# Core Logic <br> 2005/2006; 1st Semester dr Benedikt Löwe 

## Homework Set \# 8

Deadline: November 8th, 2005
Exercise 25 (total of six points).
Let $\mathbf{B}=\langle B, 0,1,+, \cdot,-\rangle$ be a Boolean algebra. Define an operation $\star$ by $x \star y:=-(x+y)$ (the NOR or Sheffer operation).
(1) Give formulas $\varphi_{\text {mult }}, \varphi_{\text {add }}, \varphi_{\text {comp }}$ in the language just containing $\star,=$ and parentheses such that

$$
\begin{aligned}
\varphi_{\text {mult }}(x, y, z) & \equiv x \cdot y=z \\
\varphi_{\text {add }}(x, y, z) & \equiv x+y=z \\
\varphi_{\text {comp }}(x, z) & \equiv-x=z
\end{aligned}
$$

(1 point each). (In other words, the $\star$-language is expressive enough to define the language of Boolean algebras.)
(2) Prove that the following three so-called "Sheffer axioms" hold for $\star$ (1 point each):

$$
\begin{gathered}
(x \star x) \star(x \star x)=x \\
x \star(y \star(y \star y))=x \star x \\
(x \star(y \star z)) \star(x \star(y \star z))=((y \star y) \star x) \star((z \star z) \star x)
\end{gathered}
$$

Exercise 26 (total of three points).
Give the names of the following people (1 point each):

- $X$ was a Aristotelian philosopher from Constantinople who lived in Italy most of his life. From 1456 to 1458 , he was the professor for rhetoric and poetics at the studio fiorentino and one of the teachers of Lorenzo de'Medici (il Magnifico).
- $Y$ was one of the authors of La logique, ou l'art de penser. He was called "the Great" to distinguish him from his father who had the same name.
- $Z$ was a niece of King Frederick the Great of Prussia. She was the recipient of the Lettres à une Princesse d'Allemande in which Euler explained deductive reasoning by what we now call "Euler diagrams".

Exercise 27 (total of nine points).
A structure $\langle R,+, \cdot, 0,1\rangle$ is called a ring if + is commutative and associative binary operation on $R$, $\cdot$ is an associative binary operation on $R$, $\cdot$ distributes over $+($ i.e., $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c), 0$ is the neutral element of $+(i . e ., 0+a=a+0=a)$ and 1 is the neutral element of $\cdot($ i.e., $a \cdot 1=1 \cdot a=a$ ).
Examples of rings are: the integers $\mathbb{Z}$, the rationals $\mathbb{Q}$, the reals $\mathbb{R}$.
Let $\mathbf{B}=\langle B, 0,1, \vee, \wedge,-\rangle$ be a Boolean algebra. For $X, Y \in B$, define

$$
X+Y:=(X \wedge-Y) \vee(-X \wedge Y), \text { and }
$$

$$
X \cdot Y:=X \wedge Y
$$

We write $\mathrm{R}(\mathbf{B}):=\langle B,+, \cdot, 0,1\rangle$.
(1) Prove that $R(\mathbf{B})$ is a ring (3 points).
(2) Give an example of a ring $R$ such that $R$ is not isomorphic to any $R(\mathbf{B})$ (with a proof; 4 points).
(3) Prove that there cannot be any three-element Boolean algebra (2 points).

Exercise 28 (total of four points; three extra points).
Consider the following plane geometry:


Let $P=\{a, b, c, d\}, L=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\}$ and $p I \ell$ if $p \in \ell$. Show that $\mathbf{P}:=\langle P, L, I\rangle$ is a strongly Euclidean plane (4 points).
For students with a mathematical background: What does this example have to do with the two-dimensional vector space over the field $\mathbb{Z} /(2)$ (1 extra point)? Can you come up with an analogous example for the two-dimensional vector space over the field $\mathbb{Z} /(3)$ ( 2 extra points)?

