

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

> Core Logic 2005/2006; 1st Semester dr Benedikt Löwe

Homework Set #9

Deadline: November 15th, 2005

Exercise 29 (total of six points).

Let $\mathcal{L} = \{R\}$ be a language with one binary relation symbol. Consider the following seven \mathcal{L} -sentences:

$$\begin{split} \varphi_{(i)} &:= \quad \forall x \neg Rxx \\ \varphi_{(ii)} &:= \quad \forall x \forall y (x \neq y \rightarrow (Rxy \lor Ryx)) \\ \varphi_{(iii)} &:= \quad \forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz) \\ \varphi_{(iv)} &:= \quad \forall x \exists y \exists z (Ryx \land Rxz) \\ \varphi_{ME} &:= \quad \exists x \forall y (Ryx \lor x = y) \\ \varphi_{LEP} &:= \quad \forall x \exists y \forall z (Rxz \rightarrow (Rzy \lor y = z)) \end{split}$$

Check whether the following sets of sentences are consistent. If they are, give a model. If they aren't, derive a contradiction (2 points each).

(1) { $\varphi_{(i)}, \varphi_{(iii)}, \varphi_{(iv)}, \varphi_{ME}$ }, (2) { $\varphi_{(i)}, \varphi_{(iii)}, \varphi_{LEP}, \neg \varphi_{ME}$ }, (3) { $\varphi_{(i)}, \varphi_{(ii)}, \varphi_{(iii)}, \varphi_{LEP}, \neg \varphi_{ME}$ },

Exercise 30 (total of nine points).

We are modelling Achilles and the turtle as a transfinite process on the real line \mathbb{R} . Please give arguments for all answers.

(1) Achilles' position at time t is given by A_t , the turtle's position is given by T_t . We start with $A_0 := 0$ and $T_0 := 1$. For every index i, we define $A_{i+1} := A_i + |T_i - A_i|$, $T_{i+1} := T_i + \frac{1}{2} \cdot |T_i - A_i|$, and

$$T_{\infty} := \lim_{i \in \mathbb{N}} T_i,$$
$$A_{\infty} := \lim_{i \in \mathbb{N}} A_i,$$
$$T_{\infty + \infty} := \lim_{i \in \mathbb{N}} T_{\infty + i}, \text{ and}$$
$$A_{\infty + \infty} := \lim_{i \in \mathbb{N}} A_{\infty + i}.$$

Determine the least index i such that $A_i = T_i$ (1 point). Where is Achilles at time $\infty + \infty$ (2 points)?

(2) Now the positions are given by A_t^* and T_t^* defined as follows. For each index $i \in \{0, 1, 2, ..., \infty, \infty + 1, \infty + 2, \infty + 3, ...\}$, we define the *value* v(i) as follows:

$$\mathbf{v}(i) := n \text{ if } i = n \text{ or } i = \infty + n.$$

We start with $A_0^* := 0$ and $T_0^* := 1$. For every index *i*, we define $A_{i+1}^* := A_i^* + \frac{1}{2^{v(i)}}$, $T_{i+1}^* := T_i^* + \frac{1}{2^{v(i)+1}}$, and

$$T_{\infty}^* := \lim_{i \in \mathbb{N}} T_i^*,$$

$$A_{\infty}^* := \lim_{i \in \mathbb{N}} A_i^*,$$

$$T_{\infty+\infty}^* := \lim_{i \in \mathbb{N}} T_{\infty+i}^*, \text{ and }$$

$$A_{\infty+\infty}^* := \lim_{i \in \mathbb{N}} A_{\infty+i}^*.$$

Show that for every natural number n, we have $T_n = T_n^* = A_{n+1} = A_{n+1}^*$ (2 points). Compute $A_{\infty+5}^*$, $T_{\infty+12}^*$, $A_{\infty+\infty}^*$ and $T_{\infty+\infty}^*$ (1 point each).

Exercise 31 (total of seven points).

Consider the language of arithmetic $\mathcal{L} = \{ \dot{+}, \dot{\times}, \dot{S}, \dot{0}, \dot{1}, \dot{<}, \dot{=} \}$ and its standard model $\mathbf{N} := \langle \mathbb{N}, +, \cdot, \text{succ}, 0, 1, <, = \rangle$. (Here succ is the successor function $n \mapsto n + 1$.) The language of arithmetic allows to define formulas that describe the natural numbers:

$$\chi_n(x) := x = \underbrace{\dot{S} \dots \dot{S}}_{n \text{ times}} \dot{0}$$

We say that a set of \mathcal{L} -sentences T is an *arithmetic* if $\mathbf{N} \models T$. Prove that every arithmetic has a model which is not isomorphic to N (7 points).

Hint. Define an extension $\mathcal{L}^* := \mathcal{L} \cup \{\dot{c}\}$ of \mathcal{L} where \dot{c} is a constant symbol and look at the theory $T^* := T \cup \{\neg \chi_n(\dot{c}); n \in \mathbb{N}\}$. Prove that there is no value c of \dot{c} such that $\langle \mathbf{N}, c \rangle$ is a model of T^* . Prove that T^* is consistent by using the compactness theorem. Use these two facts to prove the claim. (You may use that isomorphic models satisfy the same sentences.)

For students with a mathematical logic background: If T is sufficiently strong, then you can say that the interpretation of \dot{c} must be an "infinite element". Make this statement mathematically precise and prove it (3 extra points).