

Recursion Theory

2003/2004; 1st Semester dr Benedikt Löwe

Homework Set # 7.

Deadline: November 13th, 2003

Exercise # 1.

In analogy to the notion of Π_1^0 -hardness, let's say a set H is Γ -hard if for all $A \in \Gamma$, we have $A \leq_{\mathrm{m}} H$ (where Γ is one of the Σ_n^0 and Π_n^0). Let

$$S_2^* := \{e \, ; \, \exists y \, \forall x \, (\varphi_e^{(2)}(x, y) = 1)\}, \text{ and} \\ P_3^* := \{e \, ; \, \forall z \, \exists y \, \forall x \, (\varphi_e^{(3)}(x, y, z) = 1)\}.$$

Show that S_2^* is Σ_2^0 -hard and that P_3^* is Π_3^0 -hard.

Exercise # 2.

Recall from the lecture that if $T \subseteq \text{Fml}$ (*i.e.*, T is a set of natural numbers coding formulae of the formal language of arithmetic) and $s := \langle s_0, \ldots, s_n \rangle$ is a proof in T, then we call

$$\#\,s:=\prod_{i=0}^n p_i^{s_i}$$

the proof code of s, and we defined $\text{Conseq}(T) := \{k \in \text{Fml}_0; \text{ there is a proof } s := \langle s_0, \ldots, s_n \rangle$ in T and $i \leq n$ such that $k = s_i\}$. In class, we argued briefly that if T is a recursive set, then Conseq(T) is r.e.

Prove:

- (1) If T is r.e., then Conseq(T) is r.e. as well.
- (2) There is some T such that $T \not\leq_{\mathrm{m}} \operatorname{Conseq}(T)$. **Hint.** Find $S \subseteq T$ such that $\operatorname{Conseq}(S) = \operatorname{Conseq}(T)$ where T is recursive and S is not r.e.

http://staff.science.uva.nl/~bloewe/2003-I-RT.html