

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Core Logic 2004/2005; 1st Semester dr Benedikt Löwe

Homework Set #8

Deadline: November 10th, 2004

Exercise 22 (3 points total).

Give the names of the following people (1 point each):

- X was a Aristotelian philosopher from Constantinople who lived in Italy most of his life. From 1456 to 1458, he was the professor for rhetoric and poetics at the *studio fiorentino* and one of the teachers of Lorenzo de'Medici (*il Magnifico*).
- *Y* was one of the authors of *La logique, ou l'art de penser*. He was called "the Great" to distinguish him from his father who had the same name.
- Z was a niece of King Frederick the Great of Prussia. She was the recipient of the *Lettres à une Princesse d'Allemande* in which Euler explained deductive reasoning by what we now call "Euler diagrams".

Exercise 23 (10 points).

A structure $\langle R, +, \cdot, 0, 1 \rangle$ is called a **ring** if + is commutative and associative binary operation on R, \cdot is an associative binary operation on R, \cdot distributes over + (*i.e.*, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$), 0 is the neutral element of + (*i.e.*, 0 + a = a + 0 = a) and 1 is the neutral element of \cdot (*i.e.*, $a \cdot 1 = 1 \cdot a = a$).

Examples of rings are: the integers \mathbb{Z} , the rationals \mathbb{Q} , the reals \mathbb{R} .

Let $\mathbf{B} = \langle B, 0, 1, \wedge, \vee, - \rangle$ be a Boolean algebra. For $X, Y \in B$, define

$$X + Y := (X \land -Y) \lor (-X \land Y), \text{ and}$$
$$X \cdot Y := X \land Y.$$

We write $R(\mathbf{B}) := \langle B, +, \cdot, 0, 1 \rangle$.

- (1) Prove that $R(\mathbf{B})$ is a ring (6 points).
- (2) Give an example of a ring R such that R is not isomorphic to any R(B) (with a proof; 4 points).

Exercise 24 (6 points total).

Let $\mathcal{L} = \{P\}$ be the language with one binary relation symbol. Consider the following \mathcal{L} -sentence σ :

$$\forall x (\exists y (\exists z (P(x, y) \land P(z, y) \land (P(x, z) \to P(z, x))))).$$

For each of the following three models M_0 , M_1 , and M_2 , determine whether $M_i \models \sigma$ or not. Give a brief argument (2 points each).

- (1) $\mathbf{M}_0 := \langle \mathbb{N}, R_0 \rangle$ where nR_0m if and only if n < m.
- (2) $\mathbf{M}_1 := \langle \mathbb{N}, R_1 \rangle$ where nR_1m if and only if m = 2n.
- (3) $\mathbf{M}_2 := \langle \mathbb{N}, R_2 \rangle$ where nR_2m if and only if n > m.

Exercise 25 (6 points plus 3 extra points).

Consider the following plane geometry:

Let $P = \{a, b, c, d\}$, $L = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\}$ and $pI\ell$ if $p \in \ell$. Show that $\mathbf{P} := \langle P, L, I \rangle$ is a strongly Euclidean plane. (Note that the picture is potentially misleading: there is no intersection of the two diagonal lines in \mathbf{P} ; 6 points.)

For students with a mathematical background: What does this example have to do with the two-dimensional vector space over the field $\mathbb{Z}/(2)$? (1 extra point). Can you come up with an analogous example for the two-dimensional vector space over the field $\mathbb{Z}/(3)$? (2 extra points)