
Computability (1).

Turing Machine. A finitary programme T ; given an input p,
T either halts outputting q or loops.

A function f : N → N is Turing-computable if there is a
Turing machine T such that for all x, we have

f(x) = y ↔ T (x) ↓ y.

The class of Church-recursive functions is the smallest
class containing projections and the successor function
closed under primitive recursion, substitution and
µ-recursion.

Theorem. A function is Turing-computable if and only if it is
Church-recursive.
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Computability (2).

Alonzo Church Stephen Kleene
1903-1995 1909-1994

“Both Turing and Gödel preferred the terminology ‘computable’ for this class of
functions. When Turing’s 1939 paper appeared, he had already been recruited
as a cryptanalyst three days after Britain was plunged into World War II. Gödel
moved to set theory. Neither Turing nor Gödel had much influence on the
terminology of the subject after 1939.
The present terminology came from Church and Kleene. They had both
committed themselves to the new ‘recursive’ terminology before they had ever
heard of Turing or his results. (Soare 1996)”
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Computability (3).

computable recursive
computably enumerable recursively enumerable

Computability Theory Recursion Theory

Robert I. Soare, Computability and recursion, Bulletin of Symbolic Logic 2 (1996),
p.284-321
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Oracle Machines.

An oracle machine is a regular Turing machine with an
extra tape on which it cannot write but only read.

If f : N → N and T is an oracle machine, we say that T
halts at input x with oracle f if the computation with f

written on the extra tape halts. We write T f (x) ↓.

A function f is Turing-computable in g if for all x, we
have

f(x) = y ↔ T g(x) ↓ y.

Theorem. A function is Turing-computable in g if and
only if it is in the smallest class containing projections,
the successor function, and g closed under primitive
recursion, substitution and µ-recursion.

Let us write Cg for that class.
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Relative Computability.

We write f ≤T g if and only if Cf ⊆ Cg.

≤T is a partial preorder, i.e., a transitive and reflexive
relation.

It is not antisymmetric: If f and g are computable, then
Cf = Cg is the class of computable sets.

If f is computable, then f ≤T K and K 6≤T f .

Define f ≡T g if and only if f ≤T g and g ≤T f .

D := N
N/≡T is a partial order called the Turing degrees.
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Two questions.

Is D a linear order?
Are there f and g such that f 6≤T g and g 6≤T f?

No!

A set A is called computably enumerable (c.e.) if there
is a Turing machine T such that

x ∈ A↔ T (x) ↓ .

Post’s Problem: Is there a non-computable c.e. A such
that χA 6≡T K.

Yes! (Friedberg-Muchnik 1956/1957).
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Church and his students.

Stephen Kleene Martin Davis Michael Rabin Dana Scott Raymond Smullyan

1909-1994 b. 1928 b. 1931 b. 1932 b. 1919

PhD 1934 PhD 1950 PhD 1956 PhD 1958 PhD 1959
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Hilbert’s Tenth Problem (1).

A diophantine equation is an equation of the form

anx
n + an−1x

n−1 + ...+ a0 = 0.

Hilbert’s Tenth Problem. Is there an algorithm that
determines given 〈an, ..., a0〉 as an input whether the
Diophantine equation anx

n + an−1x
n−1 + ...+ a0 = 0 has an

integer solution?

Answer (Davis-Putnam-Robinson-Matiyasevich;
1950-1970). No!

Core Logic – 2004/05-1ab – p. 10/33



Hilbert’s Tenth Problem (2).

Davis Robinson Matiyasevich Putnam
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Effective Computation (1).

Lance Fortnow, Steve Homer, A short history of
computational complexity, Bulletin of the European
Association for Theoretical Computer Science 80
(2003), p.95-133

Juris Hartmanis, Observations About the Development
of Theoretical Computer Science, Annals of the
History of Computing 3 (1981), p. 42-51

Let f : N → N be any function and T a Turing machine. We
say that T is time-bounded by f if for every input x, T halts
in less than f(x) steps.
Note. This is a worst-case analysis.
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Effective Computation (2).

Let f : N → N be any function and T a Turing machine. We say that T is time-bounded by f
if for every input x, T halts in less than f(x) steps.

If F is a class of functions, we let TIME(F) be the class of
sets decided by a machine time-bounded by some f ∈ F .

Complexity Classes.

“Linear Time Computation.” TIME(L), where
L := {ax+ b ; a, b ∈ N}.

“Quadratic Time Computation.” TIME(Q), where
Q := {ax2 + bx+ c ; a, b, c ∈ N}.

“Polynomial Time Computation.” P := TIME(P), where
P is the class of polynomials.

Core Logic – 2004/05-1ab – p. 13/33



The search for the model of computation.

Shannon’s Information Theory (1938, 1948).

Finite Automata. Kleene (1956), Shannon-McCarthy
(1956).

Martin Davis, “Computability & Unsolvability” (1958)

Rabin-Scott, Nondeterministic computation (1959).
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Nondeterministic Computation (1).

A nondeterministic Turing machine has finitely many
options for actions in each given state. We say a
nondeterministic machine T is time-bounded by f if for all
possible computations, T halts in less than f(x) steps at
input x. We say a nondeterministic machine T accepts x if
there is a computation that accepts x.
“branching nondeterminism”

Take a regular Turing machine T and say T is
nondeterministically time-bounded by f if for all x and y,
T (x, y) halts in less than f(y) steps. We say that T
nondeterministically accepts y if there is some x such that T
accepts 〈x, y〉.
“guess nondeterminism”
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Nondeterministic computation (2).

Theorem. If A is a set of natural numbers, then the
following are equivalent:

1. there is a Turing machine T (nondeterministically
time-bounded by f ) such that x ∈ A if and only if T
nondeterministically accepts x.

2. there is a nondeterministic Turing machine T
(time-bounded by f ) such that x ∈ A if and only if T
accepts x.

Context of Discovery.

Context of Justification.
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Nondeterministic computation (3).

Compositeness. Given n, determine whether there is
some 1 < k < n such that k|n.

The deterministic Turing machine that checks this for all k
would need roughly n

2
! steps.

If k and n are given, then checking whether k|n is very
simple (linear in n). The nondeterministic Turing machine
can check this simultaneously for all k < n.
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Feasible Computation.

1963. Juris Hartmanis, “On the computational complexity of algorithms”.

Blum Speed-up theorem. There is a set A such that for each Turing machine T

deciding A in time f , there is T ∗ deciding A in f∗ wher f∗(x) :=
f(x)
n

.

Linear time is highly dependent of the model of computation.

Theorem (Cobham; 1964). P is independent of the model of computation.

Consensus (“effective Church-Turing thesis”): P is a formalization of “feasible
computation”.

1965 (Edmonds). NP as a formalization for feasible checkability. NP is the class of
sets that are decided by a nondeterministic polynomial-time Turing machine.
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Satisfiability (1).

Church’s Theorem. There is no decision algorithm for
predicate logic.

Decision algorithm for propositional logic: Write
truth-table.

For a formula of length n with k propositional variables,
this requires 2k · n steps.

Question. Is there a polynomial algorithm for
propositional logic (Gödel 1956)?

Conjunctive normal form. A literal is either a propositional
variable or a negated propositional variable, an n-clause is
a disjunction of n literals. A formula is in conjunctive normal
form if it is a conjunction of clauses.
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Satisfiability (2).

Conjunctive normal form. A literal is either a propositional variable or a negated propositional
variable, an n-clause is a disjunction of n literals. A formula is in conjunctive normal form if it
is a conjunction of clauses.

Theorem. Every propositional formula is equivalent to a
formula in conjunctive normal form.

The set SAT is the set of all formulas in conjunctive normal
form that are satisfiable, i.e., there is an assignment of truth
values to the propositional variables such that the formula is
true.

n-SAT is SAT restricted to formulae containing only
n-clauses. 2-SAT is solvable in polynomial time.

Rephrased question. SAT ∈ P?

Core Logic – 2004/05-1ab – p. 20/33



Reduction functions.

We say that A is polynomially reducible to B if there is a
total function f : N → N that is in P such that

x ∈ A↔ f(x) ∈ B.

We write A ≤poly B.

Note: If A ≤poly B and B ∈ P, then A ∈ P.

A set H is called NP-hard if for all A ∈ NP, we have
A ≤poly B. A set is called NP-complete if it is NP-hard and
in NP.

If there is an NP-complete set that is in P, then P = NP.
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Cook’s Theorem.

Stephen Cook Leonid Levin
(b. 1940) (b. 1948)

Theorem (Cook 1971, Levin 1973). SAT is NP-complete.

Therefore: If there is a polynomial-time algorithm to solve
the satisfiability problem, then P = NP.

Question (Cook, 1971). P
?
= NP.

Core Logic – 2004/05-1ab – p. 22/33



Hilbert’s Problems Once Again.

Hilbert’s First Problem. The Continuum Hypothesis.
“What is the cardinality of the real numbers?”

Hilbert’s Second Problem. Consistency of Arithmetic.
“Is there a finitistic proof of the consistency of the
arithmetical axioms?”

Hilbert’s Tenth Problem. Solvability of Diophantine
Equations. “Is there an algorithm that determines
whether a given Diophantine equation has a solution or
not?”
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Back to Set Theory.

Standard axiomatization: ZF “Zermelo-Fraenkel Set
Theory”.

Question 1. Does ZF ` AC?

Question 2. What is the cardinality of the real
numbers?
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Cardinals & Ordinals (1).

Question 1. Does ZF ` AC?

Question 2. What is the cardinality of the real numbers?

Cardinality. Two sets A and B are called equinumerous if
there is a bijection π : A→ B. Equinumerosity is an
equivalence relation. The cardinality of A is its
equinumerosity equivalence class.
Ordinals. If L and L

∗ are wellorders (linear orders without
descending chains), then either L is orderisomorphic to an
initial segment of L

∗ or vice versa. The class of wellorders
is wellordered by

L 4 L
∗ ↔ L is orderisomorphic to an initial segment of L

∗.

Ordinals are the equivalence classes of orderisomorphism.

We let Ord be the class of all ordinals.
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Cardinals & Ordinals (2).

Cardinality. The cardinality of A is its equinumerosity equivalence class.

Ordinals. Ordinals are the equivalence classes of orderisomorphism.

Ord = {0, 1, 2, 3, ...,∞ = ω, ω + 1, ω + 2, ..., ω · 2, ...}.

Zermelo’s Wellordering Theorem says: AC implies that
every cardinality contains a wellorderable set.

Since 4 is a wellorder, there is a least ordinal α that is not
equinumerous to the natural numbers. We call it ω1. AC

gives us a wellorder v of the real numbers. We know by
Cantor that

ω1 4 〈R,v〉

There is a least ordinal c = 2ℵ0 such that R and c are
equinumerous. Again, ω1 ≤ c.
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The Continuum Hypothesis (1).

CH. ω1 = c. The least ordinal that is not equinumerous to
the natural numbers is the least ordinal that is
equinumerous to the real numbers.

Equivalently, if A ⊆ R is a set of real numbers, then A is
either finite or countable, or there is a bijection between A
and R.

Sketch. Suppose ω1 < c. Let v be a wellorder of R such that 〈R,@〉 and c are
orderisomorphic. Let π : R → c be the orderisomorphism.
Since ω1 < c, there is a proper initial segment I of c that is orderisomorphic to ω1. Look at
π−1[I] ⊆ R. This is a set of reals equinumerous to ω1, so it cannot be finite or countable.
But since ω1 < c, it cannot be equinumerous to R. q.e.d.
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The Continuum Hypothesis (2).

Hilbert (1900). “Es erhebt sich nun die Frage, ob das
Continuum auch als wohlgeordnete Menge aufgefaßt
werden kann, was Cantor bejahen zu müssen glaubt.”

In other words: CH implies “there is a wellordering of the
real numbers”.

Question 1. Does ZF ` AC?

Question 2. Does ZF ` CH?

Question 2*. Does ZFC ` CH?

All of these questions were wide open in 1930.
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Gödel’s Constructible Universe (1).

Johan von Neumann Kurt Gödel

(1903-1957) (1906-1978)

Usual (“von Neumann”) construction of the set-theoretic universe is built on the
ordinals and the power set operation: Vα+1 := ℘(Vα).

Constructible approach (Gödel). Only add those subsets that are defined by formulae:
Let X be given, then A ⊆ X is defined over X if there is a formula ϕ and finitely many
parameters p0, ..., pn ∈ X such that

x ∈ A↔ X |= ϕ[x, p0, ..., pn].

Let Def(X) := {A ⊆ X ; A is defined over X} ⊆ ℘(X).

Lα+1 := Def(Lα).
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Gödel’s Constructible Universe (2).

Vα+1 := ℘(Vα).
Lα+1 := Def(Lα).

Let L be the universe defined by Gödel’s L-operation. Then:

Theorem (Gödel; 1938). L |= ZFC + CH.

Corollary. If ZF is consistent, then ZFC + CH is consistent.
Consequences.

Question 1, Question 2 and Question 2* cannot have a negative answer.

The system ZFC + CH cannot be logically stronger than ZF, i.e.,
ZFC + CH 6` Cons(ZF).

L is tremendously important for the investigation of logical strength. It turns out that if
there is a measurable cardinal, then L |= “there are inaccessible but no measurable
cardinals” (Scott; next time).

L is a minimal model of set theory.
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Gödel’s Constructible Universe (3).

A new axiom? V=L. “The set-theoretic universe is
minimal”.

Gödel Rephrased. ZF + V=L ` AC + CH.

Possible solutions.

Prove V=L from ZF.

Assume V=L as an axiom. (V=L is generally not
accepted as an axiom of set theory.)

Find a different proof of AC and CH from ZF.

Prove AC and CH to be independent by creating models
of ZF + ¬AC, ZF + ¬CH, and ZFC + ¬CH.
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Cohen.

Paul Cohen (b. 1934)

Technique of Forcing (1963). Take a model M of ZFC and
a partial order P ∈M . Then there is a model construction of
a new model MP, the forcing extension. By choosing P

carefully, we can control properties of MP.

Let κ > ω1. If P is the set of finite partial functions from κ× ω

into 2, then MP |= ¬CH.

Theorem (Cohen). ZFC 6` CH.

Theorem (Cohen). ZF 6` AC.
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Solovay.

Robert Solovay
1962. Correspondence with Mycielski about the Axiom of
Determinacy.

1963. Development of Forcing as a method.

1963. Solves the measure problem: it is consistent with ZF that all
sets are Lebesgue measurable.

1964. PhD University of Chicago (advisor: Saunders Mac Lane).

1975. Baker-Gill-Solovay: There are oracles p and q such that
P
p = NP

p and P
q 6= NP

q .

1976. Solovay-Woodin: Solution of the Kaplansky problem in the
theory of Banach algebras.

1977. Solovay-Strassen algorithm for primality testing.
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