

Recursion Theory

2003/2004; 1st Semester dr Benedikt Löwe

Homework Set # 10.

Deadline: December 4th, 2003

Exercise # 1.

Let $f : \mathbb{N} \to \mathbb{N}$ be a function. Define a sequence of sets of natural numbers as follows:

•
$$E_{-1} := \emptyset,$$

• $E \to \mathbf{W}^{E_n}$

•
$$E_n := W_{f(n)}^{L_{n-1}}$$
.

Show that there is a set $H \subseteq \mathbb{N}$ such that for all $n \in \mathbb{N}$, $E_n <_{\mathrm{T}} H$. Deduce from this that there is a set H such that for all $n \in \mathbb{N}$, $\mathbf{0}^{(n)} <_{\mathrm{T}} H$.

Exercise # 2.

A subset $C \subseteq \mathcal{D}$ is called a **cone** if there is some $\mathbf{b} \in \mathcal{D}$ (called the **base of the cone**) such that

$$C = \{ \mathbf{d} \in \mathcal{D} ; \mathbf{b} \leq_{\mathrm{T}} \mathbf{d} \}.$$

Define the family $MF \subseteq \wp(\mathcal{D})$ by

 $X \in MF : \iff$ there is a cone C such that $C \subseteq X$.

This family is called the **Martin filter**. Show that it is actually a filter, *i.e.*, (i) $\mathcal{D} \in MF$, (ii) supersets of sets in MF are in MF, and (iii) intersections of sets in MF are in MF.

http://staff.science.uva.nl/~bloewe/2003-I-RT.html