Core Logic

1st Semester 2006/2007, period a\&b

Dr Benedikt Löwe

Aristotle's work on logic.

The Organon.

- Categories
- On Interpretation
- Prior Analytics
- Posterior Analytics
- Topics
- On Sophistical Refutations (De Sophisticis Elenchis)

The Categories.

Aristotle, Categories:
The ten categories (1b25).
Substance When
Quality Position
Quantity Having
Relation Action
Where Passion
The two ways of predication.

- essential predication: "Socrates is a human being"; "human IS SAID OF Socrates" Grice: Izzing
- accidental predication: "Socrates is wise"; "wisdom IS in Socrates" Grice: HAzzing

Essential predication.

- "essential": You cannot deny the predicate without changing the meaning of the subject.
, "animal IS SAID OF human".
- "human Is SAID OF Socrates".
- IS SAID OF is a transitive relation.
- Related to the category tree:

Substances.

Universal substances human, animal	Universal accidents wisdom
Particular substances Socrates, Aristotle	Particular accidents

- Plato (\uparrow). The universal substances are the (only) real things.
- Aristotle (\downarrow). Without the particular substances, nothing would exist.

Matter \& Form.

- Categories / De anima: There are three kinds of substance: matter, form and the compound of the two.
- Matter is potentiality; form is actuality.
- Aristotle in the Metaphysics: Primary substances cannot be compounds, not even of matter and form. Matter cannot be primary, therefore, the primary substance is the form.
- Metaphysics Z (1037a6): "it is also clear that the soul is the primary substance, the body is matter, and man or animal is composed of the two as universal."

The intricate connection between the analysis of predication (philosophy of language, semantics, logic) and the analysis of 'the soul' will become important in the medieval context.

The most famous syllogism.

A more typical syllogism.

Every animal is mortal.
Every man is an animal.
Every man is mortal.

Every B is an A.
Every C is a B.
"a valid mood" $\operatorname{mood}=$ modus

Every C is an A.
"Barbara"

Another valid mood.

Every philosopher is mortal. Some teacher is a philosopher.

Some teacher is mortal.

Every B is an A. Some C is a B.

Some C is an A.
"Darii"

A similar but invalid mood.

"Darii"
Every B is an A.
Some C is a B.
Some C is an A.

Every A is a B.
Some C is a B.
Some C is an A.

> Every philosopher is mortal. Some nonphilosopher is mortal.

Some nonphilosopher is a philosopher.

Yet another very similar mood.

A first conversion rule.

This yields a simple formal (syntactical) conversion rule:

"Some X is a Y "
can be converted to
"Some Y is an X."

This rule is validity-preserving and syntactical.

Back to Darii and Datisi.

‘Darii"

Every B is an A. Every $B /$ is a A.
Some C is a B. Some B is a C.

Some C is an A.
Some C is an A.

Simple Conversion

"Some X is a Y " \rightsquigarrow "Some Y is an X "

Methodology of Syllogistics.

- Start with a list of obviously valid moods (perfect syllogisms \cong "axioms")...
- ...and a list of conversion rules,
- derive all valid moods from the perfect syllogisms by conversions,
- and find counterexamples for all other moods.

Notation (1).

Syllogistics is a term logic, not propositional or predicate logic.
We use capital letters A, B, and C for terms, and sometimes X and Y for variables for terms.
Terms (termini) form part of a categorical proposition. Each categorical proposition has two terms: a subject and a predicate, connected by a copula.

Notation (2).

There are four copulae:

- The universal affirmative: Every - is a -.
- The universal negative: No - is a -.
- The particular affirmative: Some - is a -.
- The particular negative: Some - is not a - .

Every B is an $A . \rightsquigarrow A \mathrm{a} B$
No B is an $A . \rightsquigarrow A$ e B
Some B is an $A . \rightsquigarrow A$ i B
Some B is not an $A . \rightsquigarrow A \circ B$
Contradictories: a-o \& e-i.

Notation (3).

	Every B is an A	$A \mathbf{a} B$
Barbara	Every C is a B	$B \mathbf{a} C$
	Every C is an A	$A \mathbf{a} C$

Each syllogism contains three terms and three categorial propositions. Each of its categorial propositions contains two of its terms. Two of the categorial propositions are premises, the other is the conclusion.
The term which is the predicate in the conclusion, is called the major term, the subject of the conclusion is called the minor term, the term that doesn't occur in the conclusion is called the middle term.

Notation (4).

> Barbara $\begin{aligned} & \text { Every } B \text { is an } A \quad A \text { a } B \\ & \text { Every } C \text { is a } B \quad B \mathbf{a} C \\ & \text { Every } C \text { is an } A A \text { a } C\end{aligned}$ Only one term / Minor term / Middle term the premises contains the major term. This one is called the major premise, the other one the minor premise.

Notation (5).

If you take a figure, and insert three copulae, you get a mood.

Combinatorics of moods.

With four copulae and three slots, we get

$$
4^{3}=64
$$

moods from each figure, i.e., $4 \times 64=256$ in total. Of these, 24 have been traditionally seen as valid.

A	\mathbf{a}	B	,	B	\mathbf{i}	C	$:$	A	\mathbf{i}	C	
D	\mathbf{a}	r			\mathbf{i}				\mathbf{i}		\rightsquigarrow
A	\mathbf{a}	B	,	C	\mathbf{i}	B	$:$	A	\mathbf{i}	C	
D	\mathbf{a}	t			\mathbf{i}	\mathbf{s}			\mathbf{i}		\rightsquigarrow Datisi

The 24 valid moods (1).

Ist fi gure	$A \mathrm{a} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{a} C$	Barbara
	$A \mathrm{e} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{e} C$	Celarent
	$A \mathrm{a} B$,	$B \mathrm{i} C$	$:$	$A \mathrm{i} C$	Darii
	$A \mathrm{e} B$,	$B \mathrm{i} C$	$:$	$A \mathrm{o} C$	Ferio
	$A \mathrm{a} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{i} C$	Barbari
	$A \mathrm{e} B$,	$B \mathrm{a} C$	$:$	$A \mathrm{o} C$	Celaront
IInd fi gure	$B \mathrm{e} A$,	$B \mathrm{a} C$	$:$	$A \mathrm{e} C$	Cesare
	$B \mathrm{a} A$,	$B \mathrm{e} C$	$:$	$A \mathrm{e} C$	Camestres
	$B \mathrm{e} A$,	$B \mathrm{i} C$	$:$	$A \mathrm{o} C$	Festino
$B \mathrm{a} A$,	$B \mathrm{o} C$	$:$	$A \mathrm{o} C$	Baroco	
$B \mathrm{e} A$,	$B \mathrm{a} C$	$:$	$A \mathrm{o} C$	Cesaro	
$B \mathrm{a} A$,	$B \mathrm{e} C$	$:$	$A \mathrm{o} C$	Camestrop	

The 24 valid moods (2).

Illrd fi gure	$A \mathrm{a} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Darapti
	$A \mathrm{i} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Disamis
	$A \mathrm{a} B$,	$C \mathrm{i} B$	$:$	$A \mathrm{i} C$	Datisi
	$A \mathrm{e} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{o} C$	Felapton
	$A \mathrm{o} B$,	$C \mathrm{a} B$	$:$	$A \mathrm{o} C$	Bocardo
	$A \mathrm{e} B$,	$C \mathrm{i} B$	$:$	$A \mathrm{o} C$	Ferison
IVth fi gure	$B \mathrm{a} A$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Bramantip
	$B \mathrm{a} A$,	$C \mathrm{e} B$	$:$	$A \mathrm{e} C$	Camenes
$B \mathrm{i} A$,	$C \mathrm{a} B$	$:$	$A \mathrm{i} C$	Dimaris	
$B \mathrm{e} A$,	$C \mathrm{a} B$	$:$	$A \mathrm{o} C$	Fesapo	
$B \mathrm{e} A$,	$C \mathrm{i} B$	$:$	$A \mathrm{o} C$	Fresison	
$B \mathrm{a} A$,	$C \mathrm{e} B$	$:$	$A \mathrm{o} C$	Camenop	

Reminder.

In syllogistics, all terms are nonempty. Barbari. $A \mathrm{a} B, B \mathrm{a} C: A \mathrm{i} C$.

Every unicorn is a white horse. Every white horse is white.

Some unicorn is white.

In particular, this white unicorn exists.

The perfect moods．

Tह́入 $\varepsilon เ \circ \nu \mu \varepsilon ̀ \nu ~ o u ̃ \nu ~ \varkappa \alpha \lambda \tilde{\omega} \sigma \cup \lambda \lambda о \gamma เ \sigma \mu o ̀ \nu$
тòv $\mu \eta \delta \varepsilon v o ̀ s ~ \alpha ̀ \lambda \lambda о \cup ~ \pi \rho о \sigma \delta \varepsilon o ́ \mu \varepsilon v o v ~ \pi \alpha \rho \alpha ̀ ~$

Aristotle discusses the first figure in Analytica Priora I．iv， identifies Barbara，Celarent，Darii and Ferio as perfect and then concludes

$$
\begin{aligned}
& \text { 七ò тoเoũtov } \sigma \chi \tilde{\eta} \mu \alpha \text { тр } \tilde{\omega} \tau o v . ~(A n . P r . ~ I . i v) ~
\end{aligned}
$$

Axioms of Syllogistics.

So the Axioms of Syllogistics according to Aristotle are:

Barbara. $A \mathrm{a} B, B \mathrm{a} C$: $A \mathrm{a} C$
Celarent. $A \mathrm{e} B, B \mathrm{a} C: A \mathrm{e} C$
Darii. $A \mathrm{a} B, B \mathrm{i} C$: $A \mathrm{i} C$
Ferio. $A \mathrm{e} B, B \mathrm{i} C$: $A \mathrm{o} C$

Simple and accidental conversion.

- Simple (simpliciter).
- $X \mathbf{i} Y \rightsquigarrow Y \mathrm{i} X$.
- $X e Y \rightsquigarrow Y \mathrm{e} X$.
- Accidental (per accidens).
- $X \mathrm{a} Y \rightsquigarrow X \mathrm{i} Y$.
- $X e Y \rightsquigarrow X o Y$.

Syllogistic proofs (1).

We use the letters $t_{i j}$ for terms and the letters k_{i} stand for copulae. We write a mood in the form

$$
\begin{array}{r}
t_{11} k_{1} t_{12} \\
t_{21} k_{2} t_{22} \\
\hline t_{31} k_{3} t_{32}
\end{array}
$$

for example,

> | AaB |
| :--- |
| BaC |
| AaC |

for Barbara. We write M_{i} for $t_{i 1} k_{i} t_{i 2}$ and define some operations on moods.

Syllogistic proofs (2).

- For $i \in\{1,2,3\}$, the operation s_{i} can only be applied if k_{i} is either ' i ' or ' e '. In that case, s_{i} interchanges $t_{i 1}$ and $t_{i 2}$.
- For $i \in\{1,2\}$, let p_{i} be the operation that changes k_{i} to its subaltern (if it has one), while p_{3} is the operation that changes k_{3} to its superaltern (if it has one).
- Let m be the operation that exchanges M_{1} and M_{2}.
- For $i \in\{1,2\}$, let c_{i} be the operation that first changes k_{i} and k_{3} to their contradictories and then exchanges M_{i} and M_{3}.
- Let per ${ }_{\pi}$ be the permutation π of the letters A, B, and C , applied to the mood.
$\begin{aligned} & \mathrm{BaA} \\ & \frac{\mathrm{AaC}}{\mathrm{BaC}}\end{aligned}$
$\begin{aligned} & \text { per } \\ & \mathrm{AaC}\end{aligned}$

Syllogistic proofs (3).

Given any set \mathfrak{B} of "basic moods", a \mathfrak{B}-proof of a mood $M=M_{1}, M_{2}: M_{3}$ is a sequence $\left\langle\mathrm{o}_{1}, \ldots, \mathrm{o}_{n}\right\rangle$ of operations such that

- Only o_{1} can be of the form c_{1} or c_{2} (but doesn't have to be).
- The sequence of operations, if applied to M, yields an element of \mathfrak{B}.

Syllogistic proofs (4).

$\left\langle s_{1}, \mathrm{~m}, \mathrm{~s}_{3}, \operatorname{per}_{\mathrm{AC}}\right\rangle$ is a proof of Disamis (from Darii) :

$\left\langle s_{2}\right\rangle$ is a proof of Datisi (from Darii) :

Syllogistic proofs (5).

$\left\langle\mathrm{c}_{1}\right.$, per $\left._{\mathrm{BC}}\right\rangle$ is a proof of Bocardo by contradiction (from Barbara) :

Syllogistic proofs (6).

Let \mathfrak{B} be a set of moods and M be a mood. We write $\mathfrak{B} \vdash M$ if there is \mathfrak{B}-proof of M.

Mnemonics (1).

Bárbara, Célarént, Darií, Ferióque prióris, Césare, Cámestrés, Festíno, Baróco secúndae. Tértia Dáraptí, Disámis, Datísi, Felápton, Bocárdo, Feríson habét. Quárta ínsuper áddit Brámantíp, Camenés, Dimáris, Fesápo, Fresíson.
"These words are more full of meaning than any that were ever made." (Augustus de Morgan)

Mnemonics (2).

- The fi rst letter indicates to which one of the four perfect moods the mood is to be reduced: ‘B' to Barbara, 'C' to Celarent, 'D' to Darii, and 'F' to Ferio.
- The letter ' s ' after the i th vowel indicates that the corresponding proposition has to be simply converted, i.e., a use of s_{i}.
- The letter ' p ' after the i th vowel indicates that the corresponding proposition has to be accidentally converted ("per accidens"), i.e., a use of p_{i}.
- The letter 'c' after the fi rst or second vowel indicates that the mood has to be proved indirectly by proving the contradictory of the corresponding premiss, i.e., a use of c_{i}.
- The letter 'm' indicates that the premises have to be interchanged ("moved"), i.e., a use of m.
- All other letters have only aesthetic purposes.

A metatheorem.

We call a proposition negative if it has either 'e' or 'o' as copula.
Theorem (Aristotle). If M is a mood with two negative premises, then

$$
\mathfrak{B}_{\mathrm{BCDF}} \nvdash M .
$$

Metaproof (1).

Suppose o $:=\left\langle\mathrm{o}_{1}, \ldots, \mathrm{o}_{n}\right\rangle$ is a $\mathfrak{B}_{\mathrm{BCDF}}-$ proof of M.

- The s-rules don't change the copula, so if M has two negative premises, then so does $\mathrm{s}_{i}(M)$.
- The superaltern of a negative proposition is negative and the superaltern of a positive proposition is positive. Therefore, if M has two negative premises, then so does $\mathrm{p}_{i}(M)$.
- The m-rule and the per-rules don't change the copula either, so if M has two negative premises, then so do $\mathrm{m}(M)$ and $\operatorname{per}_{\pi}(M)$.

As a consequence, if $\mathrm{o}_{1} \neq \mathrm{c}_{i}$, then $\mathrm{o}(M)$ has two negative premisses. We check that none of Barbara, Celarent, Darii and Ferio has two negative premisses, and are done, as o cannot be a proof of M.

Metaproof (2).

So, $\mathrm{o}_{1}=\mathrm{c}_{i}$ for either $i=1$ or $i=2$. By defi nition of c_{i}, this means that the contradictory of one of the premisses is the conclusion of $o_{1}(M)$. Since the premisses were negative, the conclusion of $o_{1}(M)$ is positive. Since the other premiss of M is untouched by o_{1}, we have that $o_{1}(M)$ has at least one negative premiss and a positive conclusion. The rest of the proof $\left\langle\mathrm{o}_{2}, \ldots, \mathrm{o}_{n}\right\rangle$ may not contain any instances of c_{i}.

Note that none of the rules s, p, m and per change the copula of the conclusion from positive to negative.

So, o(M) still has at least one negative premiss and a positive conclusion. Checking Barbara, Celarent, Darii and Ferio again, we notice that none of them is of that form. Therefore, o is not a $\mathfrak{B}_{\mathrm{BCDF}}$-proof of M. Contradiction.

Other metatheoretical results.

- If M has two particular premises (i.e., with copulae 'i' or ' 0 '), then BCDF $\vdash M$ (Exercise 10).
- If M has a positive conclusion and one negative premiss, then BCDF $\vdash M$.
- If M has a negative conclusion and one positive premiss, then BCDF $\vdash M$.
- If M has a universal conclusion (i.e., with copula 'a' or ' e ') and one particular premiss, then BCDF $\vdash M$.

