
Modal Propositional Logic.

Propositional Logic: Prop. Propositional variables pi,
∧, ∨, ¬, →.

Modal Logic. Prop+ �, ♦.

First-order logic. Prop+ ∀, ∃, function symbols ḟ,
relation symbols Ṙ.

Prop ⊆ Mod ⊆ FOL

Standard
Translation
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The standard translation (1).

Let Ṗi be a unary relation symbol and Ṙ a binary relation
symbol.

We translate Mod into L = {Ṗi, Ṙ ; i ∈ N}.
For a variable x, we define STx recursively:

STx(pi) := Ṗi(x)

STx(¬ϕ) := ¬STx(ϕ)

STx(ϕ ∨ ψ) := STx(ϕ) ∨ STx(ψ)

STx(♦ϕ) := ∃y
(

Ṙ(x, y) ∧ STy(ϕ)
)
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The standard translation (2).

If 〈M,R, V 〉 is a Kripke model, let Pi := V (pi). If Pi is a unary
relation on M , let V (pi) := Pi.

Theorem.

〈M,R, V 〉 |= ϕ ↔ 〈M,Pi, R ; i ∈ N〉 |= ∀x STx(ϕ)

Corollary. Modal logic satisfies the compactness theorem.
Proof. Let Φ be a set of modal sentences such that every finite set has a model. Look at
Φ∗ := {∀xSTx(ϕ) ; ϕ ∈ Φ}. By the theorem, every finite subset of Φ∗ has a model. By
compactness for first-order logic, Φ∗ has a model. But then Φ has a model. q.e.d.
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Bisimulations.

If 〈M,R, V 〉 and 〈M∗, R∗, V ∗〉 are Kripke models, then a
relation Z ⊆M ×N is a bisimulation if

If xZx∗, then x ∈ V (pi) if and only if x∗ ∈ V (pi).

If xZx∗ and xRy, then there is some y∗ such that x∗R∗y∗

and yZy∗.

If xZx∗ and x∗R∗y∗, then there is some y such that xRy
and yZy∗.

A formula ϕ(v) is called invariant under bisimulations if for
all Kripke models M and N, all x ∈M and y ∈ N , and all
bisimulations Z such that xZy, we have

M |= ϕ(x) ↔ N |= ϕ(y).
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van Benthem.

Johan van Benthem

Theorem (van Benthem; 1976). A formula in one free
variable v is invariant under bisimulations if and only if it is
equivalent to STv(ψ) for some modal formula ψ.

Modal Logic is the bisimulation-invariant fragment of
first-order logic.

Core Logic – 2005/06-1ab – p. 8/25



Decidability.

Theorem (Harrop; 1958). Every finitely axiomatizable
modal logic with the finite model property is decidable.

Theorem. T, S4 and S5 are decidable.
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Intuitionistic Logic (1).

Recall the game semantics of intuitionistic propositional
logic: |=dialog ϕ.

|=dialog p → ¬¬p,

6|=dialog ¬¬p → p,

6|=dialog ϕ ∨ ¬ϕ.

Kripke translation (1965) of intuitionistic propositional logic
into modal logic:

K(pi) := �pi

K(ϕ ∨ ψ) := K(ϕ) ∨ K(ψ)

K(¬ϕ) := �¬K(ϕ)
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Intuitionistic Logic (2).

Theorem.
|=dialog ϕ↔ S4 ` K(ϕ).

Consequently, ϕ is intuitionistically valid if and only if K(ϕ)
holds on all transitive and reflexive frames.

|=dialog p → ¬¬p  �p → �♦�p

6|=dialog ¬¬p → p  �♦�p → �p

6|=dialog ϕ ∨ ¬ϕ  K(ϕ) ∨�¬K(ϕ)

�p ∨�¬�p

�p ∨�♦¬p
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Provability Logic (1).

Leon Henkin (1952). “If ϕ is provably equivalent to PA ` ϕ,
what do we know about ϕ?”

M. H. Löb, Solution of a problem of Leon Henkin, Journal of Symbolic Logic 20
(1955), p.115-118:

PA ` ((PA ` ϕ) → ϕ) implies PA ` ϕ.

Interpret �ϕ as PA ` ϕ. Then Löb’s theorem becomes:

(Löb) �(�ϕ→ ϕ) → �ϕ.

GL is the modal logic with the axiom (Löb).
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Provability Logic (2).

Dick de Jongh Giovanni Sambin

Theorem (de Jongh-Sambin; 1975). GL has a fixed-point
property.

Corollary. GL ` ¬�⊥ ↔ ¬�(¬�⊥).
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Provability Logic (3).

Theorem (Segerberg-de Jongh-Kripke; 1971). GL ` ϕ if
and only if ϕ is true on all transitive converse wellfounded
frames.

A translation R from the language of model logic into the
language of arithmetic is called a realization if

R(⊥) = ⊥

R(¬ϕ) = ¬R(ϕ)

R(ϕ ∨ ψ) = R(ϕ) ∨R(ψ)

R(�ϕ) = PA ` R(ϕ).

Theorem (Solovay; 1976). GL ` ϕ if and only if for all
realizations R, PA ` R(ϕ).
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Modal Logics of Models (1).

One example: Modal logic of forcing extensions.

Joel D. Hamkins
A function H is called a Hamkins translation if

H(⊥) = ⊥

H(¬ϕ) = ¬H(ϕ)

H(ϕ ∨ ψ) = H(ϕ) ∨H(ψ)

H(♦ϕ) = “there is a forcing extension in which H(ϕ) holds”.

The Modal Logic of Forcing: Force := {ϕ ; ZFC ` H(ϕ)}.
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Modal Logics of Models (2).

Force := {ϕ ; ZFC ` H(ϕ)}.

Theorem (Hamkins).

1. Force 6` S5.

2. Force ` S4.

3. There is a model of set theory V such that the Hamkins
translation of S5 holds in that model.

Joel D. Hamkins, A simple maximality principle, Journal of
Symbolic Logic 68 (2003), p. 527–550

Theorem (Hamkins-L). Force = S4.2.
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Recent developments.

ASL Annual Meeting 2000 in Urbana-Champaign:

Sam Buss, Alekos Kechris, Anand Pillay, Richard Shore,
The prospects for mathematical logic in the twenty-first
century, Bulletin of Symbolic Logic 7 (2001), p.169-196

Sam Buss Alekos Kechris Anand Pillay Richard Shore
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Proof Theory.

Generalized Hilbert’s Programme (Gentzen-style
analysis of proof systems).

Wolfram Pohlers Gerhard Jäger Michael Rathjen

Core Logic – 2005/06-1ab – p. 18/25



Proof Theory.

Generalized Hilbert’s Programme (Gentzen-style
analysis of proof systems).

Reverse Mathematics.

Harvey Friedman Steve Simpson
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Proof Theory.

Generalized Hilbert’s Programme (Gentzen-style
analysis of proof systems).

Reverse Mathematics.

Bounded Arithmetic.

Sam Buss Arnold Beckmann
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Reverse Mathematics.

“The five systems of reverse mathematics”

RCA0 “recursive comprehension axiom”.

ACA0 “arithmetic comprehension axiom”.

WKL0 “weak König’s lemma”.

ATR0 “arithmetic transfinite recursion”.

Π1
1-CA0 “Π1

1-comprehension axiom”.

Empirical Fact. Almost all theorems of classical
mathematics are equivalent to one of the five systems.

Stephen G. Simpson, Subsystems of second order arithmetic, Springer-Verlag, Berlin 1999
[Perspectives in Mathematical Logic]
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Recursion Theory.

Investigate the structure of the Turing degrees.
D := 〈℘(N)/≡T,≤T〉.

Question. Is D rigid, i.e., is there a nontrivial
automorphism of D?

Theorem (Slaman-Woodin). For any automorphism π
of D and any d ≥ 0′′, we have π(d) = d.

Corollary. There are at most countably many different
automorphisms of D.

Other degree structures (e.g., truth-table degrees).

Connections to randomness and Kolmogorov
complexity.

Computable Model Theory.
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Model Theory (1).

Theorem (Morley). Every theory that is κ-categorical for
one uncountable κ is κ-categorical for all uncountable κ.

Michael Morley

 Stability Theory
(Baldwin, Lachlan, Shelah)

Saharon Shelah
“Few is beautiful!”
 Classification Theory
Development of new forcing techniques (proper
forcing)
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Model Theory (2).

Geometric Model Theory.

Boris Zil’ber Greg Cherlin Ehud Hrushovski
Applications to algebraic geometry: Geometric Mordell-Lang conjecture.

o-Minimality.

Lou van den Dries Anand Pillay Julia Knight
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Set Theory.

Combinatorial Set Theory: applications in analysis
and topology; using forcing (“Polish set theory”).

Large Cardinal Theory: inner model technique.

Determinacy Theory: infinite games and their
determinacy; applications to the structure theory of the
reals.

Jan Mycielski Yiannis Moschovakis Tony (Donald A.) Martin
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The Continuum Problem.

Is the independence of CH from the Zermelo-Fraenkel axioms a solution
of Hilbert’s first problem?

(Reminder: Gödel’s programme to find new axioms that imply or refute
CH.)

Shelah’s answer : The question was wrong. The right question should be about other
combinatorial objects. There we can prove the “revised GCH” (Sh460). PCF Theory.

Foreman’s answer : Large cardinals can’t help, but “generic large cardinals” might.

Woodin’s answer : Instead of looking at the statements of new axioms, look at the
metamathematical properties of axiom candidates. There is an asymmetry between
axioms that imply CH and those that imply ¬CH. Woodin’s Ω-conjecture.
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Is the independence of CH from the Zermelo-Fraenkel axioms a solution
of Hilbert’s first problem?

(Reminder: Gödel’s programme to find new axioms that imply or refute
CH.)

Shelah’s answer : The question was wrong. The right question should be about other
combinatorial objects. There we can prove the “revised GCH” (Sh460). PCF Theory.

Foreman’s answer : Large cardinals can’t help, but “generic large cardinals” might.

Matt Foreman
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