M$.
- If M has a universal conclusion (i.e., with copula 'a' or 'e') and one particular premiss, then $BCDF \not\vdash M$.