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Frequentist and Bayesian philosophies

Bayesians and frequentists have different perspectives on data X ∈ X

and model P.

Starting points

Frequentist assume a true, underlying distribution P0 that has gener-

ated the data.

Bayesian formulate belief concerning the distribution that has gener-

ated the data.

Mathematical expression

Frequentist choose a map P̂ : X → P, to estimate P0, with a sam-

pling distribution to test and quantify uncertainty.

Bayesian choose a prior Π( · ) and condition on X to obtain a posterior

Π( · |X) on the model, to estimate, test and quantify uncertainty.
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A distinguishing example

Example 1 (Savage, 1961) Consider three statistical experiments:

A lady who drinks milk in her tea claims to be able to tell which

was poured first, the tea or the milk. In ten trials, she is correct

every time

A music expert claims to be able to tell whether a page of music

was written by Haydn or by Mozart. In ten trials, he correctly

determines the composer every time.

A drunken friend says that he can predict heads or tails of a fair

coin-flip. In ten trials, he is right every time.
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Frequentist analysis

We analyse the Bayesian procedure from a frequentist perspective.

Assumption samples Xn are P0,n-distributed

We shall concentrate on the large-sample behaviour of the posterior.

Typical questions

• Consistency Does the posterior concentrate around the point P0?

• Rate of convergence How fast does concentration occur?

• Limiting shape Which shape does a concentrating posterior have?

• Model selection Is the Bayes factor consistent?

• Uncertainty quantification Do credible sets have coverage?

in the limit n→∞.
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Goal

The question

Given the model, which priors give rise

to posteriors with good

frequentist convergence properties?

The answer

To formulate theorems that assert

asymptotic properties of the posterior,

under conditions on model, prior and (P0,n).
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Course schedule

Lec I Bayesian Basics

Frequentist/Bayesian formalisms, estimation, coverage, testing

Lec II The Bernstein-von Mises theorem

Limit shape in smooth parametric models, semi-parametrics

Lec III Bayes and the Infinite

Consistency, Doob’s theorem, Schwartz’s theorem

Lec IV Posterior contraction

Barron, Walker, Ghosh-Ghosal-van der Vaart theorems
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Course schedule

Lec V Tests and posteriors

Testing and posterior concentration, Doob’s theorem

Lec VI Frequentist validity of Bayesian limits

Remote contiguity and frequentist limits

Lec VII Posterior uncertainty quantification

How confidence sets arise from credible sets

Lec VIII Confidence sets in a sparse stochastic block model

Exact, non-asymptotic confidence sets for community structure
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Lecture I
Bayesian Basics

In the first lecture, the basic formalism of Bayesian statistics is

introduced and its formulation as a frequentist method of in-

ference is given. We discuss such notions as the prior and pos-

terior, Bayesian point estimators like the posterior mean and

MAP estimators, credible intervals, odds ratios and Bayes fac-

tors. All of these are compared to more common frequentist

inferential tools, like the MLE, confidence sets and Neyman-

Pearson tests.



Bayesian and Frequentist statistics

sample space (Xn,Bn) measurable space

i.i.d. data Xn ∈ X n frequentist/Bayesian

models (Pn,Gn) model subsets B, V ∈ G

parametrization Θ→Pn : θ 7→ Pθ,n model distributions

priors Πn : Gn → [0,1] probability measure

posterior Π( · |Xn) : Gn → [0,1] Bayes’s rule, inference

Frequentist assume there is P0 Xn ∼ P0,n

Bayes assume P ∼ Π Xn |Pn ∼ Pn
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Bayes’s Rule and Disintegration

Definition 2 Fix n ≥ 1. Assume that P 7→ Pn(A) is Gn-measurable.

Given prior Πn, a posterior is any Π( · |Xn = ·) : Gn ×Xn → [0,1] s.t.

(i) For any G ∈ Gn, xn 7→ Π(G|Xn = xn) is Bn-measurable

(ii) (Disintegration) For all A ∈ Bn and G ∈ Gn∫
A

Π(G|Xn = xn) dPΠ
n (xn) =

∫
G
Pn(A) dΠn(Pn) (1)

where PΠ
n =

∫
Pn dΠn(Pn) is the prior predictive distribution

Remark 3 For frequentists Xn ∼ P0,n, so assume

P0,n � PΠ
n
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Posteriors in dominated models

Theorem 4 Assume Pn = {Pθ,n : θ ∈ Θ} is dominated by a σ-finite

µn on (Xn,Bn) with densities pθ,n = dPθ,n/dµn. Then,

Π( θ ∈ G |Xn ) =
∫
G
pθ,n(Xn) dΠn(θ)

/ ∫
Θ
pθ,n(Xn) dΠn(θ), (2)

for all G ∈ G .

Example 5 i.i.d. data Consider Xn = (X1, . . . , Xn) ∈X n, Xn ∼ Pn

Choose Xn = X n, Θ = P � µ, P 7→ Pn = Pn and Πn = Π on P.

Π(P ∈ G |Xn ) =
∫
G

n∏
i=1

p(Xi) dΠ(P )

/ ∫
P

n∏
i=1

p(Xi) dΠ(P ),
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Proof

Fix n (and suppress it in notation)

Fubini Prior predictive has a density with respect to µ,

PΠ(B) =
∫

Θ

∫
B
pθ(x) dµ(x) dΠ(θ) =

∫
B

(∫
Θ
pθ(x) dΠ(θ)

)
dµ(x).

That density pΠ : X → R is the denominator of the posterior. Note,∫
B

Π(G|X = x) dPΠ(x) =
∫
B

(∫
G
pθ(x) dΠ(θ)

/ ∫
Θ
pθ(x) dΠ(θ)

)
dPΠ(x)

=
∫
B

∫
G
pθ(x) dΠ(θ) dµ(x) =

∫
G
Pθ(B) dΠ(θ),

so disintegration is valid.
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σ-additivity of the posterior

Proposition 6 The posterior (2) is σ-additive, PΠ-a.s.

Proof Since PΠ(pΠ > 0) = 1, the denominator is non-zero and the

posterior is well-defined PΠ-a.s. For x such that pΠ(x) > 0 and disjoint

(Gn)

Π
(
θ ∈

⋃
n≥1

Gn

∣∣∣∣ X = x

)
= C(x)

∫
∪nGn

pθ(x) dΠ(θ)

= C(x)
∫ ∑
n≥1

1{θ∈Gn} pθ(x) dΠ(θ)

=
∑
n≥1

C(x)
∫
Gn
pθ(x) dΠ(θ) =

∑
n≥1

Π( θ ∈ Gn |X = x ),

by monotone convergence. �
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Prior to posterior

The Bayesian procedure consists of the following steps

(i) Based on the background of the data X, choose a model P,

usually with parameterization Θ→P : θ 7→ Pθ.

(ii) Also choose a prior measure Π on P (reflecting “belief”). Usually

a measure on Θ is defined, inducing a measure on P.

(iii) Calculate the posterior as a function of the data X.

(iv) Observe a realization of the data X = x, substitute in the posterior

and do statistical inference.
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Posterior predictive distribution

Definition 7 Consider data X from (X ,B), a model P and prior

Π. Assume that the posterior Π( · |X) is a prob msr. The posterior

predictive distribution is defined,

P̂ (B) =
∫
P
P (B) dΠ(P |X ),

for every event B ∈ B.

Lemma 8 The posterior predictive distribution is a probability mea-

sure, almost surely.

Proposition 9 Endow P with the topology of total variation and a

Borel prior Π. Suppose, either, that P is relatively compact, or, that

Π is Radon. Then P̂ lies in the closed convex hull of P, almost surely.
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Proof

Let ε > 0 be given. There exist {P1, . . . , PN} ⊂ P such that the

balls Bi = {P ′ ∈ P : ‖P ′ − Pi‖ < ε} cover P. Define Ci+1 = Bi+1 \
∪ij=1Bj, (C1 = B1), then {C1, . . . , CN} is a partition of P. Define

λi = Π(Ci |X ) (almost surely) and note,

‖P̂ −
N∑
i=1

λi Pi‖ = sup
B∈B

∣∣∣∣∣
N∑
i=1

∫
Ci

(P (B)− Pi(B)) dΠ(P |X = x )

∣∣∣∣∣
≤

N∑
i=1

∫
Ci

sup
B∈B

∣∣∣P (B)− Pi(B)
∣∣∣ dΠ(P |X = x )

≤ ε
N∑
i=1

Π(Ci |X )= ε

So there exist elements in the convex hull co(P) arbitrarily close to

P̂ . Conclude that P̂ lies in its TV-closure.
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Posterior mean

Definition 10 Let P be a model parameterized by a closed, convex

Θ, subset of Rd. Let Π be a Borel prior. If θ is integrable with respect

to the posterior, the posterior mean is defined

θ̂1(Y ) =
∫

Θ
θ dΠ( θ |Y )∈ Θ,

almost-surely.

Remark 11 Convexity of Θ is necessary for interpretation Pθ̂1

Remark 12 Caution!

P̂ (B) 6= Pθ̂1
(B)

and different parametrizations have different Pθ̂1
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Maximum-a-posteriori estimator

Definition 13 Let the parametrized model Θ → P and prior Π be

given. Assume that the posterior is dominated with density θ 7→
π(θ|X). The maximum-a-posteriori (MAP) estimator θ̂2 is defined as

π(θ̂2|X) = sup
θ∈Θ

π(θ|X).

Provided that such a point exists and is unique, the MAP-estimator

is defined almost-surely.

Example 14 i.i.d.data Assume that the prior is dominated with den-

sity θ 7→ π(θ). the MAP-estimator maximizes

Θ→ R : θ 7→
n∏
i=1

pθ(Xi)π(θ),

which is equivalent to log-likelihood maximization with penalty logπ(θ).
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Frequentist confidence sets

Let C be a collection of subsets of Θ (e.g. intervals, balls, etcetera)

Definition 15 Assume that X ∼ Pθ0
for some θ0 ∈ Θ. Choose a

confidence level α ∈ (0,1). A map Cα : X → C is a level-α confidence

set if,

inf
θ∈Θ

Pθ
(
θ ∈ Cα(X)

)
≥ 1− α

Definition 16 Confidence sets Cα,n cover the truth asymptotically if

Pθ,n
(
θ ∈ Cα,n(X)

)
→ 1,

as n→∞, for all θ ∈ Θ

Typically confidence sets are based on an estimator θ̂, or rather, on

its sampling distribution on Θ.
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Bayesian credible sets

Let D be a collection of subsets of Θ (e.g. intervals, balls, etcetera)

Definition 17 Let the parametrized model Θ → P and prior Π be

given. Choose a confidence level α ∈ (0,1). A map Dα : X → D is a

level-α credible set if, PΠ-almost-surely,

Π
(
θ ∈ Dα(X)

∣∣∣ X) ≥ 1− α,

Definition 18 Credible sets Dα,n cover the truth asymptotically if

Π
(
θ ∈ Dα,n(Xn)

∣∣∣ Xn
)
→ 1,

as n→∞, PΠ
∞-almost-surely.

Typically, credible sets in parametric models are level sets of the pos-

terior density, the so-called HPD-credible sets.
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Randomized testing

Definition 19 Let P = {Pθ : θ ∈ Θ} be a model for data X. Assume

given a null-hypothesis H0 and alternative hypothesis H1 for θ,

H0 : θ0 ∈ Θ0, H1 : θ0 ∈ Θ1.

({Θ0,Θ1} partition of Θ). A test function φ is a map φ : X → [0,1].

Randomized test: reject H0 with probability φ(X).

Type-I testing power P 7→ Pφ(X) for θ ∈ Θ0

Type-II testing power P 7→ P (1− φ(X)) for θ ∈ Θ1

The Neyman-Pearson lemma proves optimality of

φ(y) =


1 if pθ1

(y) > cpθ0
(y)

γ(x) if pθ1
(y) = cpθ0

(y)

0 if pθ1
(y) < cpθ0

(y)

,

for simple hypotheses H0 : P = Pθ0
versus H1 : P = Pθ1

.
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Odds ratios and Bayes factors

Definition 20 Let the parametrized model Θ → P and prior Π be

given. Let {Θ0,Θ1} be a partition of Θ such that Π(Θ0) > 0 and

Π(Θ1) > 0. The prior odds ratio and posterior odds ratio are defined

by Π(Θ0)/Π(Θ1) and Π(Θ0|Y )/Π(Θ1|Y ). The Bayes factor for Θ0

versus Θ1is defined,

B =
Π(Θ0|Y )

Π(Θ1|Y )

Π(Θ1)

Π(Θ0)
.

Subjectivist Accept H0 if the posterior odds are greater than 1

Objectivist Accept H0 if the Bayes factor is greater than 1
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Symmetric testing and asymptotics

Data Xn, modelled with Pn = {Pθ,n : θ ∈ Θ} and hypotheses H0 : θ ∈
B and H1 : θ ∈ V for subsets B, V ⊂ Θ s.t. B ∩ V = ∅.

A test sequence (φn) is pointwise consistent if for all θ ∈ B, θ′ ∈ V

Pθ,nφn → 0 and Pn,θ′(1− φn)→ 0,

A test sequence (φn) is uniformly consistent if,

sup
θ∈B

Pθ,nφn → 0 and sup
θ′∈V

Pn,θ′(1− φn)→ 0,

A test sequence (φn) is Π-a.s. consistent if,

Pθ,nφn → 0 and Pn,θ′(1− φn)→ 0,

for Π-almost-all θ ∈ B, θ′ ∈ V .
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Minimax optimal tests

We say that (φn) is minimax optimal if,

sup
θ∈Θ0

Pθ,nφn + sup
θ∈Θ1

Pθ,n(1− φn) = inf
ψ

(
sup
θ∈Θ0

Pθ,nψ + sup
θ∈Θ1

Pθ,n(1− ψ)
)
,

Theorem 21 (Sion (1958)) Assume that Φ and Θ are convex, that

φ 7→ R(θ, φ) is convex for every θ and that θ 7→ R(θ, φ) is concave for

every φ. Futhermore, suppose that Φ is compact and φ 7→ R(θ, φ) is

continuous for all θ. Then there exists a minimax optimal test φ∗ s.t.

sup
θ∈Θ

R(θ, φ∗) = inf
φ∈Φ

sup
θ∈Θ

R(θ, φ) = sup
θ∈Θ

inf
φ∈Φ

R(θ, φ).

25



Examples of uniform test sequences

In the following, fix n ≥ 1 and consider i.i.d. data Xn = (X1, . . . , Xn) ∼
Pn for some P ∈P.

Lemma 22 (Minimax Hellinger tests) Let B, V ⊂ P be convex with

H(B, V ) > 0. There exist a uniform test sequence (φn) s.t.

sup
P∈B

Pnφn ≤ e−
1
2nH

2(B,V ), sup
Q∈V

Qn(1− φn) ≤ e−
1
2nH

2(B,V ).
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Proof

Minimax risk π(B, V ) for testing B versus Q is

π(B, V ) = inf
φ

sup
(P,Q)∈B×V

(Pφ+Q(1− φ))

According to the minimax theorem,

inf
φ

sup
P,Q

(Pφ+Q(1− φ)) = sup
P,Q

inf
φ

(Pφ+Q(1− φ))

On the r.h.s. φ can be chosen (P,Q)-dependently; minimal for φ =

1{p < q} (remember the Neyman-Pearson test) so

π(B, V ) = sup
P,Q

(P (p < q) +Q(p ≥ q))
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Proof

Note that:

P (p < q) +Q(p ≥ q) =
∫
p<q

p dµ+
∫
p≥q

q dµ

≤
∫
p<q

p1/2q1/2 dµ+
∫
p≥q

p1/2q1/2 dµ

=
∫
p1/2q1/2 dµ = 1− 1

2

∫ (
p1/2 − q1/2

)2
dµ

= 1− 1
2H

2(P,Q) ≤ e−
1
2H

2(P,Q).

This relates minimax testing power to the Hellinger distance between

P and Q. For product measures, n-th power.

π(Pn, Qn) ≤ e−
1
2nH

2(P,Q).
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Weak tests

In the following, fix n ≥ 1 and consider i.i.d. data Xn = (X1, . . . , Xn).

The model P contains probability measures P s.t. Xn ∼ Pn.

Lemma 23 (Weak tests) Let ε > 0, P0 ∈ P and a measurable f :

X n → [0,1] be given. Define,

B =
{
P ∈P : |(Pn − Pn0 )f | < ε

}
, V =

{
P ∈P : |(Pn − Pn0 )f | ≥ 2ε

}
.

There exist a D > 0 and uniformly consistent test sequence (φn) s.t.

sup
P∈B

Pnφn ≤ e−nD, sup
Q∈V

Qn(1− φn) ≤ e−nD.

Proof relies on Hoeffding’s inequality
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Lecture II
The Bernstein-Von Mises theorem

The second lecture is devoted to regular estimation problems

and the Bernstein-von Mises theorem, both parametrically and

semi-parametrically. We discuss regularity, local asymptotic

normality, efficiency and the consequences and applications

of the parametric Bernstein-von Mises theorem. We then

turn to semiparametrics, considering consistency under per-

turbation, integral LAN and the semi-parametric Bernstein-

von Mises theorem. Semi-parametric bias is mentioned as a

major obstacle.

[B. Kleijn, A. van der Vaart, Electron. J. Statist. 6 (2012), 354-381]



Example Parametric regression

Questions

Observe i.i.d. Y1, . . . , Yn, Yi = θ + ei (or Yi = θ Xi + ei, etcetera) with

a normally distributed error (of known variance). The density for the

observation is,

pθ0
(x) = φ(x− θ0),

where φ is the density for the relevant normal distribution. Note the

Fisher information for location is non-singular.

What should we expect of the posterior for θ in this model?

If we generalize to include non-parametric modelling freedom,

what can be said about the (marginal) posterior for θ?
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Convergence of the posterior
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Local Asymptotic Normality LAN

Definition 24 (Le Cam (1960))

There is a ˙̀θ0
∈ L2(Pθ0

) with Pθ0
˙̀θ0

= 0 s.t. for any (hn) = O(1),

n∏
i=1

p
θ0+n−1/2hn

pθ0

(Xi) = exp
(
hTn∆′n,θ0

−1
2h

T
nIθ0

hn + oPθ0
(1)

)
,

where ∆′n,θ0
is given by,

∆′n,θ0
=

1
√
n

n∑
i=1

˙̀θ0
(Xi)

Pθ0-w.
−−−−−→N(0, Iθ0

),

and Iθ0
= Pθ0

˙̀θ0
˙̀T
θ0

is the Fisher information.
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Differentiability in quadratic mean (DQM)

Definition 25 (Le Cam (1960))

A model P is differentiable in quadratic mean at θ0 with score ˙̀θ0
if∫ (

p
1/2
θ − p1/2

θ0
− 1

2(θ − θ0) ˙̀θ0
p

1/2
θ0

)2
dµ = o

(
‖θ − θ0‖2

)
.

Then P0 ˙̀θ0
= 0, ˙̀θ0

∈ L2(Pθ0
) and Iθ0

= P0 ˙̀θ0
˙̀θ0

is the Fisher infor-

mation.

Lemma 26 (Le Cam (1960))

The model P is DQM at θ0 if and only if P is LAN at θ0.
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Regularity and the convolution theorem

Definition 27 An estimator sequence θ̂n for a parameter θ0 is said

to be regular, if for every hn = O(1), with θn = θ0 + n−1/2hn

√
n(θ̂n − θn)

Pθn-w.
−−−−−→Lθ0

for some (hn)-independent limit distribution Lθ0
.

Theorem 28 (Hájek, 1970)

Assume that the model is LAN at θ0 with non-singular Fisher infor-

mation Iθ0
. Suppose θ̂n is a regular estimator for θ0 with limit Lθ0

.

Then there exists a probability kernel Mθ0
s.t.

Lθ = N(0, I−1
θ0

) ∗Mθ0
.
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Regular estimation and efficiency

Definition 29 Given an estimation problem with i.i.d.-P0 data and

non-singular Fisher information I0, the influence functions ∆n are,

∆n = I−1
0 ∆′n =

1
√
n

n∑
i=1

I−1
0

˙̀θ0
(Xi)

P0-w.−−−−→N(0, I−1
0 )

Theorem 30 (Fisher, Cramér, Rao, Le Cam, Hájek)

An estimator θ̂n is efficient if and only if it is asymptotically linear:
√
n(θ̂n − θ0) = ∆n,θ0

+ oP0
(1),

for some influence function ∆n,θ0

Pθ0-w.
−−−−−→N(0, I−1

θ0
).

Remark 31 asymptotic bias equals zero because Pθ0
˙̀θ0

= 0.
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Efficiency of the maximum likelihood estimator

For all n ≥ 1, let X1, . . . , Xn denote i.i.d. data with marginal P0.

Theorem 32 (see van der Vaart (1998))

Assume that P = {Pθ : θ ∈ Θ} with Θ open in Rk and θ0 ∈ Θ s.t.

P0 = Pθ0
. Furthermore, assume that P is LAN at θ0 and that Iθ0

is

non-singular. Also assume there exists an L2(Pθ0
)-function ˙̀ s.t. for

any θ, θ′ in a neighbourhood of θ0 and all x,∣∣∣ log pθ(x)− log pθ′(x)
∣∣∣ ≤ ˙̀(x) ‖θ − θ′‖,

If the ML estimate θ̂n is consistent, it is efficient,

√
n(θ̂n − θ0)

Pθ0-w.
−−−−−→N(0, I−1

θ0
).
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Parametric Bernstein-von Mises theorem

Theorem 33 (Le Cam (1953), Le Cam-Yang (1990), h =
√
n(θ−θ0))

Let P = {Pθ : θ ∈ Θ ⊂ Rd} with thick prior ΠΘ be LAN at θ0 with

non-singular Iθ0
. Assume that for every sequence of radii Mn →∞,

Π
(
‖h‖ ≤Mn

∣∣∣ X1, . . . , Xn
) P0−−→1

Then the posterior converges to normality as follows

sup
B

∣∣∣∣Π(h ∈ B ∣∣∣ X1, . . . , Xn
)
−N

∆n,θ0
,I−1
θ0

(B)
∣∣∣∣ P0−−→0

Remark 34 With θ̂n any efficient estimator,

sup
B

∣∣∣∣Π( θ ∈ B ∣∣∣ X1, . . . , Xn
)
−Nθ̂n,(nIθ0)−1(B)

∣∣∣∣ P0−−→0

Remark 35 (BK and van der Vaart, 2012) There’s a version for the

misspecified situation (P0 6∈P).
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Consequences and applications

i. Bayesian point estimators are efficient

ii. Confidence intervals based on the sampling distribution of an ef-

ficient estimator and credible sets coincide asymptotically

Model selection with the Bayesian Information Criterion (BIC). Con-

sider parameter spaces Θk ⊂ Rk, (k ≥ 1) with models Pk for i.i.d.

data X1, . . . , Xn. Define,

BIC(θ, k) = −2 logLn(X1, . . . , Xn; θ1, . . . , θk) + k log(n)

Minimization of BIC(θ1, . . . , θk; k) with respect to θ and k is penalized

ML estimate that selects a value of k. Closely related to AIC, RIC,

MDL and other model selection methods.
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Efficiency of formal Bayes estimators

Definition 36 Let X, P, Π be like before and let ` : Rk → [0,∞) be

a loss function. The posterior risk is defined almost-surely,

t 7→
∫

Θ
`
(√

n(t− θ)
)
dΠ(θ|X).

A minimizer θ̂3,n of posterior risk is called the formal Bayes estimator

associated with ` and Π

Theorem 37 (Le Cam (1953,1986) and van der Vaart (1998))

Assume that the BvM theorem holds and that ` is non-decreasing

and `(h) ≤ 1 + ‖h‖p for some p > 0 such that
∫
‖θ‖p dΠ(θ) <∞. Then

√
n(θ̂3,n−θ0) converges weakly to the minimizer of

∫
`(t−h) dN

Z,I−1
θ0

(h)

where Z ∼ N(0, I−1
θ0

).
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Example Semiparametric regression

New Question

Observe i.i.d. X1, . . . , Xn, Xi = θ+ ei (or Yi = θ Xi+ ei, etcetera) with

a symmetrically distributed error. Density for X’s is,

pθ0,η0
(x) = η0(x− θ0),

where η ∈ H is a symmetric Lebesgue density on R. We assume that η

is smooth and that the Fisher information for location is non-singular.

Adaptivity Stein (1956), Bickel (1982)

For inference on θ0 it does not matter whether we know η0 or not!

√
n(θ̂n − θ0)

Pθ0,η0
-w.

−−−−−−−→N(0, I−1
θ0,η0

)

where Iθ0,η0
is the Fisher information.
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Parametric/Semi-parametric analogy

Parametric posterior

The posterior density θ 7→ dΠ(θ|X1, . . . , Xn)

n∏
i=1

pθ(Xi) dΠ(θ)
/ ∫

Θ

n∏
i=1

pθ(Xi) dΠ(θ)

with LAN requirement on the likelihood.

Semiparametric analog

The marginal posterior density θ 7→ dΠ(θ|X1, . . . , Xn)∫
H

n∏
i=1

pθ,η(Xi) dΠH(η) dΠΘ(θ)
/ ∫

Θ

∫
H

n∏
i=1

pθ,η(Xi) dΠH(η) dΠΘ(θ)

with integral LAN requirement on ΠH-integrated likelihood.
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Integral local asymptotic normality ILAN

Definition 38 Given a nuisance prior ΠH, the localized integrated

likelihood is,

sn(h) =
∫
H

n∏
i=1

p
θ0+n−1/2h,η

pθ0,η0

(Xi) dΠH(η),

Definition 39 sn is said to have the ILAN property, if for every hn =

OP0
(1)

log
sn(hn)

sn(0)
= hTn ∆̃′n,θ0,η0

−1
2h

T
n Ĩθ0,η0

hn + oP0
(1),

where the efficient ∆̃′n,θ0,η0
is given by

∆̃′n,θ0,η0
=

1
√
n

∞∑
i=1

˜̀θ0,η0

Pθ0,η0
-w.

−−−−−−−→N(0, Ĩθ0,η0
)
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Consistency under
√
n-perturbation

θ

D(θ,ρ)

(θ0,η0)

H

Θ

η*(θ)

U0

Given ρn ↓ 0 we speak of consistency under n−1/2-perturbation at rate

ρn, if for all hn = OP0
(1).

Πn

(
D(θ, ρn)

∣∣∣ θ = θ0 + n−1/2hn ; X1, . . . , Xn
) P0−−→1
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Integral LAN

η*

ζ =1

ζ =0

ζ =2

ζ =3

ζ =4

Θ

(θ0,η0)

n -1/2

H

ζ =5

ζ =6

g ζ =0

g ζ =1

g ζ =-1

g ζ =-3

g ζ =-2

g ζ =2

g ζ =-4

reparametrize (θ, ζ) 7→ (θ, η∗(θ) + ζ)
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Semiparametric Bernstein-von Mises theorem

Theorem 40 (Bickel and BK (2012))

Let P = {Pθ,η : θ ∈ Θ, η ∈ H} with thick prior ΠΘ and nuisance prior

ΠH. Assume ILAN at Pθ0,η0
with non-singular Ĩθ0,η0

. Assume that for

every sequence of radii Mn →∞,

Π
(
‖h‖ ≤Mn

∣∣∣ X1, . . . , Xn
) P0−−→1

Then the posterior converges marginally to normality as follows

sup
B

∣∣∣∣Π(h ∈ B ∣∣∣ X1, . . . , Xn
)
−N

∆̃n,θ0,η0
,Ĩ−1
θ0,η0

(B)
∣∣∣∣ P0−−→0

BOTH ILAN and
√
n-consistency are sensitive to semiparametric bias!
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Semiparametric bias

An estimator θ̂n for θ0 is regular but asymptotically biased if,
√
n(θ̂n − θ0) = ∆̃n,θ0,η0

+ µn,θ0,η0
+ oP0

(1),

with ∆̃n,θ0,η0

P0-w.−−−−→N(0, Ĩ−1
θ0η0

) and µn,θ0,η0
= O(1) or worse. Typi-

cally, ∣∣∣µn,θ0,η0

∣∣∣ ≤ n−1/2 sup
η∈Dn

∣∣∣ Ĩ−1
θ0,η0

Pθ0,η
˜̀θ0,η0

∣∣∣
where Dn describes some form of localization for η ∈ H around η0.

Theorem 41 (approximate, see Schick (1986), Klaassen (1987))

An efficient estimator for θ0 exists if and only if there exists an esti-

mator ∆̂n for the influence function, whose asymptotic bias vanishes

at a rate strictly faster than
√
n,

Pnθn,η∆̂n = o(n−1/2),
47



Example Regression with symmetric errors

Theorem 42 (Chae, Kim and BK (2018))

Let X1, . . . , Xn be i.i.d.-Pθ0,η0
, i.e. Xi = θ0 + ei with e distributed as a

symmetric normal location mixture η0 from H of the form,

η(x) =
∫
φ(x− z) dF (z)

(where F is symmetric and φ denotes the standard normal density).

With thick prior ΠΘ and nuisance prior ΠH that has full weak support,

the posterior converges marginally to normality

sup
B

∣∣∣∣Π(h ∈ B ∣∣∣ X1, . . . , Xn
)
−N

∆̃n,θ0,η0
,Ĩ−1
θ0,η0

(B)
∣∣∣∣ P0−−→0

where ˜̀θ0,η0
(X) = ṗθ0,η0

/pθ0,η0
(X) and Ĩθ0,η0

= P0˜̀2
θ0,η0

.
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Lecture III
Bayes and the Infinite

In the third lecture we consider application of Bayesian meth-

ods in non-parametric models: we do not focus on the con-

struction of non-parametric priors but on the requirements for

such priors to lead to consistent posteriors. After a review of

the consequences of posterior consistency, we turn to Doob’s

theorem and Schwartz’s theorem, which we prove. We also

point out limitations of Schwartz’s theorem.



Frequentist consistency

Let X1, . . . , Xn be i.i.d.-Pθ0
-distributed

Consider a point-estimator θ̂n(Xn).

An estimator is said to be consistent if

θ̂n(Xn)
Pθ0,n−−−−→ θ0.

E.g. if the topology is metric, a consistent estimator θ̂n(Xn) is found

at a distance from θ0 greater than some ε > 0 with Pθ0,n-probability

arbitrarily small, if we make the sample large enough.

Since θ0 is unknown, we have to prove this for all θ ∈ Θ before it is

useful.
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Frequentist rate of convergence

Next, suppose that θ̂n(Xn)
Pθ0,n−−−−→ θ0. Let (rn) be a sequence rn ↓ 0.

We say that θ̂n(Xn) converges to θ0 at rate rn if

r−1
n ‖θ̂n(Xn)− θ0‖ = OPθ0

(1)

rn is such that it compensates the decrease in distance between

θ̂n(Xn) and θ0, such that the fraction is non-degenerate and bounded

in probability.

Intuitively the rn are the radii of balls around θ̂n(Xn) that shrink (just)

slowly enough to still capture θ0 with high probability.
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Frequentist limit distribution

Suppose that θ̂n converges to θ0 at rate rn.

Let Lθ0
be a non-degenerate but tight distribution. If

r−1
n (θ̂n − θ0)

Pθ0-w.
−−−−−→Lθ0

,

we say that θ̂n converges to θ0 at rate rn with limit-distribution Lθ0
.

So if we blow up the difference between θ̂n and θ0 by exactly the

right factors r−1
n , we keep up with convergence and arrive at a stable

distribution Lθ0
.

52



Posterior consistency

Given P0-i.i.d. Xn, P with prior Π, do posteriors concentrate on P0?
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Definition 43 Given a model P with Borel prior Π, the posterior is

consistent at P ∈P if for every neighbourhood U of P

Π(U |Xn)
P−−→1 (3)

A posterior is consistent if it is consistent for all P ∈P.
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Consistency is Prokhorov’s weak convergence

Theorem 44 Let P be a uniform model with Borel prior Π. The

posterior is consistent, if and only if, for every bounded, continuous

f : P → R, ∫
f(P ) dΠ(P |Xn)

P0−−→ f(P0), (4)

which we denote by Π( · |X1, . . . , Xn)
w−→ δP0

.

Remark 45 All weak, polar and metric topologies are uniform:

U = {P ∈P : |(P−P0)f | < ε}, V = {P ∈P : sup
f∈B
|(P − P0)f | < ε},

W = {P ∈P : d(P, P0) < ε},

for ε > 0 and functions 0 ≤ f ≤ 1 measurable (or smaller class).
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Proof

Assume (3). f : P → R is bounded (|f | ≤ M) and continuous. Let

η > 0 be given. Let U be a neighbourhood of P0 s.t. |f(P )−f(P0)| ≤ η
for all P ∈ U .

Integrate f with respect to the posterior and to δP0
:∣∣∣∣∫

P
f(P ) dΠn(P |X1, . . . , Xn)− f(P0)

∣∣∣∣
≤
∫
P\U

|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

+
∫
U
|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

≤ 2M Πn( P \ U |X1, X2, . . . , Xn )

+ sup
P∈U

|f(P )− f(P0)|Πn(U |X1, X2, . . . , Xn )

≤ η + oP0
(1).
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Proof

Conversely, assume (4) holds. Let U be an open neighbourhood

of P0. Because P is completely regular, there exists a continuous

f : P → [0,1] that separates {P0} from P \ U , i.e. f = 1 at {P0} and

f = 0 on P \ U .

Πn(U |X1, X2, . . . , Xn ) =
∫
P

1U(P ) dΠn(P |X1, . . . , Xn)

≥
∫
P
f(P ) dΠn(P |X1, . . . , Xn)

P0−−→
∫
P
f(P ) dδP0

(P )= 1,

Consequently, (3) holds.

56



Consistency of Bayesian point estimators

Theorem 46 Suppose that P is a is endowed with the topology of

total variation. Assume that the posterior is consistent. Then the

posterior mean P̂n is a consistent point-estimator in total-variation.
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Proof

Extend P 7→ ‖P −P0‖ to the convex hull of P. Since P 7→ ‖P −P0‖ is

convex, Jensen’s inequality says,

‖P̂n − P0‖ =
∥∥∥∥∫

P
P dΠn(P |X1, . . . , Xn )− P0

∥∥∥∥
≤
∫
P
‖P − P0‖ dΠn(P |X1, . . . , Xn ).

Since P
Πn-w.−−−−−→P0 under Πn = Πn( · |X1, . . . , Xn ) and P 7→ ‖P − P0‖ is

bounded and continuous, the r.h.s. converges to the expectation of

‖P − P0‖ under the limit δP0
, which equals zero. Hence

P̂n
P0−−→P0,

in total variation.
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Doob’s theorem

Theorem 47 (Doob (1948))

Suppose that the parameter space Θ and the sample space X are

Polish spaces endowed with their respective Borel σ-algebras. Assume

that Θ→P : θ 7→ Pθ is one-to-one. Then for any Borel prior Π on Θ

the posterior is consistent, Π-almost-surely.

Proof An application of Doob’s martingale convergence theorem,

combined with a difficult argument on existence of a measurable f :

X ∞ → Θ s.t. f(X1, X2, . . .) = θ, P∞θ − a.s. for all θ ∈ Θ (Le Cam’s

accessibility (Breiman, Le Cam, Schwartz (1964), Le Cam (1986)).

�
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Freedman’s counterexamples

Remark 48 Doob’s theorem says nothing about specific points: it is

always possible that the frequentist’s P0 belongs to the null-set for

which inconsistency occurs.

Remark 49 (Non-parametric counterexamples)

Schwartz (1961), Freedman (1963,1965), Diaconis and Freedman

(1986), Cox (1993), Freedman and Diaconis (1998). Basically what

is shown is that Doob’s null-set of inconsistency can be rather large.
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Schwartz’s theorem

Theorem 50 (Schwartz (1965)) Assume that

(i) For every ε > 0, there is a uniform test sequence (φn) such that

Pn0φn → 0, sup
{P :d(P,P0)>ε}

Pn(1− φn)→ 0.

(ii) Let Π be a KL-prior, i.e. for every η > 0,

Π
(
P ∈P : −P0 log

p

p0
≤ η

)
> 0,

Then the posterior is consistent at P0.

Corollary 51 Let P be Hellinger totally bounded and let Π a KL-

prior. Then the posterior is Hellinger consistent at P0 for the metric

d.
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Proof of Schwartz’s theorem (I)

Let ε, η > 0 be given. Define

V = {P ∈P : d(P, P0) ≥ ε }.

Split the n-th posterior (of V ) with the test functions φn

lim sup
n→∞

Πn(V |X1, . . . , Xn) ≤ lim sup
n→∞

Πn(V |X1, . . . , Xn)(1− φn(Xn))

+ lim sup
n→∞

Πn(V |X1, . . . , Xn)φn(Xn).

(5)

Define Kη = {P ∈P : −P0 log(p/p0) ≤ η}. For every P ∈ Kη, LLN∣∣∣∣ 1

n

n∑
i=1

log
p

p0
− P0 log

p

p0

∣∣∣∣→ 0, (P0 − a.s.).
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Proof of Schwartz’s theorem (II)

So for every α > η and all P ∈ Kη and large enough n,

n∏
i=1

p

p0
(Xi) ≥ e−nα,

Pn0 -almost-surely. Use this to lower-bound the denominator

lim inf
n→∞ enα

∫
P

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ lim inf

n→∞ enα
∫
Kη

n∏
i=1

p

p0
(Xi) dΠ(P )

≥
∫
Kη

lim inf
n→∞ enα

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ Π(Kη) > 0.
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Proof of Schwartz’s theorem (III)

The first term in (5) can be bounded as follows

lim sup
n→∞

Π(V |X1, . . . , Xn)(1− φn(X1, . . . , Xn))

≤
lim sup
n→∞

enα
∫
V

n∏
i=1

(p/p0)(Xi) (1− φn(X1, . . . , Xn)) dΠ(P )

lim inf
n→∞ enα

∫
P

n∏
i=1

(p/p0)(Xi) dΠ(P )

≤
1

Π(Kη)
lim sup
n→∞

fn(X1, . . . , Xn),

(6)

where we use the (non-negative)

fn(X1, . . . , Xn) = enα
∫
V

n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn) dΠ(P ).
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Proof of Schwartz’s theorem, interlude

At this stage in the proof we need the following lemma, which says

that uniform consistency of testing can be assumed to be of expo-

nential power without loss of generality.

Lemma 52 Let P0 and V with P0 6∈ V be given. Suppose that there

exists a sequence of tests (φn) such that:

Pn0φn → 0, sup
P∈V

Pn(1− φn)→ 0,

Then there exists a sequence of tests (ωn) and positive constants C,D

such that:

Pn0ωn ≤ e
−nC, sup

P∈V
Pn(1− ωn) ≤ e−nD (7)
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Proof of Schwartz’s theorem (IV)

The previous lemma guarantees that there exists a constant β > 0

such that for large enough n,

P∞0 fn = Pn0 fn = enα
∫
V
Pn0

( n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn)

)
dΠ(P )

≤ enα
∫
V
Pn(1− φn) dΠ(P ) ≤ e−n(β−α).

(8)

Choose η < β and α such that η < α < 1
2(β + η). Markov’s inequality

P∞0
(
fn > e−

n
2(β−η)

)
≤ e

n
2(β−η) P∞0 fn ≤ en(α−1

2(β+η)).
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Proof of Schwartz’s theorem (V)

Hence
∑∞
n=1 P

∞
0 (fn > exp−n2(β − η)) converges. Borel-Cantelli

0 = P∞0

( ∞⋂
N=1

⋃
n≥N

{
fn > e−

n
2(β−η)

})
≥ P∞0

(
lim sup
n→∞

(
fn− e−

n
2(β−η)

)
> 0

)

So fn
P0-a.s.−−−−−→0 and hence

Π(V |X1, . . . , Xn) (1− φn)(X1, . . . , Xn)
P0-a.s.−−−−−→0.

The other term in (5) Pn0 Π(V |X1, . . . , Xn)φn ≤ Pn0φn ≤ e
−nC so that

Π(V |X1, . . . , Xn)φn(X1, . . . , Xn)
P0-a.s.−−−−−→0. (9)

Combination of (6) and (9) proves that (5) equals zero.
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... but there are very nasty examples

Example 53 Consider P0 on R with Lebesgue density p0 supported

on an interval of width one but unknown location. For some η : R→
(0,∞) and θ ∈ R:

pθ(x) = η(x− θ) 1[θ,θ+1](x)

Note that if θ 6= θ′,

−Pθ,η log
pθ′,η

pθ,η
=∞

Kullback-Leibler neighbourhoods are singletons: no prior can be a

Kullback-Leibler prior in this model!
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Lecture IV
Posterior contraction

In the fourth lecture, we delve deeper into the theory on pos-

terior convergence, motivated by examples that show the lim-

itations of Schwartz’s prior mass condition. We prove an al-

ternative consistency theorem that does not rely on KL-priors.

We also make contact with Barron’s theorem, Walker’s theo-

rem and the Ghosal-Ghosh-van der Vaart theorem on the rate

of posterior convergence. We derive a theorem on posterior

rates of convergence with a KL-type prior-mass condition.

[B. Kleijn, Y. Y. Zhao, Electron. J. Statist. 13.2 (2019), 4709–4742]



Recall Schwartz

Theorem 54 (Schwartz (1965))

Let P be Hellinger totally bounded and let Π a KL-prior, i.e. for η > 0,

Π
(
P ∈P : −P0 log

p

p0
≤ η

)
> 0,

Then the posterior is Hellinger consistent at P0.

Example 55 Consider P0 on R with density,

pθ(x) = η(x− θ) 1[θ,θ+1](x),

for some θ ∈ R. Note that if θ 6= θ′,

−Pθ,η log
pθ′,η′

pθ,η
=∞

no prior can be a Kullback-Leibler prior in this model!
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Walker’s theorem

Theorem 56 (Walker (2004))

Let P be Hellinger separable. Let {Vi : i ≥ 1} be a countable cover

of P by balls of radius ε. If Π is a Kullback-Leibler prior and,∑
i≥1

Π(Vi)
1/2 <∞

then Π(H(P, P0) > ε |X1, . . . , Xn )
P0-a.s.−−−−−→0.
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The Ghosal-Ghosh-van der Vaart theorem

Theorem 57 (Ghosal, Ghosh and van der Vaart, 2000)

Let (εn) be such that εn ↓ 0 and nε2n →∞. Let C > 0 and Pn ⊂P be

such that, for large enough n,

(i) N(εn,Pn, H) ≤ enε2n
(ii) Π(P \Pn) ≤ e−nε2n(C+4)

(iii) the prior Π is a GGV-prior, i.e.

Π
(
P ∈P : −P0 log

dP

dP0
< ε2n, P0

(
log

dP

dP0

)2
< ε2n

)
≥ e−Cnε

2
n

Then, for some M > 0,

Π(P ∈P : H(P, P0) > Mεn |X1, . . . , Xn )
P0−−→0
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... but here’s another tricky example

Example 58 Consider the distributions Pa, (a ≥ 1), defined by,

pa(k) = Pa(X = k) =
1

Za

1

ka(log k)3

for all k ≥ 2, with Za =
∑
k≥2 k

−a(log k)−3 <∞. For a = 1, b > 1,

−Pa log
pb
pa
<∞, Pa

(
log

pb
pa

)2
=∞

Schwartz’s KL-condition for the prior for the parameter a can be

satisfied but GGV priors do not exist.

Remark 59 With (log k)2 instead of (log k)3, KL-priors also fail.
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Posterior convergence

Recall the prior predictive distribution PΠ
n (A) =

∫
P Pn(A) dΠ(P ).

Theorem 60 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V1, . . . , VN be

a finite collection of model subsets. If there exist constants Di > 0

and test sequences (φi,n) for all 1 ≤ i ≤ N such that,

Pn0φi,n + sup
P∈Vi

Pn0
dPn

dPΠ
n

(1− φi,n) ≤ e−nDi, (10)

for large enough n, then any V ⊂
⋃

1≤i≤N Vi receives posterior mass

zero asymptotically,

Π(V |X1, . . . , Xn )
P0-a.s.−−−−−→0. (11)
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Proof

If Π(Vi|X1, . . . , Xn)
P0-a.s.−−−−−→0 for all 1 ≤ i ≤ N then the assertion is

proved. So pick some i and consider,

Pn0 Π(Vi|X1, . . . , Xn) ≤ Pn0φn + Pn0 Π(Vi|X1, . . . , Xn)(1− φn)

By Fubini,

Pn0 Π(Vi|X1, . . . , Xn)(1− φn) =
∫
Vi
Pn0

dPn

dPΠ
n

(1− φn) dΠ(P )

≤ Π(Vi) sup
P∈Vi

P0

(
dPn

dPΠ
n

)
(1− φn) ≤ e−nDi

Apply Markov and Borel-Cantelli to conclude that,

lim sup
n→∞

Π(Vi|X1, . . . , Xn) = 0.
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Minimax test sequence

Lemma 61 Let V ⊂P be given and assume that Pn0 (dPn/dPΠ
n ) <∞

for all P ∈ V . For every B there exists a test sequence (φn) such that,

Pn0φn+ sup
P∈V

Pn0
dPn

dPΠ
n

(1− φn)

≤ inf
0≤α≤1

Π(B)−α
∫ (

sup
P∈co(V )

P0

(
dP

dQ

)α)n
dΠ(Q|B).

i.e. testing power is bounded in terms of Hellinger transforms.

The construction is technically close to that needed for the analysis

of posteriors for misspecified models, i.e. when P0 6∈ P (see, Kleijn

and van der Vaart (2006)).
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Sketch of the proof

Let QΠ
n (A) be the prior predictive with Π( · |B): PΠ

n (A) ≥ Π(B)QΠ
n (A)

and using Jensen’s inequality, for Pn ∈ co(V n)

Pn0

(
dPn

dPΠ
n

)α
≤ Π(B)−α Pn0

(
dPn

dQΠ
n

)α
≤ Π(B)−α Pn0

∫ (
dPn

dQn

)α
dΠ(Q|B),

Hellinger transforms “sub-factorize” over convex hulls of products

sup
Pn∈co(V n)

∫
Pn0

(
dPn

dQn

)α
dΠ(Q|B) ≤

∫
sup

Pn∈co(V n)
Pn0

(
dPn

dQn

)α
dΠ(Q|B)

≤
∫ (

sup
P∈V

P0

(
dP

dQ

)α)n
dΠ(Q|B).

(see Le Cam (1986), or lemma 3.14 in Kleijn (2003))
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A new consistency theorem

For α ∈ [0,1], model subsets B,W and a given P0, define,

πP0
(W,B) = inf

0≤α≤1
sup
P∈W

sup
Q∈B

P0

(
dP

dQ

)α

Theorem 62 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V1, . . . , VN be

model subsets. If there exist subsets B1, . . . , BN such that Π(Bi) > 0,

πP0
( co(Vi), Bi ) < 1

and supQ∈Bi P0(dP/dQ) <∞ for all P ∈ Vi, then,

Π(V |X1, . . . , Xn )
P0-a.s.−−−−−→0

for any V ⊂
⋃

1≤i≤N Vi.

With theorem 62 consistency in example 55 is demonstrated without

problems. 78



Flexibility

Given a consistency question, i.e. given P and V , the approach is

uncommitted regarding the prior and B. We look for neighbourhoods

B of P0 (of course such that supQ∈B P0(dP/dQ) < ∞ for all P ∈ V ),

which

(i) allow (uniform) control of P0(p/q)α,

(ii) allow convenient choice of a prior such that Π(B) > 0.

The two requirements on B leave room for a trade-off between being

‘small enough’ to satisfy (i), but ‘large enough’ to enable a choice for

Π that leads to (ii).
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Relation with Schwartz’s KL condition

Lemma 63 Let P0 ∈ B ⊂ P and W ⊂ P be given. Assume there is

an a ∈ (0,1) such that for all Q ∈ B and P ∈ W , P0(dP/dQ)a < ∞.

Then,

πP0
(W,B) < 1

if and only if,

sup
Q∈B

−P0 log
dQ

dP0
< inf
P∈W

−P0 log
dP

dP0
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Consistency in KL-divergence

Theorem 64 Let Π be a Kullback-Leibler prior. Define V = {P ∈P :

−P0 log(dP/dP0) ≥ ε} and assume that for some KL neighbourhood

B of P0, supQ∈B P0(dP/dQ) <∞ for all P ∈ V . Also assume that V is

covered by subsets V1, . . . , VN such that,

inf
P∈co(Vi)

−P0 log
dP

dP0
> 0

for all 1 ≤ i ≤ N . Then,

Π(−P0 log(dP/dP0) < ε |X1, . . . , Xn )
P0-a.s.−−−−−→1
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Relation with priors that charge metric balls

Note that if we choose α = 1/2,

P0

(
p

q

)1/2
=
∫ (

p0

q

)1/2
p

1/2
0 p1/2 dµ

=
∫
p

1/2
0 p1/2 dµ+

∫ ((
p0

q

)1/2
− 1

)(
p0

q

)1/2(p
q

)1/2
dQ

≤ 1−
1

2
H(P0, P )2 +H(P0, Q)

∥∥∥∥p0

q

∥∥∥∥1/2

2,Q

∥∥∥∥pq
∥∥∥∥1/2

2,Q
.

So if ‖p/q‖2,Q is bounded, a lower bound to H(co(V ), P0) and an

upper bound for H(Q,P0) guarantee π(co(V ), B; 1
2) < 1.
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Borel priors of full support

Theorem 65 Suppose that P is Hellinger totally bounded. Assume

an L > 0 and a Hellinger ball B′ centred on P0 such that,∥∥∥∥pq
∥∥∥∥

2,Q
=
(∫

p2

q
dµ

)1/2
< L, for all P ∈P and Q ∈ B′

If Π(B) > 0 for all Hellinger neighbourhoods of P0, the posterior is

Hellinger consistent, P0-almost-surely.

Lemma 66 If the KL divergence P → R : Q 7→ −P log(dQ/dP ) is

continuous, then a Borel prior of full support is a KL prior.
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Separable models and Barron’s sieves

Theorem 67 Let V be given. Assume that there are K,L > 0,

submodels (Pn)n≥1 and a B with Π(B) > 0, such that,

(i) there is a cover V1, . . . , VNn for V ∩Pn of order Nn ≤ exp(1
2Ln),

such that for every 1 ≤ i ≤ Nn,

πP0
( co(Vi), B ) ≤ e−L

and supQ∈B P0(dP/dQ) <∞ for all P ∈ Vi;

(ii) Π(P \Pn) ≤ exp(−nK) and,

sup
P∈V \Pn

sup
Q∈B

P0

(
dP

dQ

)
≤ e

K
2

Then Π(V |X1, . . . , Xn )
P0-a.s.−−−−−→0.
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A new theorem for separable models

Theorem 68 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V be a

model subset with a countable cover V1, V2, . . . and B1, B2, . . . such

that Π(Bi) > 0 and for P ∈ Vi, we have supQ∈Bi P0(dP/dQ) < ∞.

Then,

Pn0 Π(V |X1, . . . , Xn) ≤
∑
i≥1

inf
0≤α≤1

Π(Vi)
α

Π(Bi)α
π
(
co(Vi), Bi;α

)n
.
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Relation with Walker’s condition

Corollary 69 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V be a subset

with a countable cover V1, V2, . . .. and a B such that Π(B) > 0 and

for all i ≥ 1, P ∈ Vi, supQ∈B P0(dP/dQ) <∞. Also assume,

sup
i≥1

πP0

(
co(Vi), B

)
< 1

If the prior satisfies Walker’s condition,∑
i≥1

Π(Vi)
1/2 <∞

Then Π(V |X1, . . . , Xn)
P0-a.s.−−−−−→0.
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Posterior rates of convergence
Theorem 70 Assume that Pn0 � PΠ

n for all n ≥ 1. Let (εn) be s.t.

εn ↓ 0 and nε2n → ∞. Define Vn = {P ∈ P : d(P, P0) > εn}, submodels

Pn ⊂ P and subsets Bn s.t. supQ∈Bn P0(p/q) < ∞ for all P ∈ Vn.

Assume that,

(i) there is an L > 0 such that Vn∩Pn has a cover Vn,1, Vn,2, . . . , Vn,Nn
of order Nn ≤ exp(1

2Lnε
2
n), such that,

πP0

(
co(Vn,i), Bn

)
≤ e−Lnε

2
n

for all 1 ≤ i ≤ Nn.

(ii) there is a K > 0 such that Π(P\Pn) ≤ e−Knε
2
n and Π(Bn) ≥

e−
K
2 nε

2
n, while also,

sup
P∈P\Pn

sup
Q∈Bn

P0

(
dP

dQ

)
< e

K
4 ε

2
n

Then Π(P ∈P : d(P, P0) > εn |X1, . . . , Xn )
P0−−→0.
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Posterior rates with Schwartz’s KL priors

Theorem 71 Let εn be such that εn ↓ 0 and nε2n →∞. For M > 0, de-

fine Vn = {P ∈P : H(P0, P ) > Mεn}, Bn = {Q ∈P : −P0 log(dQ/dP0) <

ε2n}. Assume that,

(i) for all P ∈ Vn, sup{P0(dP/dQ) : Q ∈ Bn} <∞

(ii) there is an L > 0, such that N(εn,P, H) ≤ eLnε2n

(iii) there is a K > 0, such that for large enough n ≥ 1,

Π
(
P ∈P : −P0 log

dP

dP0
< ε2n

)
≥ e−Knε

2
n

then Π(P ∈P : H(P, P0) > Mεn |X1, . . . , Xn )
P0−−→0, for some M > 0.

With theorem 71
√
n-consistency in the heavy-tailed example 58 ob-

tains (for uniform priors on bounded intervals in R).
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Estimation of support boundary I: model

Model

Define Θ = {(θ1, θ2) ∈ R2 : 0 < θ2 − θ1 < σ} (for some σ > 0)

and let H be a convex collection of Lebesgue probability densities

η : [0,1]→ [0,∞) with a function f : (0, a)→ R, f > 0 such that,

inf
η∈H

min
{∫ ε

0
η dµ,

∫ 1

1−ε
η dµ

}
≥ f(ε), (0 < ε < a)

The semi-parametric model P = {Pθ,η : θ ∈ Θ, η ∈ H},

pθ,η(x) =
1

θ2 − θ1
η

(
x− θ1

θ2 − θ1

)
1{θ1≤x≤θ2}.

Question

We are interested in marginal consistency for θ. Define the pseudo-

metric d : P ×P → [0,∞),

d(Pθ,η, Pθ′,η′) = max
{
|θ1 − θ′1|, |θ2 − θ′2|

}
.

We want posterior consistency with V = {Pθ,η : d(P,P0) ≥ ε}.
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Estimation of support boundary II: construction

Lemma 72 Suppose that P0(p/q) <∞. Then

P0(p/q)α|α=0 = P0(p > 0), P0(p/q)α|α=1 =
∫
p0

q
1{p0>0} dP.

Take B = {Q : ‖(p0/q)− 1‖∞ < δ},

inf
0≤α≤1

P0

(
p

q

)α
≤ (1 + δ) min

{
P0(p > 0), P (p0 > 0)

}
The supports of p and p0 differ by an interval of length ≥ ε,

min
{
P0(p > 0), P (p0 > 0)

}
≤ 1−

f(ε)

σ
.

Conclude: for every ε, δ > 0,

sup
Q∈B

sup
P∈V

inf
0≤α≤1

P0

(
p

q

)α
≤ (1 + δ)

(
1−

f(ε)

σ

)
< 1.
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Estimation of support boundary III: theorem

Theorem 73 Let Θ = {(θ1, θ2) ∈ R2 : 0 < θ2 − θ1 < σ} (for some

σ > 0) and convex H with associated f be given. Let Π be a prior on

Θ×H such that,

Π
(
Q : ‖(p0/q)− 1‖∞ < δ

)
> 0,

for all δ > 0. If X1, X2, . . . form an i.i.d.-P0 sample, where P0 = Pθ0,η0
,

then,

Π
(
‖θ − θ0‖ < ε

∣∣∣ X1, . . . , Xn
) P0-a.s.−−−−−→1,

for every ε > 0.

Remark 74 The σ-restriction on θ1− θ2 can be eliminated with the-

orem 67.
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Lecture V
Tests and posteriors

The existence of Bayesian test sequences implies concentra-

tion of the posterior distribution and vice versa. By impli-

cation, distinctions between model subsets are asymptotically

testable if and only if also expressed through posterior conver-

gence. In a Bayesian sense this leads to a form of posterior

concentration that implies Doob’s theorem. By contrast, fre-

quentist convergence is by no means settled and counterex-

amples abound, while Schwartz’s theorem formulates a very

sharp sufficient condition.

[B. Kleijn, Ann. Statist. 49.1 (2021), 182–202]



The i.i.d. consistency theorems (I)

Theorem 75 (Bayesian consistency, Doob (1948))

Assume that Xn = (X1, . . . , Xn) are i.i.d. Let P and X be Polish

spaces and let Π be a Borel prior. Then the posterior is consistent at

P , for Π-almost-all P ∈P

Example 76 For some Q ∈ P, take Π = δQ. Then Π(·|Xn) = δQ as

well, PΠ
n -almost-surely. If X1, . . . , Xn ∼ Pn0 (require Pn0 � PΠ

n = Qn),

the posterior is not frequentist consistent.

Non-trivial counterexamples are due to Schwartz (1961) and Freed-

man (1963, 1965, 1986a, 1986b, 1998, . . . )

93



The i.i.d. consistency theorems (II)

Theorem 77 (Frequentist, Schwartz (1965))

Let X1, X2, . . . be i.i.d.-P0 for some P0 ∈P. Let U ⊂P be given. If,

(i) there are φn : Xn → [0,1], s.t.

Pn0φn = o(1), sup
Q∈Uc

Qn(1− φn) = o(1), (12)

(ii) and Π is a Kullback-Leibler prior, i.e. for all δ > 0,

Π
(
P ∈P : −P0 log

dP

dP0
< δ

)
> 0, (13)

then Π(U |Xn)
P0-a.s.−−−−−→1.

Condition (i) implies P0 ∈ U , but it is not necessary that U is a

neighbourhood of P0; only the existence of the test is required.
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The Dirichlet process

Definition 78 (Dirichlet distribution)

A p = (p1, . . . , pk) pl ≥ 0 and
∑
l pl = 1 is Dirichlet distributed with

parameter α = (α1, . . . , αk), p ∼ Dα, if it has density

fα(p) = C(α)
k∏
l=1

p
αl−1
l

Definition 79 (Dirichlet process, Ferguson 1973,1974)

Let µ be a finite base measure on (X ,B). The Dirichlet process

P ∼ Dµ is defined by random histograms: for partitions A1, . . . , Ak of

X , (
P (A1), . . . , P (Ak)

)
∼ D(µ(A1),...,µ(Ak))
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The i.i.d. consistency theorems (III)

Theorem 80 (Frequentist, Dirichlet consistency)

Let X1, X2, . . . be an i.i.d.-sample from P0 With a Dirichlet prior Dµ
with finite base measure µ such that supp(P0) ⊂ supp(µ), the posterior

is consistent at P0 in Prokhorov’s weak topology.

Remark 81 (Freedman (1963))

Dirichlet priors are tailfree: if A′ refines A and A′i1 ∪ . . . ∪ A
′
ili

=

Ai, then (P (A′i1|Ai), . . . , P (A′ili|Ai) : 1 ≤ i ≤ k) is independent of

(P (A1), . . . , P (Ak)).

Remark 82 Xn 7→ Π(P (A)|Xn) is σn(A)-measurable where σn(A) is

generated by products of the form
∏n
i=1Bi with Bi = {Xi ∈ A} or

Bi = {Xi 6∈ A}.
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A posterior concentration inequality (I)

Lemma 83 Let (P,G ) be given. For any prior Π, any test function

φ and any B, V ∈ G ,∫
B
PΠ(V |X) dΠ(P ) ≤

∫
B
PφdΠ(P ) +

∫
V
Q(1− φ) dΠ(Q)

Definition 84 For B ∈ G such that Πn(B) > 0, the local prior predic-

tive distribution is defined, for every A ∈ Bn,

P
Π|B
n (A) =

∫
Pθ,n(A) dΠn(θ|B) =

1

Πn(B)

∫
B
Pθ,n(A) dΠn(θ).

Corollary 85 Consequently, for any sequences (Πn), (Bn), (Vn) such

that Bn ∩ Vn = ∅ and Πn(Bn) > 0, we have,

P
Π|Bn
n Π(Vn|Xn) :=

∫
Pθ,nΠ(Vn|Xn) dΠn(θ|Bn)

≤
1

Πn(Bn)

(∫
Bn
Pθ,nφn dΠn(θ) +

∫
Vn
Pθ,n(1− φn) dΠn(θ)

)
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Proof

Disintegration: for all A ∈ B and V ∈ G ,∫
X

1A(X)Π(V |X) dPΠ =
∫
V

∫
X

1A(X) dQdΠ(Q)

So for any B-measurable, simple f(X) =
∑J
j=1 cj 1Aj(X),∫

X
f(X)Π(V |X) dPΠ =

∫
V

∫
X
f(X) dQdΠ(Q)

Taking monotone limits, we see this equality also holds for any pos-

itive, measurable f : X → [0,∞]. In particular, with f(X) = (1 −
φ(X)),∫

P
P
(
(1− φ(X))Π(V |X)

)
dΠ(P ) =

∫
V
Q(1− φ(X)) dΠ(Q)
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Proof

Since B ⊂P and the integrand is positive,∫
B
P
(
(1− φ)(X)Π(V |X)

)
dΠ(P )

≤
∫
P
P
(
(1− φ(X))Π(V |X)

)
dΠ(P ) =

∫
V
Q(1− φ(X)) dΠ(Q)

bring the 2nd term on the l.h.s. to the r.h.s. and divide by Π(B) > 0,∫
PΠ(V |X) dΠ(P |B)

≤
1

Π(B)

(∫
B
Pφ(X)Π(V |X) dΠ(P ) +

∫
V
Q(1− φ)(X) dΠ(Q)

)

≤
1

Π(B)

(∫
B
Pφ(X) dΠ(P ) +

∫
V
Q(1− φ)(X) dΠ(Q)

)
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Bayesian testability –is– posterior convergence

Proposition 86 Let (Θ,G ,Π) be given. For any B, V ∈ G , the fol-

lowing are equivalent,

(i) There exist tests (φn) such that for Π-almost-all θ ∈ B, θ′ ∈ V ,

Pθ,nφn → 0, Pn,θ′(1− φn)→ 0,

(ii) There exist tests (φn) such that,∫
B
Pθ,nφn dΠ(θ) +

∫
V
Pθ′,n(1− φn) dΠ(θ′)→ 0,

(iii) For Π-almost-all θ ∈ B, θ′ ∈ V ,

Π(V |Xn)
Pθ,n−−−→0, Π(B|Xn)

Pθ′,n−−−→0

Remark 87 Interpretation distinctions between model subsets are

Bayesian testable, iff they are picked up by the posterior asymptoti-

cally, iff, posterior odds for B versus V are consistent
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Proof

Condition (i) implies (ii) by dominated convergence. Assume (ii) and

note that by the previous lemma,∫
PnΠ(V |Xn) dΠ(P |B)→ 0.

Martingale convergence (in L1(X ∞ ×P)) implies that there is a g :

X ∞ → [0,1] such that,∫
P∞

∣∣∣Π(V |Xn)− g(X∞)
∣∣∣ dΠ(P |B)→ 0,

So
∫
P∞g dΠ(P |B) = 0, so g = 0, P∞-almost-surely for Π-almost-all

P ∈ B. Using martingale convergence again (now in L∞(X ∞ ×P)),

conclude Π(V |Xn) → 0 P∞-almost-surely for Π-almost-all P ∈ B, i.e.

(iii) follows.

Choose φ(Xn) = Π(V |Xn) to conclude that (i) follows from (iii).
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Prior-almost-sure consistency

Corollary 88 Let Hausdorff completely regular Θ with Borel prior Π

be given. Then the following are equivalent,

(i) for Π-almost-all θ ∈ Θ and any nbd U of θ there exist a msb B ⊂ U
with Π(B) > 0 and Bayesian tests (φn) for B vs V = Θ \ U ,

(ii) the posterior is consistent at Π-almost-all θ ∈ Θ.

Corollary 89 (Doob (1948))

Let P be a Polish space and assume that all P 7→ Pn(A) are Borel

measurable. Then, for any prior Π, any Borel set V ⊂P is Bayesian

testable versus P \ V .

. . . which implies (but proves more than) Doob’s 1948 consistency

theorem
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Examples: prior-almost-sure inconsistency (I)

Example 90 (Freedman (1963))

Let X1, X2, . . . be i.i.d.positive integers.

Λ ⊂ `1 the space of all prob dist on N (P0 ∈ Λ): p(i) = P ({X = i}).

Schur’s property Total-variational and weak topologies on Λ equiva-

lent

P → Q means p(i)→ q(i) for all i ≥ 1.

Goal is a prior with P0 in its support while posterior concentrates

around some Q ∈ Λ \ {P0}.
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Examples: prior-almost-sure inconsistency (II)

Consider sequences (Pm) and (Qm) such that

Qm → Q, Pm → P0, as m→∞

Prior Π places masses αm > 0 at Pm and βm > 0 at Qm (m ≥ 1), so

that P0 lies in the support of Π.

First step construct (P0-dependently) Qm, leads to a posterior with,

Π({Qm}|Xn)

Π({Qm+1}|Xn)

P0-a.s.−−−−−→0,

forcing all posterior mass that resides in {Qm : m ≥ 1} into arbitrary

tails {Qm : m ≥M}, i.e. arbitrarily small neighbourhoods of Q.
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Examples: prior-almost-sure inconsistency (III)

Second step choose (Pm) and (αm) such that posterior mass in {Pm :

m ≥ 1} also accumulates in tails.

But if ratios αm/βm decrease to zero very fast with m,

Π({Pm : m ≥M}|Xn)

Π({Qm : m ≥M}|Xn)
< ε,

P0-a.s. for large enough M .

Conclusion for every neighbourhood UQ of Q,

Π(UQ|Xn)
P0-a.s.−−−−−→1,

so the posterior is inconsistent.

Remark 91 Other choices of the weights (αm) with more prior mass

in the tails do have consistent posteriors.
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Examples: prior-almost-sure inconsistency (IV)

Objection knowledge of P0 is required to construct the prior (unfor-

tunate but of no concern in any generic sense).

π(Λ) the space of all Borel distributions on Λ. Since Λ is Polish, so

are π(Λ) and Λ× π(Λ).

Theorem 92 (Freedman (1965))

Let X1, X2, . . . be i.i.d. integers, Endow π(Λ) with Prokhorov’s weak

topology. The set of (P0,Π)∈ Λ× π(Λ) such that for all open U ⊂ Λ,

lim sup
n→∞

Pn0 Π(U |Xn) = 1,

is residual.

The set of (P0,Π) ∈ Λ× π(Λ) for which the limiting behaviour of the

posterior is acceptable to the frequentist, is meagre in Λ× π(Λ).
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Examples: prior-almost-sure inconsistency (V)

The proof relies on the following (see also Le Cam (1986), 17.7)

for every k ≥ 1 Λk is all prob dist P on N with P (X = k) = 0

Λ0 = ∪k≥1Λk Pick P0, Q ∈ Λ \ Λ0 such that P0 6= Q.

Place a prior Π0 on Λ0 and choose Π = 1
2Π0 + 1

2δQ.

Because Λ0 is dense prior Π has full support
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Examples: prior-almost-sure inconsistency (VI)

P0 has full support in N so for every k ∈ N, P∞0 (∃m≥1 : Xm = k) = 1

If we observe Xm = k likelihoods equal zero for all P ∈ Λk so

Π(Λk|Xn) = 0

for all n ≥ m, P∞0 -almost-surely.

Freedman shows that this implies

Π(Λ0|Xn)
P0-a.s.−−−−−→0

forcing all posterior mass onto the point {Q}.

Π({Q}|Xn)
P0-a.s.−−−−−→1
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Lecture VI
Frequentist validity of Bayesian limits

Remote contiguity is the extra property that lends validity to

Bayesian limits for the frequentist. It is required that the prior

is such that locally-averaged likelihoods are indistinguishable

from the likelihoods associated with true distributions of the

data in a specific way that generalizes Le Cam’s property of

contiguity.

[B. Kleijn, Ann. Statist. 49.1 (2021), 182–202]



Le Cam’s inequality

Definition 93 For B ∈ G such that Πn(B) > 0, the local prior predic-

tive distribution is P
Π|B
n =

∫
Pθ,n dΠn(θ|B).

Remark 94 (Le Cam, unpublished (197X) and (1986))

Rewrite the posterior concentration inequality

Pn0 Π(Vn|Xn) ≤ ‖Pn0 − P
Π|Bn
n ‖

+
∫
Pnφn dΠ(P |Bn) +

Π(Vn)

Π(Bn)

∫
Qn(1− φn) dΠ(Q|Vn)

Remark 95 Useful in parametric models (e.g. BvM) but “a consid-

erable nuisance” [sic, Le Cam (1986)] in non-parametric context
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Schwartz’s theorem revisited
Remark 96 Suppose that for all δ > 0, there is a B s.t. Π(B) > 0

and for Π-almost-all θ ∈ B and large enough n

Pn0 Π(V |Xn) ≤ enδPθ,nΠ(V |Xn)

then for large enough m

lim sup
n→∞

[
(Pn0 − e

nδP
Π|B
n )Π(V |Xn)

]
≤ 0

Theorem 97 Let P be a model with KL-prior Π; P0 ∈ P. Let

B, V ∈ G be given and assume that B contains a KL-neighbourhood

of P0. If there exist Bayesian tests for B versus V of exponential

power then

Π(V |Xn)
P0−a.s.−−−−−−→0

Corollary 98 (Schwartz’s theorem)
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Remote contiguity

Definition 99 Given (Pn), (Qn), Qn is contiguous w.r.t. Pn (QnCPn),

if for any msb ψn : X n → [0,1]

Pnψn = o(1) ⇒ Qnψn = o(1)

Definition 100 Given (Pn), (Qn) and a an ↓ 0, Qn is an-remotely

contiguous w.r.t. Pn (QnC a−1
n Pn), if for any msb ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Remark 101 Contiguity is stronger than remote contiguity

note that QnCPn iff QnC a−1
n Pn for all an ↓ 0.

Definition 102 Hellinger transform ψ(P,Q;α) =
∫
pαq1−α dµ
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Le Cam’s first lemma

Lemma 103 Given (Pn), (Qn) like above, QnCPn iff:

(i) If Tn
Pn−−→0, then Tn

Qn−−→0

(ii) Given ε > 0, there is a b > 0 such that Qn(dQn/dPn > b) < ε

(iii) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c Pn‖ < ε

(iv) If dPn/dQn
Qn-w.−−−−−→ f along a subsequence, then P (f > 0) = 1

(v) If dQn/dPn
Pn-w.−−−−→ g along a subsequence, then Eg = 1

(vi) lim infn
∫
pαnq

1−α
n dµ→ 1 as α ↑ 1
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Criteria for remote contiguity

Lemma 104 Given (Pn), (Qn), an ↓ 0, QnC a−1
n Pn if any of the

following holds:

(i) For any bnd msb Tn : X n → R, a−1
n Tn

Pn−−→0, implies Tn
Qn−−→0

(ii) Given ε > 0, there is a δ > 0 s.t. Qn(dPn/dQn < δ an) < ε f.l.e.n.

(iii) There is a b > 0 s.t. lim infn→∞ b a−1
n Pn(dQn/dPn > ba−1

n ) = 1

(iv) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(v) Under Qn, every subsequence of (an(dPn/dQn)−1) has a weakly

convergent subsequence
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Beyond Schwartz

Theorem 105 Let (Θ,G ,Π) and (X1, . . . , Xn) ∼ P0,n be given. As-

sume there are B, V ∈ G with Π(B) > 0 and an ↓ 0 s.t.

(i) There exist Bayesian tests for B versus V of power an,∫
B
Pθ,nφn dΠ(θ) +

∫
V
Pθ,n(1− φn) dΠ(θ) = o(an)

(ii) The sequence (P0,n) satisfies P0,n C a−1
n P

Π|B
n

Then Π(V |Xn)
P0−−→0
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Application to i.i.d. consistency (I)

Remark 106 (Schwartz (1965))

Take P0 ∈P, and define

Vn = {P ∈P : H(P, P0) ≥ ε}

Bn = {P : −P0 log dP/dP0 <
1
2ε

2}

With N(ε,P, H) < ∞, and an of form exp(−nD) the theorem proves

Hellinger consistency with KL-priors.
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Consistency with n-dependence

Theorem 107 Let (P,G ) with priors (Πn) and (X1, . . . , Xn) ∼ P0,n

be given. Assume there are Bn, Vn ∈ G and an, bn ≥ 0, an = o(bn) s.t.

(i) There exist Bayesian tests for Bn versus Vn of power an,∫
Bn
Pθ,nφn dΠn(θ) +

∫
Vn
Pθ,n(1− φn) dΠn(θ) = o(an)

(ii) The prior mass of Bn is lower-bounded by bn, Πn(Bn) ≥ bn

(iii) The sequence (P0,n) satisfies Pn0 C bna−1
n P

Πn|Bn
n

Then Πn(Vn|Xn)
P0−−→0
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Application to i.i.d. consistency (II)

Remark 108 (Barron-Schervish-Wasserman (1999), Ghosal-Ghosh-

vdVaart (2000), Shen-Wasserman (2001))

Take P0 ∈P, and define

Vn = {P ∈P : H(P, P0) ≥ εn}

Bn = {P : −P0 log dP/dP0 <
1
2ε

2
n, P0 log2 dP/dP0 <

1
2ε

2
n}

With logN(εn,P, H) ≤ nε2n, and an and bn of form exp(−Knε2n) the

theorem proves Hellinger consistency at rate εn

Remark 109 Larger Bn are possible, under conditions on the model

(see Kleijn and Zhao (201x))
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Consistent posterior odds

Theorem 110 Let the model (P,G ) with priors (Πn) be given. Given

B, V ∈ G with Π(B),Π(V ) > 0 s.t.

(i) There are Bayesian tests for B versus V of power an ↓ 0,∫
B
Pθ,nφn dΠn(θ) +

∫
V
Pθ,n(1− φn) dΠn(θ) = o(an)

(ii) For all θ ∈ B, Pθ,n C a−1
n P

Πn|B
n ; for all η ∈ V , Pη,n C a−1

n P
Πn|V
n

Then posterior odds On (or Bayes factors Bn),

On =
Π(B|Xn)

Π(V |Xn)
, Bn =

Π(B|Xn)

Π(V |Xn)

Π(V )

Π(B)

for B versus V are consistent.
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Posterior odds are optimal

Proposition 111 Let (P,G ) be a model with prior Π and B, V ∈ G ,

B 6= V . The test function φ(X) = 1{x ∈ X : Π(V |X = x) ≥ Π(B|X =

x)} has optimal Bayesian testing power:∫
B
Pθφ dΠ(θ) +

∫
V
Pθ(1− φ) dΠ(θ)

= inf
ψ

(∫
B
Pθψ dΠ(θ) +

∫
V
Pθ(1− ψ) dΠ(θ)

)
.
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Proof

Find the optimal ‘decision’ φ ∈ [0,1] for loss ` : P × [0,1]→ [0,1],

`(P, φ) =

0, if P 6∈ B ∪ V ,∣∣∣φ− 1V (P )
∣∣∣, if P ∈ B ∪ V .

Data-driven decisions φ(X) are test functions. The Bayesian risk

function,

r(φ,Π) =
∫
P
P`(P, φ) dΠ(P ),

is Bayesian testing power,

r(φ,Π) =
∫
B
P |φ− 1V (P )

∣∣∣ dΠ(P ) +
∫
V
Q|φ− 1V (Q)

∣∣∣ dΠ(Q)

=
∫
B
PφdΠ(P ) +

∫
V
Q(1− φ) dΠ(Q).
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Proof

Bayes’s rule if φ(x) minimizes posterior expected loss for PΠ-almost-

all x ∈ X ,∫
P
`(P, φ(x)) dΠ(P |X = x) = inf

ψ∈[0,1]

∫
P
`(P, ψ) dΠ(P |X = x),

then φ : X → [0,1] optimizes Bayesian testing power:

r(φ,Π) = inf{r(ψ,Π) : ψ : X → [0,1]},

To conclude note that,∫
P
`(P, ψ(x)) dΠ(P |X = x)

=
∫
B
ψ(x) dΠ(P |X = x) +

∫
V

(1− ψ(x)) dΠ(Q|X = x)

= ψ(x)Π(B|X = x) + (1− ψn(x))Π(V |X = x),

is minimal if we choose ψ(x) = 1{x : Π(V |X = x) ≥ Π(B|X = x)}.
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Random-walk goodness-of-fit testing (I)

Given (S,S ) state space for a discrete-time, stationary Markov pro-

cess with transition kernel P (·|·) : S × S → [0,1], the data consists of

random walks Xn.

Choose a finite partition α = {A1, . . . , AN} of S and ‘bin the data’:

Zn in finite state space Sα. Zn is stationary Markov chain on Sα with

transition probabilities

pα(k|l) = P (Xi ∈ Ak|Xi−1 ∈ Al),

We assume that pα is ergodic with equilibrium distribution πα.

We are interested in goodness-of-fit testing of transition probabilities

with posterior odds.
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Ergodic random-walks

Example 112 Assume that p0 ∈ Θ generates an ergodic Markov

chain Zn. Denote Zn ∼ P0,n and equilibrium distribution π0

For given ε > 0, define,

B′ =
{
pα ∈ Θ :

N∑
k,l=1

−p0(l|k)π0(k) log
pα(l|k)

p0(l|k)
< ε2

}
.

Assume Π(B′) > 0.

According to the ergodic theorem,

1

n

n∑
i=1

log
pα(Zi|Zi−1)

p0(Zi|Zi−1)

P0,n-a.s.
−−−−−−→

N∑
k,l=1

p0(l|k)π0(k)log
p(l|k)

p0(l|k)
,
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Remote contiguity of ergodic random-walks

so for every pα ∈ B′ and large enough n, P0,n-almost-surely

dPα,n

dP0,n
(Zn) =

n∏
i=1

pα(Zi|Zi−1)

p0(Zi|Zi−1)
≥e−

n
2ε

2

Fatou’s lemma implies remote contiguity because,

P0,n

(∫
dPα,n

dP0,n
(Zn) dΠ(pα|B′) < e−

n
2ε

2
)
→ 0.

So lemma 104 says that

P0,nC exp(n2ε
2)P

Π|B′
n

Remark 113 Exponential remote contiguity is not enough for goodness-

of-fit tests below. Instead we use to local asymptotic normality for a

sharper result.
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Random-walk goodness-of-fit testing (II)

Fix P0, ε > 0 and hypothesize on ‘bin probabilities’ pα(k, l) = pα(k|l)πα(l),

H0 : max
k,l

∣∣∣ pα(k, l)− p0(k, l)
∣∣∣ < ε, H1 : max

k,l

∣∣∣ pα(k, l)− p0(k, l)
∣∣∣ ≥ ε,

Define, for δn ↓ 0,

Bn = {pα ∈ Θ : max
k,l

∣∣∣ pα(k, l)− p0(k, l)
∣∣∣ < ε− δn}

Vk,l = {pα ∈ Θ :
∣∣∣pα(k, l)− p0(k, l)

∣∣∣ ≥ ε},
V+,k,l,n = {pα ∈ Θ : pα(k, l)− p0(k, l) ≥ ε+ δn},

V−,k,l,n = {pα ∈ Θ : pα(k, l)− p0(k, l) ≤ −ε− δn}.

Remark 114 A Bayesian test sequence for H0 versus H1 exists based

on a version of Hoeffding’s inequality for random walks (Glynn and

Ormoneit (2002), Meyn and Tweedie (2009))
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Random-walk goodness-of-fit testing (III)

Choquet pα(k|l) =
∑
E∈E λEE(k|l) where the NN transition kernels E

are deterministic. Define,

Sn =
{
λE ∈ SN

N
: λE ≥ λn/NN−1, for all E ∈ E

}
,

for λn ↓ 0.

Theorem 115 Choose a prior Π� µ on SN
N

with continuous, strictly

positive density. Assume that,

(i) nλ2
nδ

2
n/ log(n)→∞,

(ii) Π(B \Bn),Π(Θ \ Sn) = o(n−(NN/2)),

(iii) Π(Vk,l \ (V+,k,l,n ∪ V−,k,l,n)) = o(n−(NN/2)), for all 1 ≤ k, l ≤ N .

Then the posterior odds On for H0 versus H1 are consistent.
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Lecture VII
Posterior uncertainty quantification

As we have seen in Lecture II the Bernstein-von-Mises limit

allows us to identify credible sets and confidence sets in the

large-sample limit. This identification extends much further:

in this lecture we consider various ways in which credible sets

and their enlargements serve as confidence sets. Before we

turn to posterior uncertainty quantification, we look in de-

tail at the proof of frequentist posterior consistency with the

Dirichlet prior.

[B. Kleijn, Ann. Statist. 49.1 (2021), 182–202]



Remote contiguity in finite sample spaces

Observe an i.i.d. sample X1, X2, . . . from X of finite order N . Let M

denote the space of all probability measures on X .

(M, ‖ · ‖) is isometric to the simplex,

SN =
{
p = (p(1), . . . , p(N)) : min

k
p(k) ≥ 0,Σi p(i) = 1

}
,

with `1-norm: ‖p− q‖ = Σk |p(k)− q(k)|.

Proposition 116 If i.i.d. X1, X2, . . . are X -valued, then for any n ≥ 1,

any Borel prior Π of full support on M , any P0 ∈ M and any ball B

around P0, there exists an ε′ > 0 such that,

Pn0 C e
1
2nε

2
P

Π|B
n ,

for all 0 < ε < ε′.
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Consistency with finite sample spaces

Given δ > 0, consider

B = {P ∈M : ‖P − P0‖ < δ}, V = {Q ∈M : ‖Q− P0‖ > 2δ}.

M is compact N(δ,M, ‖ · ‖) <∞ for all δ and there exist uniform tests

for B versus V (with power e−nD, D > 0).

Proposition 116 with an 0 < ε < ε′ small enough guarantees exponen-

tial remote contiguity

Then theorem 105 says Π(V |Xn) goes to zero in Pn0 -probability.

Proposition 117 (Freedman, 1965) A posterior resulting from a prior

Π of full support on M is consistent in total variation.
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Weak consistency with Dirichlet process priors

Recall

Definition 118 (Dirichlet process, Ferguson 1973,1974)

Let µ be a finite base measure on (X ,B). The Dirichlet process

P ∼ Dµ is defined by random histograms: for partitions A1, . . . , Ak of

X , (
P (A1), . . . , P (Ak)

)
∼ D(µ(A1),...,µ(Ak))

Define Prokhorov’s weak neighbourhoods f : [0,1]→ [0,1] continuous

Uf =
{
P ∈M1[0,1] : |(P − P0)f | < ε

}

Vf = M1[0,1] \ Uf We want to show Pn0 Π(Vf |Xn) = o(1).
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Suitable weak tests

For continuous f : [0,1]→ [0,1] and

Bf =
{
P : |(P − P0)f | < ε

}
, Vf =

{
P : |(P − P0)f | ≥ 4ε

}
.

Any cont x 7→ f(x) is ε-uniformly approximated by some g

g(x) =
N∑
n=1

gn 1An(x)

on a partition in intervals A1, . . . , AN

Bg =
{
P : |(P − P0)g| < 2ε

}
, Vg =

{
P : |(P − P0)g| ≥ 3ε

}
.

Bf ⊂ Bg, Vf ⊂ Vg and Lemma 23 says there are (φn)

sup
P∈Bg

Pnφn ≤ e−nD, sup
Q∈Vg

Qn(1− φn) ≤ e−nD. (14)
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Remote contiguity in restricted form

For given f and ε > 0, construct g on some α.

Define sub-σ-algebra σα,n = σ(αn) on Xn = [0,1]n.

Remark 119 Tailfreeness (Freedman, 1965)

Xn → [0,1] : Xn 7→ Π(Vg |Xn) is σα,n-measurable

Remote contiguity,

P
Π|Bg
n ψn(Xn) = o(ρn) ⇒ Pn0ψn(Xn) = o(1),

only for σα,n-measurable ψn : X n → [0,1]
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Partitions and projections

Project [0,1] onto Xα = {en : 1 ≤ n ≤ Nα}

ϕα(x) =
(
1{x ∈ A1}, . . . ,1{x ∈ ANα}

)
.

and consider ϕ∗α : M1[0,1]→ SNα,

ϕ∗α(P ) =
(
P (A1), . . . , P (ANα)

)
,

Remote contiguity and testing happen equivalently in SNα

Full support of Πα guarantees remote contiguity with exponential

rates. Together with tests (14), implies weak consistency

Π(Vf |Xn) ≤ Π(Vg|Xn)
P0−−→0

Dirichlet process prior full support of the base measure µ implies full

support for all Πα, if µ(Ai) > 0 for all 1 ≤ i ≤ Nα. Particularly, we

require P0 � µ for consistent estimation.
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Asymptotic credible and confidence sets

Definition 120 Let (Θ,G ) with priors Πn and a collection D of mea-

surable subsets of Θ be given. Credible sets (Dn) of credible levels

1− o(an) are maps Dn : Xn → D such that,

Π(Θ \Dn(Xn)|Xn) = o(an),

PΠn
n -almost-surely.

Definition 121 Maps x 7→ Cn(x) ⊂ Θ are asymptotically consistent

confidence sets (of levels 1− o(an)), if,

Pθ,n
(
θ 6∈ Cn(Xn)

)
→ 0, (= o(an))

for all θ ∈ Θ. Cn is asymptotically informative, if for all θ′ 6= θ,

Pθ′,n

(
θ ∈ Cn(Xn)

)
→ 0
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Existence of confidence sets and tests

Theorem 122 The following are equivalent:

(i) For every θ ∈ Θ, there exist pointwise tests φθ,n(Xn) for {θ} vs

Θ \ {θ} of power an: for all θ′ 6= θ,

Pθ,nφθ,n + Pθ′,n(1− φθ,n) = o(an)

(ii) There are confidence sets Cn(Xn) of levels 1−an that are asymp-

totically consistent and informative: for all θ′ 6= θ,

Pθ,n
(
θ 6∈ Cn(Xn)

)
+ Pθ′,n

(
θ ∈ Cn(Xn)

)
= o(an)

136



Credible sets with converging posteriors (I)

Distinguish theorems with posteriors convergence as a condition and

theorems without such conditions.

We assume that (Θn, dn) are metric spaces. Denote balls,

Bn(θn, rn) = {θ′n ∈ Θn : dn(θ′, θn) ≤ rn},

where both θn and rn may be random.

Definition 123 Let (Θn, dn) with priors Πn be given. A sequence of

credible balls

Dn(Xn) = Bn(θ̂n(Xn), r̂n(Xn))

of credible levels 1− o(an) satisfy, PΠn
n -almost-surely,

Π(Θ \Dn(Xn)|Xn) = Π(dn(θn, θ̂n(Xn)) > r̂n(Xn)|Xn) = o(an).
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Credible sets with converging posteriors (II)

Suppose that (Θn, dn) are metric spaces

Theorem 124 (van Waaij, BK, 2018/19)

Suppose that 0 < ε ≤ 1, Pθ0,n
� PΠn

n and

Π
(
dn(θn, θ0,n) ≤ rn

∣∣∣ Xn
) Pθ0,n−−−−→1

Let B̂n(Xn) = Bn(θ̂n(Xn), r̂n(Xn)) be level-1− ε credible balls of min-

imal radii. Then with high Pθ0,n-probability r̂n ≤ rn.

And Cn(Xn) = Bn(θ̂n(Xn), r̂n(Xn)+rn) ⊂ Bn(θ̂n(Xn),2rn) have asymp-

totic coverage,

Pθ0,n

(
θ0,n ∈ Cn(Xn)

)
→ 1,
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Proof of theorem 124 (I)

Let n ≥ 1 be given. The posterior Π(·|Xn = xn) is defined for all xn

in an event Fn such that PΠn
n (Fn) = 1, and because P0,n � PΠn

n , also

Pθ0,n
(Fn) = 1.

For xn ∈ Fn and θn ∈ Θn, let rn(θn, xn) ∈ [0,∞] denote the smallest

radius of balls centred on θn of posterior mass at least 1− ε.

Define θ̂n(xn) as the centre point of a credible ball with minimal radius

r̂n(xn) = inf{rn(θn, xn) : θn ∈ Θn},

B̂n(xn) = Bn(θ̂n(xn), r̂n(xn)),

of level 1− ε. Note

Pθ0,n

(
Π(B̂n(Xn)|Xn) ≥ 1− ε

)
= 1,

for all n ≥ 1.
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Proof of theorem 124 (II)

Posterior convergence the ball Bn(θ0,n, rn) is a credible ball of level

1− ε for large enough n. Therefore, with high P0,n-probability

r̂n(Xn) ≤ rn(θ0,n, X
n) ≤ rn.

Posterior convergence the balls Bn(θ0,n, rn) satisfy

Pθ0,n

(
Π(Bn(θ0,n, rn)|Xn) > ε

)
→ 1.

Conclude that, with high Pθ0,n
-probability,

Bn(θ0,n, rn) ∩Bn(θ̂n(Xn), r̂n(Xn)) 6= ∅,

implying asymptotic coverage of θ0,n for Cn(Xn).

Remark 125 Proof does not lead to automatic rate-adaptivity (Hen-

gartner (1995), Cai, Low and Xia (2013), Szabó, vdVaart, vZanten

(2015)) when rn = rn(P0,n): estimation of rn is problematic.
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Credible sets without converging posteriors

Definition 126 Let D(X) be a credible set in Θ and let B denote

a set function θ 7→ B(θ) ⊂ Θ. A model subset C(X) is said to be a

confidence set associated with D(X) under B, if for all θ ∈ Θ \C(X),

B(θ) ∩D(X) = ∅

Definition 127 The intersection C0(X) of all C(X) like above is a

confidence set associated with D(X) under B, called the minimal

confidence set associated with D(X) under B.
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B-Enlargement of credible sets

θ

B(θ)

D(X)

C(X)

A credible set D(X) and its associated confidence set C(X) under B

in terms of Venn diagrams: additional points θ ∈ C(X) \ D(X) are

characterized by non-empty intersection B(θ) ∩D(X) 6= ∅.
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B-Enlarged credible sets are confidence sets

Theorem 128 Let 0 ≤ an ≤ 1, an ↓ 0 and bn > 0 such that an =

o(bn) be given and let Dn(Xn) denote level-(1 − o(an)) credible sets.

Furthermore, for all θ ∈ Θ, let θ 7→ Bn(θ) be set functions such that,

(i) Πn(Bn(θ0)) ≥ bn,

(ii) Pθ0,nC bna
−1
n P

Πn|Bn(θ0)
n .

Then any confidence sets Cn(Xn) associated with the credible sets

Dn(Xn) under Bn are asymptotically consistent, that is,

Pθ0,n

(
θ0 ∈ Cn(Xn)

)
→ 1.
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Proof of theorem 128 (I)

Let Dn denote credible sets of levels 1−o(an), defined for all xn ∈ Fn ⊂
Xn such that PΠn

n (Fn) = 1. For any xn ∈ Fn, Cn(xn) is a confidence

set associated with Dn(xn) under B.

Note that by definition of Cn(xn),

θ0 ∈ Θ \ Cn(xn) ⇒ Bn(θ0) ∩Dn(xn) = ∅.

Then Π(Bn(θ0)|xn) = o(an).

So for all xn ∈ Fn the functions x 7→ 1{θ0 ∈ Θ \ Cn(xn)}Π(B(θ0)|xn)

are o(an).
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Proof of theorem 128 (II)

Integrate with respect to PΠn
n and divide by Πn(Bn(θ0)) to find,

1

Πn(Bn(θ0))

∫
1{θ0 ∈ Θ \ Cn(xn)}Π(Bn(θ0)|xn) dPΠn

n = o(anb
−1
n ).

By Bayes’s rule in the form (1),

P
Πn|Bn(θ0)
n

(
θ0 ∈ Θ \ Cn(Xn)

)
=
∫
Pθ,n

(
θ0 ∈ Θ \ Cn(Xn)

)
dΠn(θ|Bn) = o(anb

−1
n ).

Since Pθ0,nC bna
−1
n P

Πn|Bn(θ0)
n this implies asymptotic coverage.
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Methodology: confidence sets from posteriors (I)

Corollary 129 Given (Θ,G ), (Πn) and (Bn) with Πn(Bn) ≥ bn and

Pθ,nCP
Πn|Bn
n , any credible sets Dn(Xn) of level 1 − an with an =

o(bn) have associated confidence sets under Bn that are asymptotically

consistent.

Next, assume that (X1, X2, . . . , Xn) ∈ X n ∼ Pn0 for some P0 ∈P.

Corollary 130 Let Πn denote Borel priors on P, with constant C > 0

and rate sequence εn ↓ 0 such that:

Πn

(
P ∈P : −P0 log

dP

dP0
< ε2n, P0

(
log

dP

dP0

)2
< ε2n

)
≥ e−Cnε

2
n.

Given credible sets Dn(Xn) of level 1−o(exp(−C′nε2n)), for some C′ >
C. Then radius-εn Hellinger-enlargements Cn(Xn) are asymptotically

consistent confidence sets.
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Methodology: confidence sets from posteriors (II)

Note the relation between Hellinger diameters,

diamH(Cn(Xn)) = diamH(Dn(Xn)) + 2εn.

If, in addition, tests satisfying∫
Bn
Pθ,nφn(Xn) dΠn(θ) +

∫
Vn
Pθ,n(1− φn(Xn)) dΠn(θ) = o(an),

with an = exp(−C′nε2n) exist, the posterior is Hellinger consistent at

rate εn, so that diamH(Dn(Xn)) ≤Mεn for some M > 0.

If εn is the minimax rate of convergence for the problem, the confi-

dence sets Cn(Xn) are rate-optimal (Low, (1997)).

Remark 131 Rate-adaptivity (Hengartner (1995), Cai, Low and Xia

(2013), Szabó, vdVaart, vZanten (2015)) is not possible like this

because a definite choice for the sets in Bn is required.
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Lecture VIII
Confidence sets in a

sparse stochastic block model

In a sparse stochastic block model with two communities of

unequal sizes we derive two posterior concentration inequali-

ties, for (1) posterior (almost-)exact recovery of the commu-

nity structure; (2) a construction of confidence sets for the

community assignment from credible sets with finite graph

sizes, enabling exact frequentist uncertain quantification with

Bayesian credible sets at non-asymptotic graph sizes. It is ar-

gued that a form of early stopping applies to MCMC sampling

of the posterior to enable the computation of confidence sets

at larger graph sizes.

[B. Kleijn and J. van Waaij, arXiv:1810.09533, 2108.07078 [math.ST]]



Part I
Sparse stochastic block models



Erdös-Rényi random graphs

Fix n ≥ 1, denote Gn = (Vn, En) complete graph with n vertices and

percolate edges,

For every e ∈ En independently, include e in E′n ⊂ En wp. pn.

Result random graph G(n, pn) = (Vn, E′n) (Erdös, Rényi (1959, 1961)).

Gn G(n, pn)

Complete graph and edge-percolated ER-graph
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Sparsity phases of the Erdös-Rényi random graph

Fragmented

pn < 1/n

Many fragments

clusters ≤ O(log(n))

E(Ni) = O(1)

Kesten-Stigum

1/n < pn < log(n)/n

Giant component

cluster ∼ O(n)

E(Ni) = O(npn)

Chernoff-Hellinger

pn > log(n)/n

Connected

cluster = n

E(Ni) = O(log(n))
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Two-community stochastic block model

Consider Gn = (Vn, En) with community assignment θn ∈ Θn =

{0,1}n. Split Vn = Z0(θn) ∪ Z1(θn). For every e ∈ En independently,

include e in E′n ⊂ En wp.

 pn, if e lies within Z0 or Z1,

qn, if e lies between Z0 and Z1.

1

2
3

4

5

6

7 8

9

10

11

12

13

14
15

16

17

Three-community SBM graph Xn = (Vn, E′n) ∈ Xn, Xn ∼ Pθn
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Community detection

Example SBM with n = 12, 0 < qn � pn < 1, θn = 000000111111

Observation

Data Xn ∼ Pθn

Unobserved

Communities of θn

Z0(θn), Z1(θn)

Detection

Estimate with

Ẑ0(Xn),Ẑ1(Xn)
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Asymptotic community detection

Definition 132 Given community assignments θn for all n ≥ 1, an

estimator sequence θ̂n : Xn → Θn is said to recover θn exactly, if,

Pθn,n
(
θ̂n(Xn) = θn

)
→ 1,

as n→∞.

Let k : Θn ×Θn → {0,1, . . . , n} denote the Hamming distance.

Definition 133 Given community assignments θn for all n ≥ 1 and

some sequence of error rates (kn) of order kn = O(n), an estimator

sequence θ̂n : Xn → Θn is said to recover θn almost-exactly with error

rate kn, if,

Pθn,n
(
k(θ̂n(Xn), θn) ≤ kn

)
→ 1,

as n→∞.
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Part II
Posterior concentration



Posterior concentration (I)

Let,

ρ(p, q) = p1/2q1/2 + (1− p)1/2(1− q)1/2,

denote the Hellinger-affinity between two Bernoulli-distributions with

parameters p, q ∈ (0,1).

Theorem 134 For fixed n ≥ 1, suppose Xn ∼ Pθn,n with θn ∈ Θn and

choose the uniform prior on Θn. Then,

Pθn,nΠ( {θn}|Xn) ≥ 1−
n

2
ρ(pn, qn)n/2 enρ(pn,qn)n/2

,

implying that if,

nρ(pn, qn)n/2 → 0, (15)

then the posterior recovers the true community assignment exactly.
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Exact recovery in the Chernoff-Hellinger phase

Sparsity pn = an
log(n)

n
, qn = bn

log(n)

n
.

Corollary 135 Assume the conditions of theorem 134. If the se-

quences an, bn in the Chernoff-Hellinger phase satisfy,(
(
√
an −

√
bn)2 −

anbn log(n)

2n
− 4

)
log(n)→∞, (16)

then the posterior recovers the community assignments exactly.

For an, bn of order O(1), a simple sufficient condition for exact recov-

ery is, (
(
√
an −

√
bn)2 − 4

)
logn→∞, (17)
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Posterior concentration (II)

Define the (Hamming-)metric balls,

Bn(θn, kn) = {ηn ∈ Θn : k(ηn, θn) ≤ kn}, (18)

Theorem 136 For fixed n ≥ 1, suppose Xn ∼ Pθn,n with θn ∈ Θn and

choose the uniform prior on Θn. For some λn with 0 < λn < 1/2, let

kn be an integer such that kn ≥ λnn. Then,

Pθn,nΠ
(
Bn(θn, kn)

∣∣∣ Xn
)

≥ 1−
1

2

(
e
λn
ρ(pn, qn)n/2

)λnn(
1− e

λn
ρ(pn, qn)n/2

)−1
.
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Recovery in the Kesten-Stigum phase (I)

Sparsity pn =
cn

n
, qn =

dn

n
.

Proposition 137 If the sequences cn, dn and the fractions λn satisfy,

λnn

(
log(λn) +

1

4

(√
cn −

√
dn
)2
− 1

)
→∞, (19)

then posteriors recover the community assignment almost-exactly

with any error rate kn ≥ λnn.

Corollary 138 Recovery c.f. (Decelle et al. (2011))

Let 0 < λ < 1/2 be given. If, for some constant C > 1 and large

enough n,

(
√
cn −

√
dn)2 > 4C(1− log(λ)), (20)

then the posterior recovers the community assignment almost exactly

with error rate kn = λn.
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Recovery in the Kesten-Stigum phase (II)

Corollary 139 Weak consistency (Mossel, Neeman, Sly (2016))

If the sequences cn and dn satisfy,

(cn − dn)2

2(cn + dn)
→∞, (21)

the posterior recovers the true community assignment almost exactly

with any error rate kn ≥ λnn for some vanishing fraction λn → 0.

Corollary 140 Let 0 < λn < 1/2 be given, such that λn → 0, λnn →
∞. If, for some constant C > 1,

(
√
cn −

√
dn)2 + 4Clog(λn)→∞, (22)

then the posterior recovers the community assignments almost exactly

with error rate kn = λnn.
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Part III
Uncertainty quantification



Bayesian and frequentist uncertainty quantified

Definition 141 Given n ≥ 1, a prior Πn and data Xn, a credible set

of credible level 1− γ is any D(Xn) ⊂ Θn such that:

Π(D(Xn)|Xn) ≥ 1− γ,

PΠn
n -almost-surely.

Definition 142 Given θn ∈ Θn and data Xn ∼ Pθn,n, a confidence set

C(Xn) ⊂ Θn of confidence level 1−α is defined by any xn 7→ C(xn) ⊂
Θn such that,

Pθn,n
(
θn ∈ C(Xn)

)
≥ 1− α.
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Enlargement of credible sets

Lemma 143 Fix n ≥ 1, let θn ∈ Θn, Xn ∼ Pθn,n be given. For any

B ⊂ Θn, 0 < β < 1,

Pθn,nΠ(B|Xn) ≥ 1− β ⇒ Pθn,n
(
B ∩D(Xn) 6= ∅

)
≥ 1−

β

1− γ
.

for any credible set D(Xn) ⊂ Θn of credible level 1− γ.

θ

B(θ)

D

C

Enlargement of D by sets B(θ) to form C
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Credible sets are confidence sets (I)

Proposition 144 For fixed n ≥ 1, suppose Xn ∼ Pθn,n with θn ∈ Θn.

Every credible set D(Xn) of credible level 1− γ is a confidence set of

confidence level,

Pθn,n
(
θn ∈ D(Xn)

)
≥ 1−

n

2(1− γ)
ρ(pn, qn)n/2 enρ(pn,qn)n/2

. (23)

Method 18.2 For graph size n, realised graph Xn = xn, known p, q

and realised posterior Π(·|Xn = xn), choose a desired confidence level

0 < 1− α < 1, we choose credible level,

1− γ = min{1, (n/2α)ρ(p, q)n/2 enρ(p,q)n/2
}. (24)
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Credible sets are confidence sets (II)

Example 145 Take p = 0.9, q = 0.1 and confidence level 1−α = 0.95.

ρ(p, q) = 0.6 and (n/2)ρ(p, q)n/2 ≈ 0.0211. As n varies,

any (unenlarged) credible set of credible level 1− γ is a confidence

set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95
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Enlarged credible sets are confidence sets (I)

The k-enlargement C(Xn) of D(Xn) is the union of all Hamming balls

of radius k ≥ 1 that are centred on points in D(Xn),

C(Xn) =
{
θn ∈ Θn : ∃ηn∈Dn(Xn), k(θn, ηn) ≤ k

}
,

Proposition 146 For fixed n ≥ 1, suppose Xn ∼ Pθn,n with θn ∈ Θn.

Define k = dλne. Then the k-enlargement C(Xn) of any credible set

D(Xn) of level 1− γ is a confidence set of confidence level,

Pθn,n
(
θn ∈ C(Xn)

)
≥ 1−

1

2(1− γ)

(
e
λρ(pn, qn)n/2

)λn(
1− e

λρ(pn, qn)n/2
)−1

.
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Enlarged credible sets are confidence sets (II)

Example 147 Again p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. For λ = 0.05 and varying graph size n,

any 0.05n-enlarged credible set of credible level 1− γ is also a

confidence set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95 (λ = 0.05)
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Enlarged credible sets are confidence sets (III)

Example 148 Again p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. For λ = 0.1 and varying graph size n,

any 0.1n-enlarged credible set of credible level 1− γ is also a

confidence set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95 (λ = 0.1)
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Enlarged credible sets are confidence sets (IV)

Example 149 Again p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. For λ = 0.25 and varying graph size n,

any 0.25n-enlarged credible set of credible level 1− γ is also a

confidence set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95 (λ = 0.25)

169



Discussion

Sharpness of the bounds If posterior concentration bounds are not

sharp, lower bounds for credible levels become unnecessary high and

enlargement radii become unnecessarily large.

Early stopping Since only community assignments with high posterior

probabilities are needed in credible sets of low credible level, small

MCMC samples may not hamper the construction of confidence sets:

some form of early stopping of the MCMC sequence may be justified.

Generalization and cross validation All of this generalizes and can be

verified by simulation and cross validation.
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