# Core Logic <br> 2005/2006; 1st Semester dr Benedikt Löwe 

## Homework Set \# 9

Exercise 29 (total of six points).
Let $\mathcal{L}=\{R\}$ be a language with one binary relation symbol. Consider the following seven $\mathcal{L}$-sentences:

$$
\begin{aligned}
\varphi_{(\text {i) }} & : \bumpeq \forall x \neg R x x \\
\varphi_{\text {(ii) }} & : \bumpeq \forall x \forall y(x \neq y \rightarrow(R x y \vee R y x)) \\
\varphi_{\text {(ii) }} & : \bumpeq \forall x \forall y \forall z((R x y \wedge R y z) \rightarrow R x z) \\
\varphi_{\text {(iv) }} & : \bumpeq \forall x \exists y \exists z(R y x \wedge R x z) \\
\varphi_{\mathrm{ME}} & : \bumpeq \exists x \forall y(R y x \vee x=y) \\
\varphi_{\mathrm{LEP}} & : \bumpeq \forall x \exists y \forall z(R x z \rightarrow(R z y \vee y=z))
\end{aligned}
$$

Check whether the following sets of sentences are consistent. If they are, give a model. If they aren't, derive a contradiction (2 points each).
(1) $\left\{\varphi_{(\mathrm{i})}, \varphi_{(\mathrm{iii})}, \varphi_{(\text {iv })}, \varphi_{\mathrm{ME}}\right\}$,
(2) $\left\{\varphi_{(\mathrm{i})}, \varphi_{(\text {iii) }}, \varphi_{\mathrm{LEP}}, \neg \varphi_{\mathrm{ME}}\right\}$,
(3) $\left\{\varphi_{(\mathrm{i})}, \varphi_{(\text {(ii) }}, \varphi_{(\mathrm{iii})}, \varphi_{\mathrm{LEP}}, \neg \varphi_{\mathrm{ME}}\right\}$,

Exercise 30 (total of nine points).
We are modelling Achilles and the turtle as a transfinite process on the real line $\mathbb{R}$. Please give arguments for all answers.
(1) Achilles' position at time $t$ is given by $A_{t}$, the turtle's position is given by $T_{t}$. We start with $A_{0}:=0$ and $T_{0}:=1$. For every index $i$, we define $A_{i+1}:=A_{i}+\left|T_{i}-A_{i}\right|$, $T_{i+1}:=T_{i}+\frac{1}{2} \cdot\left|T_{i}-A_{i}\right|$, and

$$
\begin{aligned}
T_{\infty} & :=\lim _{i \in \mathbb{N}} T_{i}, \\
A_{\infty} & :=\lim _{i \in \mathbb{N}} A_{i}, \\
T_{\infty+\infty} & :=\lim _{i \in \mathbb{N}} T_{\infty+i}, \text { and } \\
A_{\infty+\infty} & :=\lim _{i \in \mathbb{N}} A_{\infty+i} .
\end{aligned}
$$

Determine the least index $i$ such that $A_{i}=T_{i}$ (1 point). Where is Achilles at time $\infty+\infty$ ( 2 points)?
(2) Now the positions are given by $A_{t}^{*}$ and $T_{t}^{*}$ defined as follows. For each index $i \in$ $\{0,1,2, \ldots, \infty, \infty+1, \infty+2, \infty+3, \ldots\}$, we define the value $\mathrm{v}(i)$ as follows:

$$
\mathrm{v}(i):=n \text { if } i=n \text { or } i=\infty+n .
$$

We start with $A_{0}^{*}:=0$ and $T_{0}^{*}:=1$. For every index $i$, we define $A_{i+1}^{*}:=A_{i}^{*}+\frac{1}{2^{v(i)}}$, $T_{i+1}^{*}:=T_{i}^{*}+\frac{1}{2^{\mathrm{v}(i)+1}}$, and

$$
\begin{aligned}
T_{\infty}^{*} & :=\lim _{i \in \mathbb{N}} T_{i}^{*}, \\
A_{\infty}^{*} & :=\lim _{i \in \mathbb{N}} A_{i}^{*}, \\
T_{\infty+\infty}^{*} & :=\lim _{i \in \mathbb{N}} T_{\infty+i}^{*}, \text { and } \\
A_{\infty+\infty}^{*} & :=\lim _{i \in \mathbb{N}} A_{\infty+i}^{*} .
\end{aligned}
$$

Show that for every natural number $n$, we have $T_{n}=T_{n}^{*}=A_{n+1}=A_{n+1}^{*}$ ( 2 points). Compute $A_{\infty+5}^{*}, T_{\infty+12}^{*}, A_{\infty+\infty}^{*}$ and $T_{\infty+\infty}^{*}$ (1 point each).

Exercise 31 (total of seven points).
Consider the language of arithmetic $\mathcal{L}=\{\dot{+}, \dot{\times}, \dot{S}, \dot{0}, \dot{1}, \dot{<}, \dot{=}\}$ and its standard model $\mathbf{N}:=$ $\langle\mathbb{N},+, \cdot$, succ, $0,1,<,=\rangle$. (Here succ is the successor function $n \mapsto n+1$.) The language of arithmetic allows to define formulas that describe the natural numbers:

$$
\chi_{n}(x): \bumpeq x \doteq \underbrace{\dot{S} \ldots \dot{S}}_{\mathrm{n} \text { times }} \dot{0}
$$

We say that a set of $\mathcal{L}$-sentences $T$ is an arithmetic if $\mathbf{N} \models T$. Prove that every arithmetic has a model which is not isomorphic to $\mathbf{N}$ (7 points).
Hint. Define an extension $\mathcal{L}^{*}:=\mathcal{L} \cup\{\dot{c}\}$ of $\mathcal{L}$ where $\dot{c}$ is a constant symbol and look at the theory $T^{*}:=$ $T \cup\left\{\neg \chi_{n}(\dot{c}) ; n \in \mathbb{N}\right\}$. Prove that there is no value $c$ of $\dot{c}$ such that $\langle\mathbf{N}, c\rangle$ is a model of $T^{*}$. Prove that $T^{*}$ is consistent by using the compactness theorem. Use these two facts to prove the claim. (You may use that isomorphic models satisfy the same sentences.)

For students with a mathematical logic background: If $T$ is sufficiently strong, then you can say that the interpretation of $\dot{c}$ must be an "infinite element". Make this statement mathematically precise and prove it (3 extra points).

