
Mathematics and Proof.

Formal proof versus informal proof.

A proof of unprovability needs a formal notion of proof.
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The Delic problem (1).

If a cube has height, width and depth 1, then its volume is
1× 1× 1 = 13 = 1.
If a cube has height, width and depth 2, then its volume is
2× 2× 2 = 23 = 8.
In order to have volume 2, the height, width and depth of
the cube must be 3
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The Delic problem (2).

Question. Given a compass and a ruler that has only
integer values on it, can you give a geometric construction
of 3
√
2?

Example. If x is a number that is constructible with ruler
and compass, then

√
x is constructible.

Proof.
If x is the sum of two squares (i.e., x = n2 +m2), then this is easy by Pythagoras. In
general:
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The Delic problem (3).

It is easy to see what a positive solution to the Delic
problem would be. But a negative solution would require
reasoning about all possible geometric constructions.
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Geometries (1).

We call a structure 〈P,L, I〉 a plane geometry if
I ⊆ P × L is a relation.

We call the elements of P “points”, the elements of L
“lines” and we read pI` as “p lies on `”.

If ` and `∗ are lines, we say that ` and `∗ are parallel if
there is no point p such that pI` and pI`∗.

Example. If P = R
2, then we call ` ⊆ P a line if

` = {〈x, y〉 ; y = a · x+ b}

for some a, b ∈ R. Let L be the set of lines. We write pI`
if p ∈ `. Then 〈P,L, I〉 is a plane geometry.
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Geometries (2).

(A1) For every p 6= q ∈ P there is exactly one ` ∈ L such
that pI` and qI`.

(A2) For every ` 6= `∗ ∈ L, either ` and `∗ are parallel, or
there is exactly one p ∈ P such that pI` and pI`∗.

(N) For every p ∈ P there is an ` ∈ L such that p doesn’t
lie on ` and for every ` ∈ L there is an p ∈ P such that p
doesn’t lie on `.

(P2) For every ` 6= `∗ ∈ L, there is exactly one p ∈ P
such that pI` and pI`∗.

A plane geometry that satisfies (A1), (A2) and (N) is called
a plane. A plane geometry that satisfies (A1), (P2) and (N)
is called a projective plane.
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Geometries (3).

(A1) For every p 6= q ∈ P there is exactly one ` ∈ L such that pI` and qI`.

(A2) For every ` 6= `∗ ∈ L, either ` and `∗ are parallel, or there is exactly one p ∈ P
such that pI` and pI`∗.

(N) For every p ∈ P there is an ` ∈ L such that p doesn’t lie on ` and for every ` ∈ L
there is an p ∈ P such that p doesn’t lie on `.

Let P := 〈R2,L,∈〉. Then P is a plane.

(WE) (“the weak Euclidean postulate”) For every ` ∈ L and every
p ∈ P such that p doesn’t lie on `, there is an `∗ ∈ L
such that pI`∗ and ` and `∗ are parallel.

(SE) (“the strong Euclidean postulate”) For every ` ∈ L and every
p ∈ P such that p doesn’t lie on `, there is exactly one
`∗ ∈ L such that pI`∗ and ` and `∗ are parallel.

P is a strongly Euclidean plane.
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Geometries (4).

Question. Do (A1), (A2), (N), and (WE) imply (SE)?

It is easy to see what a positive solution would be, but a
negative solution would require reasoning over all possible
proofs.

Semantic version of the question. Is every weakly
Euclidean plane strongly Euclidean?
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Syntactic versus semantic.

Does Φ imply ψ? Does every Φ-structure satisfy ψ?

Positive Give a proof Check all structures

∃ ∀

Negative Check all proofs Give a counterexample

∀ ∃
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History of Euclid’s Fifth Postulate (1).

Ptolemy (c.85-c.165)

Proclus (411-485)

Omar Khayyam (1048-1131)

“the scandal of elementary geometry” (D’Alembert 1767)
“In the theory of parallels we are even now not further than Euclid. This is a shameful part of
mathematics...” (Gauss 1817)
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History of Euclid’s Fifth Postulate (2).

Johann Carl Friedrich Gauss Nikolai Ivanovich Lobachevsky János Bolyai

(1777-1855) (1792-1856) (1802-1860)

1817 1829 1823

Bernhard Riemann (1826-1866).
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A non-Euclidean geometry.

Take the usual geometry P = 〈R2,L,∈〉 on the Euclidean
plane.

Consider U := {x ∈ R
2 ; ‖x‖ < 1}. We define the restriction

of L to U by LU := {` ∩ U ; ` ∈ L}.
U := 〈U,LU,∈〉.
Theorem. U is a weakly Euclidean plane which is not
strongly Euclidean.
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Mathematics and real content.

Mathematics getting more abstract...

Imaginary numbers.
Nicolo Tartaglia Girolamo Cardano

(1499-1557) (1501-1576)

Carl Friedrich Gauss (1777-1855)

Ideal elements in number theory.
Richard Dedekind (1831-1916)
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Leibniz versus Frege.

Two Slogans.

Leibniz / Boole: “Natural reasoning is mathematizable.”
Frege “Mathematics is logic.”

Core Logic – 2004/05-1ab – p. 15/32



Syllogistics versus Propositional Logic.

Deficiencies of Syllogistics:

Not expressible:
Every X is a Y and a Z. Ergo... Every X is a Y .

Deficiencies of Propositional Logic:

XaY can be represented as Y → X.

XeY can be represented as Y → ¬X.

Not expressible:
XiY and XoY .
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Frege.

Gottlob Frege
1848 - 1925

Studied in Jena and Göttingen.

Professor in Jena.

Begriffsschrift (1879).

Grundgesetze der Arithmetik (1893/1903).

“Every good mathematician is at least half a philosopher, and every good philosopher is at
least half a mathematician. (G. Frege)”
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Frege’s logical framework.

“Everything is M ” ∀xM(x)

“Something is M ” ∃xM(x) ≡ ¬∀x¬M(x)

“Nothing is M ” ∀x¬M(x)

“Some P is an M ” ∃x (P (x) ∧M(x))

≡ ¬∀x (P (x)→ ¬M(x))

Second order logic allowing for quantification over
properties.
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Frege’s importance.

Notion of a formal system.

Formal notion of proof in a formal system.

Analysis of number-theoretic properties in terms of
second-order properties.
Ã Russell’s Paradox
(Grundlagekrise der Mathematik )
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Hilbert (1).

David Hilbert (1862-1943)
Student of Lindemann
1886-1895 Königsberg
1895-1930 Göttingen

1899: Grundlagen der Geometrie
“Man muss jederzeit an Stelle von ‘Punkten’, ‘Geraden’, ‘Ebenen’ ‘Tische’, ‘Stühle’,
‘Bierseidel’ sagen können.”
“It has to be possible to say ‘tables’, ‘chairs’ and ‘beer mugs’ instead of ‘points’, ‘lines’ and
‘planes’ at any time.”
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Hilbert (2).

1928: Hilbert-Ackermann
Grundzüge der Theoretischen Logik

Wilhelm Ackermann (1896-1962)
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First order logic (1).

A first-order language L is a set {ḟi ; i ∈ I} ∪ {Ṙj ; j ∈ J} of
function symbols and relation symbols together with a
signature σ : I ∪ J → N.

σ(ḟi) = n is interpreted as “ḟi represents an n-ary
function”.

σ(Ṙi) = n is interpreted as “Ṙi represents an n-ary
relation”.

In addition to the symbols from L, we shall be using the
logical symbols ∀, ∃, ∧, ∨, →, ¬, ↔, equality =, and a set of
variables Var.
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First order logic (2).

We fix a first-order language L = {̇fi ; i ∈ I} ∪ {Ṙj ; j ∈ J} and a signature σ : I ∪ J → N.

Definition of an L-term.

Every variable is an L-term.

If σ(ḟi) = n, and t1, ..., tn are L-terms, then ḟi(t1, ..., tn) is
an L-term.

Nothing else is an L-term.

Example. Let L = {×̇} be a first order language with a
binary function symbol.

×̇(x, x) is an L-term (normally written as x×̇x, or x2).

×̇(×̇(x, x), x) is an L-term (normally written as (x×̇x)×̇x, or x3).
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First order logic (3).

Definition of an L-formula.

If t and t∗ are L-terms, then t = t∗ is an L-formula.

If σ(Ṙi) = n, and t1, ..., tn are L-terms, then Ṙi(t1, ..., tn)
is an L-formula.

If ϕ and ψ are L-formulae and x is a variable, then ¬ϕ,
ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, ∀x (ϕ) and ∃x (ϕ) are
L-formulae.

Nothing else is an L-formula.

An L-formula without free variables is called an L-sentence.
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Semantics (1).

We fix a first-order language L = {̇fi ; i ∈ I} ∪ {Ṙj ; j ∈ J} and a signature σ : I ∪ J → N.

A tuple X = 〈X, 〈fi ; i ∈ I〉, 〈Rj ; j ∈ J〉〉 is called an
L-structure if fi is an σ(ḟi)-ary function on X and Ri is an
σ(Ṙi)-ary relation on X.

An X-interpretation is a function ι : Var→ X.

If ι is an X-interpretation and X is an L then ι extends to a
function ι̂ on the set of all L-terms.

If X is an L-structure and ι is an X-interpretation, we define
a semantics for all L-formulae by recursion.
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Semantics (2).

If X is an L-structure and ι is an X-interpretation, we define a semantics for all L-formulae
by recursion.

X, ι |= t = t∗ if and only if ι̂(t) = ι̂(t∗).

X, ι |= Ṙj(t1, ..., tn) if and only if R(ι̂(t1), ..., ι̂(tn)).

X, ι |= ϕ ∧ ψ if and only if X, ι |= ϕ and X, ι |= ψ.

X, ι |= ¬ϕ if and only if it is not the case that X, ι |= ϕ.

X, ι |= ∀x (ϕ) if and only if for all X-interpretations ι∗

with ι ∼x ι
∗, we have X, ι∗ |= ϕ.

X |= ϕ if and only if for all X-interpretations ι, we have
X, ι |= ϕ.

Object Language ↔ Metalanguage.
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Semantics (3).

Object Language ↔ Metalanguage.

Let X be an L-structure. The theory of X, Th(X), is the set
of all L-sentences ϕ such that X |= ϕ.

Under the assumption that the tertium non datur holds for
the metalanguage, the theory of X is always complete:

For every sentence ϕ, we either have ϕ ∈ Th(X) or
¬ϕ ∈ Th(X).
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Deduction (1).

Let Φ be a set of L-sentences. A Φ-proof is a finite
sequence 〈ϕ1, ..., ϕn〉 of L-formulae such that for all i, one of
the following holds:

ϕi ≡ t = t for some L-term
t,

ϕi ∈ Φ, or

there are j, k < i such
that ϕj and ϕk are the pre-
misses and ϕi is the con-
clusion in one of the rows
of the following table.

Premisses Conclusion

ϕ ∧ ψ ϕ

ϕ ∧ ψ ψ

ϕ ψ ϕ ∧ ψ

ϕ ¬ϕ ψ

ϕ→ ψ ¬ϕ→ ψ ψ

∀x (ϕ) ϕ s
x

ϕ
y

x
∀x (ϕ))

t = t∗ ϕ t
x

ϕ t∗

x
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Deduction (2).

If Φ is a set of L-sentences and ϕ is an L-formula, we write
Φ ` ϕ if there is a Φ-proof in which ϕ occurs.

We call a set Φ of sentences a theory if whenever Φ ` ϕ,
then ϕ ∈ Φ (“Φ is deductively closed”).

Example. Let L = {≤} be the language of partial orders.
Let Φp.o. be the axioms of partial orders, and let Φ be the
deductive closure of Φp.o.. Φ is not a complete theory, as the
sentence ∀x∀y(x ≤ y ∨ y ≤ x) is not an element of Φ, but
neither is its negation.
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Completeness.

Kurt Gödel (1906-1978)

Semantic entailment. We write Φ |= ϕ for “whenever X |= Φ,
then X |= ϕ”.

Gödel Completeness Theorem (1929).
Φ ` ϕ if and only if Φ |= ϕ.

“there is a Φ-proof of ϕ” “for all X |= Φ, we have X |= ϕ”

Φ 6` ϕ if and only if Φ 6|= ϕ.
“no Φ-proof contains ϕ” “there is some X |= Φ ∧ ¬ϕ”
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Applications (1).

The Model Existence Theorem.
If Φ is consistent (i.e., Φ 6` ⊥), then there is a model X |= Φ.

The Compactness Theorem.
Let Φ be a set of sentences. If every finite subset of Φ has a
model, then Φ has a model.
Proof. If Φ doesn’t have a model, then it is inconsistent by the Model Existence Theorem.
So, Φ ` ⊥, i.e., there is a Φ-proof P of ⊥.
But P is a finite object, so it contains only finitely many elements of Φ. Let Φ0 be the set of
elements occurring in P . Clearly, P is a Φ0-proof of ⊥, so Φ0 is inconsistent. Therefore Φ0

cannot have a model. q.e.d.
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Applications (2).

The Compactness Theorem. Let Φ be a set of sentences. If every finite subset of Φ has a
model, then Φ has a model.

Corollary 1. Let Φ be a set of sentences that has arbitrary
large finite models. Then Φ has an infinite model.
Proof. Let ψ≥n be the formula stating “there are at least n different objects”. Let
Ψ := {ψ≥n ; n ∈ N}. The premiss of the theorem says that every finite subset of Φ ∪Ψ has
a model. By compactness, Φ ∪Ψ has a model. But this must be infinite. q.e.d.

Let L := {≤} be the first order language with one binary
relation symbol. Let Φp.o. be the axioms of partial orders.

Corollary 2. There is no sentence σ such that for all partial
orders P, we have

P is finite if and only if P |= σ.

[If σ is like this, then Corollary 1 can be applied to Φp.o. ∪ {σ}.]
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