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Part I
Introduction



Bayesian and Frequentist statistics

sample space (X ,B) measurable space

i.i.d. data Xn = (X1, . . . , Xn) ∈ X n frequentist/Bayesian

model (P,G ) model subsets B, V ∈ G

prior Π : G → [0,1] probability measure

posterior Π( · |Xn) : G → [0,1] Bayes’s rule, inference

Frequentist assume there is P0 Xn ∼ Pn0
Bayes assume P ∼ Π Xn |P ∼ Pn
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Definition of the posterior

Definition 4.1 Assume that all P 7→ Pn(A) are G -measurable. Given

prior Π, a posterior is any Π( · |Xn = ·) : G ×X n → [0,1]

(i) For any G ∈ G , xn 7→ Π(G|Xn = xn) is Bn-measurable

(ii) (Disintegration) For all A ∈ Bn and G ∈ G∫
A

Π(G|Xn) dPΠ
n =

∫
G
Pn(A) dΠ(P )

where PΠ
n =

∫
Pn dΠ(P ) is the prior predictive distribution

Remark 4.2 For frequentists (X1, . . . , Xn) ∼ Pn0 , so assume Pn0 � PΠ
n

4



Asymptotic consistency of the posterior
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Definition 5.1 Given a model P with topology and a Borel prior Π,

the posterior is consistent at P ∈P if for every open nbd U of P

Π(U |Xn)
P−−→1
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Doob’s and Schwartz’s consistency theorems

Theorem 6.1 (Doob (1948))

Let P and X be Polish spaces. Assume that P 7→ Pn(A) is Borel

measurable for all n,A. Then for any prior Π, the posterior is consis-

tent at P , for Π-almost-all P ∈P

Remark 6.2 (Schwartz (1961), Freedman (1963)) Not frequentist!

Theorem 6.3 (Schwartz (1965))

Let X1, X2, . . . be an i.i.d.-sample from P0 ∈ P. Let P be Hellinger

totally bounded and let Π be a Kullback-Leibler (KL-)prior, i.e.

Π
(
P ∈P : −P0 log dP/dP0 < ε

)
> 0

for all ε > 0. Then the posterior is consistent at P0 in the Hellinger

topology
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The Dirichlet process

Definition 7.1 (Dirichlet distribution)

A random variable p = (p1, . . . , pk) with pl ≥ 0 and
∑
l pl = 1 is Dirichlet

distributed with parameter α = (α1, . . . , αk), p ∼ Dα, if it has density

fα(p) = C(α)
k∏
l=1

p
αl−1
l

Definition 7.2 (Dirichlet process, Ferguson 1973-74)

Let α be a finite measure on (X ,B). The Dirichlet process P ∼ Dα

is defined by, (for all finite msb partitions A = {A1, . . . , Ak} of X )(
P (A1), . . . , P (Ak)

)
∼ D(α(A1),...,α(Ak))
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Weak consistency with Dirichlet priors

Theorem 8.1 (Dirichlet consistency)

Let X1, X2, . . . be an i.i.d.-sample from P0 If Π is a Dirichlet prior Dα
with finite α such that supp(P0) ⊂ supp(α), the posterior is consistent

at P0 in the weak model topology

Remark 8.2 Priors are not necessarily KL for consistency

Remark 8.3 (Freedman (1965))

Dirichlet distributions are tailfree: if A′ refines A and A′i1∪ . . .∪A
′
ili

=

Ai, then (P (A′i1|Ai), . . . , P (A′ili|Ai) : 1 ≤ i ≤ k) is independent of

(P (A1), . . . , P (Ak)).

Remark 8.4 Xn 7→ Π(P (A)|Xn) is σn(A)-measurable where σn(A) is

generated by products of the form
∏n
i=1Bi with Bi = {Xi ∈ A} or

Bi = {Xi 6∈ A}.
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Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 9.1 Uniform (or minimax) testability

sup
P∈B

Pnφn → 0, sup
Q∈V

Qn(1− φn)→ 0

Definition 9.2 Pointwise testability for all P ∈ B, Q ∈ V

φn
P -a.s.−−−−−→0, φn

Q-a.s.−−−−−→1

Definition 9.3 Bayesian testability for Π-almost-all P ∈ B, Q ∈ V

φn
P -a.s.−−−−−→0, φn

Q-a.s.−−−−−→1
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Part II

Bayesian testability

and prior-a.s.-consistency



A posterior concentration inequality

Lemma 11.1 Let (P,G ) be given. For any prior Π, any test function

φ and any B, V ∈ G such that B ∩ V = ∅ and Π(B) > 0,∫
B
PΠ(V |X) dΠ(P ) ≤

∫
B
PφdΠ(P ) +

∫
V
Q(1− φ) dΠ(Q)

Corollary 11.2 Consequently, in i.i.d.-context, for any sequences (Πn),

(Bn), (Vn) such that Bn ∩ Vn = ∅ and Πn(Bn) > 0, we have,∫
PnΠ(Vn|Xn) dΠn(P |Bn)

≤
1

Π(Bn)

(∫
Bn
Pnφn dΠn(P ) +

∫
Vn
Qn(1− φn) dΠn(Q)

)
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Martingale convergence

Proposition 12.1 Let (P,G ,Π) be given. For any B, V ∈ G , the

following are equivalent,

(i) There exist Bayesian tests (φn) for B versus V ;

(ii) There exist tests (φn) such that,∫
B
Pnφn dΠ(P )→ 0 +

∫
V
Qn(1− φn) dΠ(Q)→ 0,

(iii) For Π-almost-all P ∈ B, Q ∈ V ,

Π(V |Xn)
P -a.s.−−−−−→0, Π(B|Xn)

Q-a.s.−−−−−→0

Remark 12.2 Interpretation distinctions between model subsets are

Bayesian testable, iff they are picked up by the posterior asymptoti-

cally, if(f), the Bayes factor for B versus V is consistent
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Prior-almost-sure consistency

Theorem 13.1 Let Hausdorff P with Borel prior Π be given. Assume

that for Π-almost-all P ∈ P and any open nbd U of P , there exist

a B ⊂ U with Π(B) > 0 and Bayesian tests (φn) for B versus P \ U .

Then the posterior is consistent at Π-almost-all P ∈P

Remark 13.2 Let P be a Polish space and assume that all P 7→
Pn(A) are Borel measurable. Then, for any prior Π, any Borel set

V ⊂P is Bayesian testable versus P \ V .

Corollary 13.3 Doob’s theorem (1948), and much more!
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Part III
Frequentism



Le Cam’s inequality

Definition 15.1 For B ∈ G such that Π(B) > 0, the local prior pre-

dictive distribution is P
Π|B
n =

∫
Pn dΠ(P |B).

Remark 15.2 (Le Cam, unpublished (197?) and (1986))

Rewrite the posterior concentration inequality

Pn0 Π(Vn|Xn) ≤
∥∥∥∥Pn0 − PΠ|Bn

n

∥∥∥∥
+
∫
Pnφn dΠ(P |Bn) +

Π(Vn)

Π(Bn)

∫
Qn(1− φn) dΠ(Q|Vn)

Remark 15.3 For some bn ↓ 0, Bn = {P ∈P : ‖Pn − Pn0 ‖ ≤ bn},

a−1
n Π(Bn)→∞

Remark 15.4 Useful in parametric models but “a considerable nui-

sance” [sic] (Le Cam (1986)) in non-parametric context
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Schwartz’s theorem revisited

Remark 16.1 Suppose that for all δ > 0, there is a B s.t. Π(B) > 0

and for all P ∈ B and large enough n

Pn0 Π(V |Xn) ≤ enδPnΠ(V |Xn)

then (by Fatou) for large enough m

sup
n≥m

[
(Pn0 − e

nδP
Π|B
n )Π(V |Xn)

]
≤ 0

Theorem 16.2 Let P be a model with KL-prior Π; P0 ∈ P. Let

B, V ∈ G be given and assume that B contains a KL-neighbourhood

of P0. If there exist Bayesian tests for B versus V of exponential

power then

Π(V |Xn)
P0−a.s.−−−−−−→0

Corollary 16.3 (Schwartz’s theorem (1965))
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Remote contiguity

Definition 17.1 Given (Pn), (Qn) of prob msr’s, Qn is contiguous

w.r.t. Pn (QnCPn), if for any (ψn), ψn : X n → [0,1]

Pnψn = o(1) ⇒ Qnψn = o(1)

Definition 17.2 Given (Pn), (Qn) of prob msr’s and a an ↓ 0, Qn is

an-remotely contiguous w.r.t. Pn (QnC a−1
n Pn), if for any sequence

(ψn), ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Remark 17.3 Contiguity is stronger than remote contiguity

note that QnCPn iff QnC a−1
n Pn for all an ↓ 0.

Definition 17.4 Hellinger transform ρn(α) =
∫

(dPn)α(dQn)1−α
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Le Cam’s first lemma

Lemma 18.1 Given (Pn), (Qn) like above, QnCPn iff any of the

following holds:

(i) If Tn
Pn−−→0, then Tn

Qn−−→0

(ii) Given ε > 0, there is a b > 0 such that Qn(dQn/dPn > b) < ε

(iii) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c Pn‖ < ε

(iv) If dPn/dQn
Qn-w.−−−−−→ f along a subsequence, then P (f > 0) = 1

(v) If dQn/dPn
Pn-w.−−−−→ g along a subsequence, then Eg = 1

(vi) lim infn φn(α)→ 1 as α ↑ 1
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Criteria for remote contiguity

Lemma 19.1 Given (Pn), (Qn), an ↓ 0, QnC a−1
n Pn if any of the

following holds:

(i) If, for all ε > 0, Pn(Tn > ε) = o(an), then Tn
Qn−−→0

(ii) Given ε > 0, there is a b > 0 such that Qn(dQn/dPn > ba−1
n ) < ε

(iii) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(iv) If a−1
n dPn/dQn

Qn-w.−−−−−→ f along a subsequence, then P (f > 0) = 1

(v) If an dQn/dPn
Pn-w.−−−−→ g along a subsequence, then Eg = 1

(vi) lim supn infα an−α ρn(α)→ 0
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Beyond Schwartz

Theorem 20.1 Let (P,G ) with priors (Πn) and (X1, . . . , Xn) ∼ Pn0
be given. Assume there are Bn, Vn ∈ G and an, bn ≥ 0, an ↓ 0 s.t.

(i) There exist Bayesian tests for Bn versus Vn of power an,∫
Bn
Pnφn dΠn(P ) +

∫
Vn
Qn(1− φn) dΠn(Q) ≤ an

(ii) The prior mass of Bn is lower-bounded by bn, Πn(Bn) ≥ bn

(iii) The sequence Pn0 satisfies Pn0 C bna−1
n P

Πn|Bn
n

Then Πn(Vn|Xn)
P0−−→0
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Application to consistency I

Remark 21.1 (Schwartz (1965))

Take P0 ∈P, and define

Vn = V := {P ∈P : H(P, P0) ≥ ε}
Bn = B := {P : −P0 log dP/dP0 < ε2}

with an and bn of form exp(−nK). With N(ε,P, H) <∞, the theorem

proves Hellinger consistency with KL-priors.

Remark 21.2 (Ghosal-Ghosh-vdVaart (2000))

Take P0 ∈P, and define

Vn = {P ∈P : H(P, P0) ≥ εn}
Bn = B := {P : −P0 log dP/dP0 < ε2n, P0 log2 dP/dP0 < ε2n}

with an and bn of form exp(−Knε2n). With logN(εn,P, H) ≤ nε2n, the

theorem then proves Hellinger consistency at rate εn with GGV-priors.

Other Bn are possible! (see Kleijn and Zhao (201x))
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Application to consistency II

Remark 22.1 Dirichlet posteriors Xn 7→ Π(P (A)|Xn) are msb σn(A)

where σn(A) is generated by products of the form
∏n
i=1Bi with Bi =

{Xi ∈ A} or Bi = {Xi 6∈ A}.

Remark 22.2 (Freedman (1965), Ferguson (1973), Lo (1984), ...)

Take P0 ∈P, and define

Vn = V := {P ∈P : |(P0 − P )f | ≥ 2ε}
Bn = B := {P : |(P0 − P )f | < ε}

for some bounded, measurable f . Impose remote contiguity only for

ψn that are σn(A)-measurable! Take an and bn of form exp(−nK).

The theorem then proves T1 consistency with a Dirichlet prior Dα, if

supp(P0) ⊂ supp(α).
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Stochastic Block Model

Definition 23.1 At step n, nodes belong to one of Kn unobserved

classes: θi. We estimate θ = (θ1, . . . , θn) ∈ Θn upon observation of

Xn = {Xij : 1 ≤ 1 < j ≤ n}. Edges Xij occur independently with

probabilities Qij(θ) = Q(θi, θj). The (expected) degree is denoted λn.
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A SBM network realisation: n = 17, Kn = 3, λn ≈ 2.24
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Testing in the Stochastic Block Model

Assume there is a q s.t. 0 < q < Qij < 1− q < 1

Lemma 24.1 For given θ, θ′ ∈ Θn, there exists a test φn s.t.

Pθ,nφn ∨ Pθ′,n(1− φn) ≤ e−8q(1−q)
∑
i<j(Qij(θ)−Qij(θ′))2

Lemma 24.2 For given, Bn, Vn ⊂ Θn, there exists a test φn s.t.

sup
θ∈Bn

Pθ,nφn ≤ e−8q(1−q) a2
n+log #(Vn)

sup
θ′∈Vn

Pθ′,n(1− φn) ≤ e−8q(1−q) a2
n+log #(Bn)

where a2
n = infθ∈Bn infθ∈Vn

∑
i<j(Qij(θ)−Qij(θ′))2

Note: log #(Vn), log #(Bn) ≤ n log(Kn)
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Consistency in the Stochastic Block Model

Theorem 25.1 (Bickel, Chen (2009))

If Kn = K, λn/ log(n)→∞, the ML estimator for θ is consistent.

Consistency requires not a single mistake in θ = (θ1, θ2, . . .).

Conjecture 25.2 Give Θn a prior Πn s.t. Π({θ}) > 0 for all θ ∈ Θn.

Unless very special conditions for q,Kn, λn are satisfied, the posterior

is not consistent.

Theorem 25.3 (see also Choi, Wolfe, Airoldi (2011))

Given uniform priors Πn on Θn, posteriors are consistent for hypothe-

ses Bn, Vn ⊂ Θn, if,

4qn(1− qn)a2
n ≥ n log(Kn)

for all n large enough.
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Open questions

Tailfreeness is too strong for (weak or T1) consistency; the Dirichlet

example allows generalization. Can we show that Pitman-Yor is

inconsistent? What about inverse Gaussian? Gibbs-type? Can we

construct a family of consistent priors around Dirichlet?

Which pairs of (FDR-type) hypotheses in SBM are testable and

which are not? Can the method be applied to other network

models?

What is the extent of the usefulness of remote contiguity?
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The weak and T1 topologies

Uniformity Un: basis is finite intersections of Wn,f ’s

Wn,f = {(P,Q) : |(Pn −Qn)f | < ε}, (bnd msb f : X n → [0,1])

and U∞ = ∪nUn ⊂ UH. Weak UC ⊂ U1 for (bnd cont f : X → [0,1])

TC ⊂ T1 ⊂ Tn ⊂ T∞ ⊂ TH are completely regular

(P,T1) sep ⇔ (P,T∞) sep ⇔ (P,TH) sep ⇔ P is dominated

Any model P is pre-cpt in TC,T1,Tn,T∞: any complete P is cpt

TC is metrizable, even Polish if X is Polish

T1,Tn,T∞ are metrizable iff X discrete
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