
Attempts to resolve the paradoxes.

Theory of Types.

Axiomatization of Set Theory.

Foundations of Mathematics.
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The Axiomatization of Set Theory (1).

Ernst Zermelo (1871-1953).

Zermelo Set Theory (1908) Z−. Union Axiom, Pairing
Axiom, Aussonderungsaxiom (Separation), Power Set
Axiom, Axiom of Infinity.

Zermelo Set Theory with Choice ZC
−. Axiom of

Choice.
Hausdorff (1908/1914). Are there any regular limit
cardinals? “weakly inaccessible cardinals”.

“The least among them has such an exorbitant magnitude that it will hardly
be ever come into consideration for the usual purposes of set theory.”
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The Axiomatization of Set Theory (2).

1911-1913. Paul Mahlo generalizes Hausdorff’s
questions in terms of fixed point phenomena ( Mahlo
cardinals).

Thoralf Skolem Abraham Fraenkel
(1887-1963) (1891-1965)

1922: Ersetzungsaxiom (Replacement) ZF
− and

ZFC
−.

von Neumann (1929): Axiom of Foundation Z, ZF

and ZFC.
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The Axiomatization of Set Theory (3).

Zermelo (1930): ZFC doesn’t solve Hausdorff’s
question (independently proved by Sierpiński and
Tarski).

Question. Does ZF prove AC?
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Cardinals & Ordinals (1).

Cardinality. Two sets A and B are called equinumerous if
there is a bijection π : A → B. Equinumerosity is an
equivalence relation. The cardinality of A is its
equinumerosity equivalence class.
Ordinals. A linear order 〈X,≤〉 is called a well-order if there
is no infinite strictly descending chain, i.e., a sequence

x0 > x1 > x2 > ...

Examples. Finite linear orders, 〈N,≤〉.

Nonexamples. 〈Z,≤〉, 〈Q,≤〉, 〈R,≤〉.
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Cardinals and Ordinals (2).

Important: If 〈X,≤〉 is not a wellorder, that does not mean
that the set X cannot be wellordered.

-1 -2 -3 -4 -5 . . .

. . . -4 -3 -2 -1 0 1 2 3 4 . . .

 0 -1 1 -2 2 . . .

z v z∗ :↔ |z| < |z∗| ∨ (|z| = |z∗| & z ≤ z∗)

There is an isomorphism between 〈N,≤〉 and 〈Z,v〉. The
order 〈Z,v〉 is a wellorder, thus Z is wellorderable.
If L and L

∗ are wellorders then either L is orderisomorphic
to an initial segment of L

∗ or vice versa.
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Cardinals and Ordinals (3).

If L and L
∗ are wellorders then either L is orderisomorphic to an initial segment of L∗ or

vice versa.

The class of wellorders is wellordered by

L 4 L
∗ ↔ L is orderisomorphic to an initial segment of L

∗.

Ordinals are the equivalence classes of orderisomorphism.
We let Ord be the class of all ordinals.
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Operations on ordinals (1).

If L = 〈L,≤〉 and M = 〈M,v〉 are linear orders, we can
define their sum and product:

L ⊕ M := 〈L∪̇M,�〉 where x � y if

x ∈ L and y ∈ M , or

x, y ∈ L and x ≤ y, or

x, y ∈ M and x v y.

L ⊗ M := 〈L × M,�〉 where 〈x, y〉 � 〈x∗, y∗〉 if

y @ y∗, or

y = y∗ and x ≤ x∗.
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Operations on ordinals (2).

Fact. N ⊕ N is isomorphic to N ⊗ 2.

Exercise. These operations are not commutative: there are
linear orders such that L ⊕ M is not isomorphic to M ⊕ L

and similarly for ⊗. (Exercise 36.)

Observation. If L and M are wellorders, then so are L⊕M

and L ⊗ M.
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The Axiom of Choice (1).

The Axiom of Choice (AC). For every function f defined on
some set X with the property that f(x) 6= ∅ for all x, there is
a choice function F defined on X, such that

for all x ∈ X, we have F (x) ∈ f(x).

Implicitly used in Cantor’s work.

Isolated by Peano (1890) in Peano’s Theorem on the
existence of solutions of ordinary differential equations.

1904. Zermelo’s wellordering theorem.
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The Axiom of Choice (2).

Question. Are all sets wellorderable?

Theorem (Zermelo’s Wellordering Theorem). If AC holds,
then all sets are wellorderable.
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The Continuum Hypothesis (1).

If AC holds, then the real numbers R are wellorderable. That
means there is an ordinal α such that R and α are
equinumerous. Let c be the least such ordinal. We know by
Cantor’s theorem that this cannot be a countable ordinal.
There is an ordinal that is not equinumerous to the natural
numbers. We call it ω1.
Question. What is the relationship between c and ω1?

CH. ω1 = c. The least ordinal that is not equinumerous to
the natural numbers is the least ordinal that is
equinumerous to the real numbers.

Core Logic – 2006/07-1ab – p. 13/47



The Continuum Hypothesis (2).

Hilbert (1900). ICM in Paris: Mathematical Problems for
the XXth century.

“Es erhebt sich nun die Frage, ob das Continuum auch als wohlgeordnete
Menge aufgefaßt werden kann, was Cantor bejahen zu müssen glaubt.”

In other words: CH implies “there is a wellordering of the
real numbers”.

Question 1. Does ZF ` AC?

Question 2. Does ZF ` CH?

Question 2*. Does ZFC ` CH or does ZFC ` ¬CH?

All of these questions were wide open in 1930.
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The Continuum Hypothesis (3).

Question 2*. Does ZFC ` CH or does ZFC ` ¬CH?

Gödel’s constructible universe: L.
Theorem (Gödel; 1938). L |= ZFC + CH.

Corollary. If ZF is consistent, then ZFC + CH is consistent.

Consequences. The second disjunct of Question 2*
cannot be true.
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The Continuum Hypothesis (4).

Question 2*. Does ZFC ` CH or does ZFC ` ¬CH?

Paul Cohen (b. 1934)
Technique of Forcing (1963). Take a model M of ZFC and a partial order P ∈ M . Then
there is a model construction of a new model MP, the forcing extension. By choosing P

carefully, we can control properties of MP.

Let κ be an uncountable cardinal not in bijection with ω1. If P is the set of finite partial
functions from κ × ω into 2, then MP |= ¬CH.

Theorem (Cohen). ZFC 6` CH.

Consequences. The first disjunct of Question 2* cannot
be true, so the answer to Question 2* must be No!
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Hilbert’s Programme (1).

1900: Hilbert’s 2nd problem. “Is there a finitistic proof of
the consistency of the arithmetical axioms?”

1917-1921: Hilbert develops a predecessor of modern
first-order logic.

Paul Bernays (1888-1977)
Assistant of Zermelo in Zürich (1912-1916).

Assistant of Hilbert in Göttingen (1917-1922).

Completeness of propositional logic.

“Hilbert-Bernays” (1934-1939).

Hilbert-Ackermann (1928).

Goal. Axiomatize mathematics and find a finitary
consistency proof.
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Hilbert’s Programme (2).

1922: Development of ε-calculus (Hilbert & Bernays).
General technique for consistency proofs:
“ε-substitution method”.

1924: Ackermann presents a (false) proof of the
consistency of analysis.

1925: John von Neumann (1903-1957)
corrects some errors and proves the con-
sistency of an ε-calculus without the in-
duction scheme.

1928: At the ICM in Bologna, Hilbert claims that the
work of Ackermann and von Neumann constitutes a
proof of the consistency of arithmetic.
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Brouwer (1).

L. E. J. (Luitzen Egbertus Jan) Brouwer
(1881-1966)

Student of Korteweg at the UvA.

1909-1913: Development of topology. Brouwer’s Fixed
Point Theorem.

1913: Succeeds Korteweg as full professor at the UvA.

1918: “Begründung der Mengenlehre unabhängig vom
Satz des ausgeschlossenen Dritten”.
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Brouwer (2).

1920: “Besitzt jede reelle Zahl eine
Dezimalbruch-Entwickelung?”. Start of the
Grundlagenstreit.

1921: Hermann Weyl (1885-1955),
“Über die neue Grundlagenkrise der
Mathematik”

1922: Hilbert, “Neubegründung der Mathematik”.

1928-1929: ICM in Bologna; Annalenstreit. Einstein
and Carathéodory support Brouwer against Hilbert.
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Intuitionism.

Constructive interpretation of existential quantifiers.

As a consequence, rejection of the tertium non datur.

The big three schools of philosophy of mathematics:
logicism, formalism, and intuitionism.

Nowadays, different positions in the philosophy of
mathematics are distinguished according to their view
on ontology and epistemology. Main positions are:
(various brands of) Platonism, Social Constructivism,
Structuralism, Formalism.
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Gödel (1).

Kurt Gödel (1906-1978)

Studied at the University of Vienna; PhD supervisor
Hans Hahn (1879-1934).

Thesis (1929): Gödel Completeness Theorem.

1931: “Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter Systeme I”.
Gödel’s First Incompleteness Theorem and a proof
sketch of the Second Incompleteness Theorem.

Core Logic – 2006/07-1ab – p. 22/47



Gödel (2).

1935-1940: Gödel proves the consistency of the Axiom
of Choice and the Generalized Continuum Hypothesis
with the axioms of set theory (solving one half of
Hilbert’s 1st Problem).

1940: Emigration to the USA: Princeton.

Close friendship to Einstein, Morgenstern and von
Neumann.

Suffered from severe hypochondria and paranoia.

Strong views on the philosophy of mathematics.
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Gödel’s Incompleteness Theorem (1).

1928: At the ICM in Bologna, Hilbert claims that the work of Ackermann and von Neumann
constitutes a proof of the consistency of arithmetic.

1930: Gödel announces his result (G1) in Königsberg in
von Neumann’s presence.

Von Neumann independently derives the Second
Incompleteness Theorem (G2) as a corollary.

Letter by Bernays to Gödel (January 1931): There may
be finitary methods not formalizable in PA.

1931: Hilbert suggests new rules to avoid Gödel’s
result. Finitary versions of the ω-rule.

By 1934, Hilbert’s programme in the original formulation
has been declared dead.
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Gödel’s Incompleteness Theorem (2).

Theorem (Gödel’s Second Incompleteness Theorem). If T

is a consistent axiomatizable theory containing PA, then
T 6` Cons(T ).

“consistent”: T 6` ⊥.

“axiomatizable”: T can be listed by a computer
(“computably enumerable”, “recursively enumerable”).

“containing PA”: T ` PA.

“Cons(T )”: The formalized version (in the language of
arithmetic) of the statement ‘for all T -proofs P , ⊥
doesn’t occur in P ’.

Core Logic – 2006/07-1ab – p. 25/47



Gödel’s Incompleteness Theorem (3).

Thus: Either PA is inconsistent or the deductive closure
of PA is not a complete theory.

All three conditions are necessary:

Theorem (Presburger, 1929). There is a weak
system of arithmetic that proves its own consistency
(“Presburger arithmetic”).
If T is inconsistent, then T ` ϕ for all ϕ.
If N is the standard model of the natural numbers,
then Th(N) is a complete extension of PA (but not
axiomatizable).
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