Modal Propositional Logic.

- Propositional Logic: Prop. Propositional variables p_{i}, $\wedge, \vee, \neg, \rightarrow$.
- Modal Logic. Prop $+\square, \diamond$.
- First-order logic. Prop $+\forall, \exists$, function symbols \dot{f}, relation symbols \dot{R}.

$$
\text { Prop } \subseteq \text { Mod } \underset{\substack{\text { Standard } \\ \text { Translation }}}{\subseteq} \text { FOL }
$$

The standard translation (1).

Let $\dot{\mathrm{P}}_{i}$ be a unary relation symbol and $\dot{\mathrm{R}}$ a binary relation symbol.
We translate Mod into $\mathcal{L}=\left\{\dot{\mathrm{P}}_{i}, \dot{\mathrm{R}} ; i \in \mathbb{N}\right\}$.
For a variable x, we define ST_{x} recursively:

$$
\begin{aligned}
\mathrm{ST}_{x}\left(\mathrm{p}_{i}\right) & :=\dot{\mathrm{P}}_{i}(x) \\
\mathrm{ST}_{x}(\neg \varphi) & :=\neg \mathrm{ST}_{x}(\varphi) \\
\mathrm{ST}_{x}(\varphi \vee \psi) & :=\mathrm{ST}_{x}(\varphi) \vee \mathrm{ST}_{x}(\psi) \\
\mathrm{ST}_{x}(\diamond \varphi) & :=\exists y\left(\dot{\mathrm{R}}(x, y) \wedge \mathrm{ST}_{y}(\varphi)\right)
\end{aligned}
$$

The standard translation (2).

If $\langle M, R, V\rangle$ is a Kripke model, let $P_{i}:=V\left(\mathrm{p}_{i}\right)$. If P_{i} is a unary relation on M, let $V\left(\mathrm{p}_{i}\right):=P_{i}$.

Theorem.

$$
\langle M, R, V\rangle \models \varphi \leftrightarrow\left\langle M, P_{i}, R ; i \in \mathbb{N}\right\rangle \models \forall x \operatorname{ST}_{x}(\varphi)
$$

Corollary. Modal logic satisfies the compactness theorem.
Proof. Let Φ be a set of modal sentences such that every fi nite set has a model. Look at $\Phi^{*}:=\left\{\forall x \operatorname{ST}_{x}(\varphi) ; \varphi \in \Phi\right\}$. By the theorem, every fi nite subset of Φ^{*} has a model. By compactness for fi rst-order logic, Φ^{*} has a model. But then Φ has a model.
q.e.d.

Bisimulations.

If $\langle M, R, V\rangle$ and $\left\langle M^{*}, R^{*}, V^{*}\right\rangle$ are Kripke models, then a relation $Z \subseteq M \times N$ is a bisimulation if

- If $x Z x^{*}$, then $x \in V\left(\mathrm{p}_{i}\right)$ if and only if $x^{*} \in V\left(\mathrm{p}_{i}\right)$.
- If $x Z x^{*}$ and $x R y$, then there is some y^{*} such that $x^{*} R^{*} y^{*}$ and $y Z y^{*}$.
- If $x Z x^{*}$ and $x^{*} R^{*} y^{*}$, then there is some y such that $x R y$ and $y Z y^{*}$.
A formula $\varphi(v)$ is called invariant under bisimulations if for all Kripke models \mathbf{M} and \mathbf{N}, all $x \in M$ and $y \in N$, and all bisimulations Z such that $x Z y$, we have

$$
\mathbf{M} \models \varphi(x) \leftrightarrow \mathbf{N} \models \varphi(y) .
$$

van Benthem.

Johan van Benthem
Theorem (van Benthem; 1976). A formula in one free variable v is invariant under bisimulations if and only if it is equivalent to $\mathrm{ST}_{v}(\psi)$ for some modal formula ψ.

Modal Logic is the bisimulation-invariant fragment of first-order logic.

Decidability.

Theorem (Harrop; 1958). Every finitely axiomatizable modal logic with the finite model property is decidable.

Theorem. T, S4 and S5 are decidable.

Intuitionistic Logic (1).

Recall the game semantics of intuitionistic propositional logic: $\models_{\text {dialog }} \varphi$.

- $\models_{\text {dialog }} \mathrm{p} \rightarrow \neg \neg \mathrm{p}$,
- $\forall_{\text {dialog }} \neg \neg \mathrm{p} \rightarrow \mathrm{p}$,
- $\not \vDash_{\text {dialog }} \varphi \vee \neg \varphi$.

Kripke translation (1965) of intuitionistic propositional logic into modal logic:

$$
\begin{aligned}
\mathrm{K}\left(\mathrm{p}_{i}\right) & :=\square \mathrm{p}_{i} \\
\mathrm{~K}(\varphi \vee \psi) & :=\mathrm{K}(\varphi) \vee \mathrm{K}(\psi) \\
\mathrm{K}(\neg \varphi) & :=\square \neg \mathrm{K}(\varphi)
\end{aligned}
$$

Intuitionistic Logic (2).

Theorem.

$$
\models_{\text {dialog }} \varphi \leftrightarrow \mathbf{S} 4 \vdash \mathrm{~K}(\varphi) .
$$

Consequently, φ is intuitionistically valid if and only if $\mathrm{K}(\varphi)$ holds on all transitive and reflexive frames.

$$
\begin{aligned}
\models_{\text {dialog }} \mathrm{p} \rightarrow \neg \neg \mathrm{p} \rightsquigarrow & \square \mathrm{p} \rightarrow \square \diamond \square \mathrm{p} \\
\not \mathcal{A}_{\text {dialog }} \neg \neg \mathrm{p} \rightarrow \mathrm{p} \rightsquigarrow & \square \diamond \square \mathrm{p} \rightarrow \square \mathrm{p} \\
\not \models_{\text {dialog }} \varphi \vee \neg \varphi \rightsquigarrow & \mathrm{K}(\varphi) \vee \square \neg \mathrm{K}(\varphi) \\
& \square \mathrm{p} \vee \square \neg \square \mathrm{p} \\
& \square \mathrm{p} \vee \square \diamond \neg \mathrm{p}
\end{aligned}
$$

Provability Logic (1).

Leon Henkin (1952). "If φ is equivalent to $\mathrm{PA} \vdash \varphi$, what do we know about φ ?"
M. H. Löb, Solution of a problem of Leon Henkin, Journal of Symbolic Logic 20 (1955), p.115-118:
$\mathrm{PA} \vdash((\operatorname{PA} \vdash \varphi) \rightarrow \varphi)$ implies $\mathrm{PA} \vdash \varphi$.
Interpret $\square \varphi$ as PA $\vdash \varphi$. Then Löb's theorem becomes:

$$
(\mathrm{Löb}) \square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi \text {. }
$$

GL is the modal logic with the axiom (Löb).

Provability Logic (2).

Theorem (de Jongh-Sambin; 1975). GL has a fixed-point property.

Corollary. GL $\vdash \neg \square \perp \leftrightarrow \neg \square(\neg \square \perp)$.

Provability Logic (3).

Theorem (Segerberg-de Jongh-Kripke; 1971). GL $\vdash \varphi$ if and only if φ is true on all transitive converse wellfounded frames.

A translation R from the language of model logic into the language of arithmetic is called a realization if

$$
\begin{aligned}
R(\perp) & =\perp \\
R(\neg \varphi) & =\neg R(\varphi) \\
R(\varphi \vee \psi) & =R(\varphi) \vee R(\psi) \\
R(\square \varphi) & =\mathrm{PA} \vdash R(\varphi) .
\end{aligned}
$$

Theorem (Solovay; 1976). GL $\vdash \varphi$ if and only if for all realizations R, PA $\vdash R(\varphi)$.

Modal Logics of Models (1).

One example: Modal logic of forcing extensions.

Joel D. Hamkins
A function H is called a Hamkins translation if

$$
\begin{aligned}
H(\perp) & =\perp \\
H(\neg \varphi) & =\neg H(\varphi) \\
H(\varphi \vee \psi) & =H(\varphi) \vee H(\psi) \\
H(\diamond \varphi) & =\text { "there is a forcing extension in which } H(\varphi) \text { holds". }
\end{aligned}
$$

The Modal Logic of Forcing: Forc $:=\{\varphi ;$ ZFC $\vdash H(\varphi)\}$.

Modal Logics of Models (2).

Forc $:=\{\varphi ;$ ZFC $\vdash H(\varphi)\}$.
Theorem (Hamkins).

1. Forc \vdash S5.
2. Forc \vdash S4.
3. There is a model of set theory V such that the Hamkins translation of S 5 holds in that model.
Joel D. Hamkins, A simple maximality principle, Journal of Symbolic Logic 68 (2003), p. 527-550

Many other applications.

- Deontic.
\square : "it is obligatory"
$\neg(\square \varphi \rightarrow \varphi)$
- Epistemic.
\square : "agent i knows"
Closure under tautologies problematic
- Temporal.

More later in Müller's guest lecture.

Recent developments.

ASL Annual Meeting 2000 in Urbana-Champaign:
Sam Buss, Alekos Kechris, Anand Pillay, Richard Shore, The prospects for mathematical logic in the twenty-first century, Bulletin of Symbolic Logic 7 (2001), p.169-196

Sam Buss

Alekos Kechris

Anand Pillay

Richard Shore

Proof Theory.

- Generalized Hilbert's Programme (Gentzen-style analysis of proof systems).

Wolfram Pohlers

Gerhard Jäger Michael Rathjen

Proof Theory.

- Generalized Hilbert's Programme (Gentzen-style analysis of proof systems).
- Reverse Mathematics.

Harvey Friedman Steve Simpson

Proof Theory.

- Generalized Hilbert's Programme (Gentzen-style analysis of proof systems).
- Reverse Mathematics.
- Bounded Arithmetic.

Sam Buss Arnold Beckmann

Reverse Mathematics.

"The five systems of reverse mathematics"

- RCA "recursive comprehension axiom".
- ACA_{0} "arithmetic comprehension axiom".
- WKL_{0} "weak König's lemma".
- ATR_{0} "arithmetic transfinite recursion".
- Π_{1}^{1}-CA " Π_{1}^{1}-comprehension axiom".

Empirical Fact. Almost all theorems of classical mathematics are equivalent to one of the five systems.

Stephen G. Simpson, Subsystems of second order arithmetic, Springer-Verlag, Berlin 1999 [Perspectives in Mathematical Logic]

Recursion Theory.

- Investigate the structure of the Turing degrees. $\mathcal{D}:=\left\langle\wp(\mathbb{N}) / \equiv_{\mathrm{T}}, \leq_{\mathrm{T}}\right\rangle$.
- Question. Is \mathcal{D} rigid, i.e., is there a nontrivial automorphism of \mathcal{D} ?
- Theorem (Slaman-Woodin). For any automorphism π of \mathcal{D} and any $\mathbf{d} \geq \mathbf{0}^{\prime \prime}$, we have $\pi(\mathbf{d})=\mathbf{d}$.

Recursion Theory.

- Investigate the structure of the Turing degrees. $\mathcal{D}:=\left\langle\wp(\mathbb{N}) / \equiv_{\mathrm{T}}, \leq_{\mathrm{T}}\right\rangle$.
- Question. Is \mathcal{D} rigid, i.e., is there a nontrivial automorphism of \mathcal{D} ?
- Theorem (Slaman-Woodin). For any automorphism π of \mathcal{D} and any $\mathbf{d} \geq 0^{\prime \prime}$, we have $\pi(\mathbf{d})=\mathbf{d}$.
- Corollary. There are at most countably many different automorphisms of \mathcal{D}.
- Other degree structures (e.g., truth-table degrees).
- Connections to randomness and Kolmogorov complexity.
- Computable Model Theory.

Model Theory (1).

Theorem (Morley). Every theory that is κ-categorical for one uncountable κ is κ-categorical for all uncountable κ.

Michael Morley
\rightsquigarrow Stability Theory
(Baldwin, Lachlan, Shelah)

Saharon Shelah
 "Few is beautiful!" \rightsquigarrow Classification Theory

Development of new forcing techniques (proper forcing)

Model Theory (2).

- Geometric Model Theory.

Boris Zil'ber
Greg Cherlin
Ehud Hrushovski
Applications to algebraic geometry: Geometric Mordell-Lang conjecture.

- o-Minimality.

Lou van den Dries

Anand Pillay

Julia Knight

Set Theory.

- Combinatorial Set Theory: applications in analysis and topology; using forcing ("Polish set theory").

Saharon Shelah

Haim Judah

Tomek Bartoszynski

Jörg Brendle

Set Theory.

- Combinatorial Set Theory: applications in analysis and topology; using forcing ("Polish set theory").
- Large Cardinal Theory: inner model technique.

Set Theory.

- Combinatorial Set Theory: applications in analysis and topology; using forcing ("Polish set theory").
- Large Cardinal Theory: inner model technique.
- Determinacy Theory: infinite games and their determinacy; applications to the structure theory of the reals.

Jan Mycielski

Yiannis Moschovakis

Tony (Donald A.) Martin

The Continuum Problem.

Is the independence of CH from the Zermelo-Fraenkel axioms a solution of Hilbert's fi rst problem?
(Reminder: Gödel's programme to fi nd new axioms that imply or refute CH.)

- Shelah's answer: The question was wrong. The right question should be about other combinatorial objects. There we can prove the "revised GCH" (Sh460). PCF Theory.

The Continuum Problem.

Is the independence of CH from the Zermelo-Fraenkel axioms a solution of Hilbert's fi rst problem?
(Reminder: Gödel's programme to fi nd new axioms that imply or refute CH.)

- Shelah's answer: The question was wrong. The right question should be about other combinatorial objects. There we can prove the "revised GCH" (Sh460). PCF Theory.
- Foreman's answer: Large cardinals can't help, but "generic large cardinals" might.

The Continuum Problem.

Is the independence of CH from the Zermelo-Fraenkel axioms a solution of Hilbert's fi rst problem?
(Reminder: Gödel's programme to fi nd new axioms that imply or refute CH.)

- Shelah's answer: The question was wrong. The right question should be about other combinatorial objects. There we can prove the "revised GCH" (Sh460). PCF Theory.
- Foreman's answer: Large cardinals can't help, but "generic large cardinals" might.
- Woodin's answer: Instead of looking at the statements of new axioms, look at the metamathematical properties of axiom candidates. There is an asymmetry between axioms that imply CH and those that imply $\neg \mathrm{CH}$. Woodin's Ω-conjecture.

