

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Core Logic 2006/2007; 1st Semester dr Benedikt Löwe

Homework Set # 10

Deadline: November 29th, 2006

Exercise 33 (6 points).

We are modelling Achilles and the turtle as a transfinite process on the real line \mathbb{R} . Please give arguments for all answers.

(1) Achilles' position at time t is given by A_t , the turtle's position is given by T_t . We start with $A_0 := 0$ and $T_0 := 1$. For every index i, we define $A_{i+1} := A_i + |T_i - A_i|$, $T_{i+1} := T_i + \frac{1}{2} \cdot |T_i - A_i|$, and

$$T_{\infty} := \lim_{i \in \mathbb{N}} T_i,$$

$$A_{\infty} := \lim_{i \in \mathbb{N}} A_i,$$

$$T_{\infty + \infty} := \lim_{i \in \mathbb{N}} T_{\infty + i}, \text{ and}$$

$$A_{\infty + \infty} := \lim_{i \in \mathbb{N}} A_{\infty + i}.$$

Determine the least index i such that $A_i = T_i$ (1 point). Where is Achilles at time $\infty + \infty$ (1 point)?

(2) Now the positions are given by A_t^* and T_t^* defined as follows. For each index $i \in \{0, 1, 2, ..., \infty, \infty + 1, \infty + 2, \infty + 3, ...\}$, we define the *value* v(i) as follows:

$$v(i) := n$$
 if $i = n$ or $i = \infty + n$.

We start with $A_0^* := 0$ and $T_0^* := 1$. For every index i, we define $A_{i+1}^* := A_i^* + \frac{1}{2^{v(i)}}$, $T_{i+1}^* := T_i^* + \frac{1}{2^{v(i)+1}}$, and

$$T_{\infty}^* := \lim_{i \in \mathbb{N}} T_i^*,$$

$$A_{\infty}^* := \lim_{i \in \mathbb{N}} A_i^*,$$

$$T_{\infty+\infty}^* := \lim_{i \in \mathbb{N}} T_{\infty+i}^*, \text{ and }$$

$$A_{\infty+\infty}^* := \lim_{i \in \mathbb{N}} A_{\infty+i}^*.$$

Compute $A_{\infty+5}^*$, $T_{\infty+12}^*$, $A_{\infty+\infty}^*$ and $T_{\infty+\infty}^*$ (1 point each).

Exercise 34 (7 points).

Let $\mathcal{L} := \{+, \cdot, 0, 1, -\}$ be the language of Boolean algebras and Φ_{BA} be the axioms of Boolean algebras. Let

$$\begin{split} \varphi &:= \quad \forall x \forall y \bigg(\big((x \neq x \cdot y) \land (y \neq x \cdot y) \big) \to (x \cdot y = 0) \bigg), \\ \psi &:= \quad \exists x \big((x \neq 0) \land (x \neq 1) \big). \end{split}$$

Let Φ_0 , Φ_1 , Φ_2 , and Φ_3 be the deductive closures of Φ_{BA} , $\Phi_{BA} \cup \{\neg\psi\}$, $\Phi_{BA} \cup \{\varphi\}$, and $\Phi_{BA} \cup \{\varphi, \psi\}$, respectively. Investigate whether Φ_i is a complete theory. If it isn't, give a formula σ such that $\sigma \notin \Phi_i$ and $\neg\sigma \notin \Phi_i$. If it is complete, give a brief argument why. (1 point each for Φ_0 and Φ_1 , 2 points for Φ_2 , 3 points for Φ_3 .)

Exercise 35 (6 points).

- (1) Give the names of the following logicians and mathematicians (1 point each):
 - X was one of the students of David Hilbert who was a teacher at the *Gymnasium* Arnoldinum from 1929 to 1948.
 - Y was an important figure in the history of the *Deutsche Mathematiker-Vereini*gung. He was married to the granddaughter of Hegel, and is popularly known for the "Y bottle", a two-dimensional manifold not embeddable into \mathbb{R}^3 .
- (2) Consider the following German mathematicians: Felix Bernstein, Ludwig Bieberbach, Kurt Schütte. Find out which of these is a student of David Hilbert (1 point per correct answer; please prove your answer by giving the year of the dissertation if the answer is "Yes" or the name of the PhD supervisor if the answer is "No").
- (3) What is the canonical webpage for finding information about supervisor-student relations in mathematics? (1 point)

Exercise 36 (3 points).

- (1) Find wellorders W and W^{*} such that $W \oplus W^*$ is not isomorphic to $W^* \oplus W$ and explain why (1¹/₂ points).
- (2) Similarly, find wellorders W and W^{*} such that $W \otimes W^*$ is not isomorphic to $W^* \otimes W$ and explain why (1¹/₂ points).