## Recursion Theory

## 2003/2004; 1st Semester dr Benedikt Löwe

## Homework Set \# 3.

Deadline: October 9th, 2003

## Exercise \# 1.

Prove the following theorem:
For each $n \in \mathbb{N}$, there is a recursive function concat ${ }^{n}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ such that for all $e_{1}, \ldots, e_{n} \in \mathbb{N}$, we have

$$
\varphi_{\text {concat }\left(e_{1}, \ldots, e_{n}\right)}(x)=\varphi_{e_{1}} \circ \cdots \circ \varphi_{e_{n}}(x) .
$$

## Exercise \# 2.

Prove the following theorem:
Let $p$ be a recursive binary function and $e$ and $f$ indices. Then there is a recursive function plugin : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ such that

$$
\varphi_{\text {plugin }(e, f)}(x)=p\left(\varphi_{e}(x), \varphi_{f}(x)\right)
$$

## Exercise \# 3.

The following "recursion formula" defines the Ackermann function:

```
\(\operatorname{ACK}(0,0, y)=y\),
\(\operatorname{ACK}(0, x+1, y)=\operatorname{ACK}(0, x, y)+1\),
\(\operatorname{ACK}(1,0, y)=0\),
\(\operatorname{ACK}(z+2,0, y)=1\),
\(\operatorname{ACK}(z+1, x+1, y)=\operatorname{ACK}(z, \operatorname{ACK}(z+1, x, y), y)\).
```

This is not a primitive recursive derivation, and in fact there is none for the Ackermann function (notice the nested recursion in the last line of the definition). Compute $\operatorname{ACK}(4,3,2)$. Let $\mathcal{C}$ be the smallest class of functions which is closed under (I) to (V) and contains the Ackermann function. Is $\mathcal{C}$ the class of all recursive functions?

