

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Core Logic 2004/2005; 1st Semester dr Benedikt Löwe

Homework Set #4

Deadline: October 6th, 2004

We define a different formal system for proving valid moods. In the following, we use the letters t_{ij} for terms and the letters k_i stand for copulae. We write a mood in the form

$$\begin{array}{c} t_{11} \ k_1 \ t_{12} \\ t_{21} \ k_2 \ t_{22} \\ \hline t_{31} \ k_3 \ t_{32}, \end{array}$$

for example,

AaB BaC AaC

for **Barbara**. We write M_i for t_{i1} k_i t_{i2} and define some operations on moods.

- For $i \in \{1, 2, 3\}$, the operation s_i can only be applied if k_i is either 'i' or 'o'. In that case, s_i interchanges t_{i1} and t_{i2} .
- For $i \in \{1, 2, 3\}$, let p_i be the operation that changes k_i to its superaltern (if it has one).
- Let m be the operation that exchanges M_1 and M_2 .
- For i ∈ {1,2}, let c_i be the operation that first gives k_i and k₃ to their contradictories and then exchanges M_i and M₃.
- Let per be a permutation of the letters A, B, and C, applied to the mood. (It can be the identity.)

Here are some examples of graphical representations of these operations:

S 3:	AaB	AaB	p_1 : AiB —	→ AaB ⁿ	n: AaB	m 🚽 CaB
	BiC	BiC	AaB	AaB	CaB	AaB
	CiA s	AiC	AaC	AaC	AaC	AaC
c1:	AoB	AaC	per: BaA	per AaB		
	CaB C	CaB	AaC	BaC		
	AoC	AaB	BaC	AaC		

Given any set \mathfrak{B} of "basic moods", a \mathfrak{B} -proof of a mood $M = M_1, M_2: M_3$ is a sequence $(o_1, ..., o_n)$ of operations such that

- Only o_1 can be of the form c_1 or c_2 (but doesn't have to be).
- The sequence of operations, if applied to M, yields an element of \mathfrak{B} .

From the proof, we can derive a name for the valid mood via the medieval mnemonics. (Note that the use of s_i , p_i and c_i will add the corresponding consonant after the *i*th vowel.)

2

As an example, this is a proof of **Disamis**:

AiB —	→ BiAm		CaB ^p	er AaB
CaB	CaB	BiA	BiA	BiC
AiC	AiC	AiC	$\xrightarrow{s} \overline{\text{CiA}}$	AiC

Exercise 8 (total of six points).

Let \mathfrak{B}_{BCDF} be the Aristotle's set of perfect moods **Barbara**, **Celarent**, **Darii**, and **Ferio**. Give \mathfrak{B}_{BCDF} -proofs of **Camestres**, **Camenes** and **Bramantip** in the graphic representation given above (2 points each).

Exercise 9 (total of nine points).

Let $\mathfrak{B}_{GH} := { Giliri, Halodri }$

	AiB		AaB
where Giliri is	BiC	and Halodri is	BoC
	AiC		AiC

For example, the following is a \mathfrak{B}_{GH} -proof:

BoA	m CaB	CaB ^p	er AaB
CaB	BoA	BoA	BoC
AiC	AiCs	→ CiA	AiC

Following the proof, the mood BoA, CaB:AiC could be called Homalis.

Give \mathfrak{B}_{GH} -proofs in the graphic representation (2 points each) and find names consistent with the medieval mnemonics (1 point each) for the following three moods:

BoA	BiA	AeB
CiB	CeB	BiC
AiC	AeC	AeC.

Exercise 10 (total of ten points).

Let W be a nonempty set of states and $R \subseteq W \times W$ an accessibility relation. We say "state v is conceivable by anyone in state w" for wRv. Let X be a nonempty set of objects, and $E \subseteq W \times X$ a relation. We say "object x exists in state w" for wEx. For each $w \in W$, we have an order $<_w$ of X, and we say "in state w, object x is better than object y" for $y <_w x$.

We call $\langle W, R, X, E, \langle \langle w; w \in W \rangle \rangle$ an **ontological frame** if R is reflexive (*i.e.*, w is conceivable by anyone in state w), and the following principle "*Existence is better than nonexistence*" (EBN) holds:

(EBN) For all x, y and w, if wEx and $\neg wEy$, then $y <_w x$.

The central argument of Anselm's ontologic proof is "if something is such that nothing better can be conceived, then it must exist". Formulate this argument in the language of ontological frames and prove it (6 points). Given an example of an ontological frame where there is no object "such that nothing better can be conceived" (4 points).