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A B S T R A C T

In a sparse stochastic block model with two communities

of unequal sizes we derive two posterior concentration

inequalities, for (1) posterior (almost-)exact recovery of

the community structure; (2) a construction of confi-

dence sets for the community assignment from credible

sets with finite graph sizes, enabling exact frequentist

uncertain quantification with Bayesian credible sets at

non-asymptotic graph sizes. It is argued that a form of

early stopping applies to MCMC sampling of the pos-

terior to enable the computation of confidence sets at

larger graph sizes.

[Based on joint work with J. van Waaij]

B. Kleijn, Annals of Statistics 49.1 (2021), 182–202.

B. Kleijn, J. van Waaij, arxiv:1810.09533, 2108.07078



Part I
Sparse stochastic block models



Erdös-Rényi random graphs

Fix n ≥ 1, denote Gn = (Vn, En) complete graph with n vertices and

percolate edges,

For every e ∈ En independently, include e in E′n ⊂ En wp. pn.

Result random graph G(n, pn) = (Vn, E′n) (Erdös, Rényi (1959–1961)).

Gn G(n, pn)

Complete graph and edge-percolated ER-graph
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Sparsity phases of the Erdös-Rényi random graph

Fragmented

pn < 1/n

Many fragments

clusters ≤ O(log(n))

E(Ni) = O(1)

Kesten-Stigum

1/n < pn = an/n < log(n)/n

Giant component

cluster ∼ O(n)

E(Ni) = O(an)

Chernoff-Hellinger

pn > log(n)/n

Connected

cluster = n

E(Ni) = O(log(n))
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Two-community stochastic block model

Consider Gn = (Vn, En) with community assignment θn ∈ Θn =

{0,1}n. Split Vn = Z0(θn) ∪ Z1(θn). For every e ∈ En independently,

include e in E′n ⊂ En wp.

 pn, if e lies within Z0 or Z1,

qn, if e lies between Z0 and Z1.
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Three-community SBM graph Xn = (Vn, E′n) ∈ Xn, Xn ∼ Pθn
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Community detection

Example SBM with n = 12, 0 < qn � pn < 1, θn = 000000111111

Observation

Data Xn ∼ Pθn

Unobserved

Communities of θn

Z0(θn), Z1(θn)

Detection

Estimate with

Ẑ0(Xn),Ẑ1(Xn)
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Asymptotic community detection

Definition 8.1 Given community assignments θn for all n ≥ 1, an

estimator sequence θ̂n : Xn → Θn is said to recover θn exactly, if,

Pθn

(
θ̂n(Xn) = θn

)
→ 1,

as n→∞.

Let k : Θn ×Θn → {0,1, . . . , n} denote the Hamming distance.

Definition 8.2 Given community assignments θn for all n ≥ 1 and

some sequence of error rates (kn) of order kn = O(n), an estimator

sequence θ̂n : Xn → Θn is said to recover θn almost-exactly with error

rate kn, if,

Pθn

(
k(θ̂n(Xn), θn) ≤ kn

)
→ 1,

as n→∞.
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Part II
Posterior concentration



Posterior concentration (I)

Let,

ρ(p, q) = p1/2q1/2 + (1− p)1/2(1− q)1/2,

denote the Hellinger-affinity between two Bernoulli-distributions with

parameters p, q ∈ (0,1).

Theorem 10.1 For fixed n ≥ 1, suppose Xn ∼ Pθn with θn ∈ Θn and

choose the uniform prior on Θn. Then,

EθnΠ( {θn}|Xn) ≥ 1−
n

2
ρ(pn, qn)n/2 enρ(pn,qn)n/2

,

implying that if,

nρ(pn, qn)n/2 → 0, (1)

then the posterior recovers the true community assignment exactly.
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Exact recovery in the Chernoff-Hellinger phase

Sparsity pn = an
log(n)

n
, qn = bn

log(n)

n
.

Corollary 11.1 Assume the conditions of theorem 10.1. If the se-

quences an, bn in the Chernoff-Hellinger phase satisfy,(
(
√
an −

√
bn)2 −

anbn log(n)

2n
− 4

)
log(n)→∞, (2)

then the posterior recovers the community assignments exactly.

For an, bn of order O(1), a simple sufficient conditions for exact re-

covery is, (
(
√
an −

√
bn)2 − 4

)
logn→∞, (3)
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Posterior concentration (II)

Define the (Hamming-)metric balls,

Bn(θn, kn) = {ηn ∈ Θn : k(ηn, θn) ≤ kn}, (4)

Theorem 12.1 For fixed n ≥ 1, suppose Xn ∼ Pθn with θn ∈ Θn and

choose the uniform prior on Θn. For some λn with 0 < λn < 1/2, let

kn be an integer such that kn ≥ λnn. Then,

EθnΠ
(
Bn(θn, kn)

∣∣∣ Xn
)

≥ 1−
1

2

(
e
λn
ρ(pn, qn)n/2

)λnn(
1− e

λn
ρ(pn, qn)n/2

)−1
.
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Recovery in the Kesten-Stigum phase (I)

Sparsity pn =
cn

n
, qn =

dn

n
.

Proposition 13.1 If the sequences cn, dn and the fractions λn satisfy,

λnn

(
log(λn) +

1

4

(√
cn −

√
dn
)2
− 1

)
→∞, (5)

then posteriors recover the community assignment almost-exactly

with any error rate kn ≥ λnn.

Corollary 13.2 Recovery c.f. (Decelle et al. (2011))

Let 0 < λ < 1/2 be given. If, for some constant C > 1 and large

enough n,

(
√
cn −

√
dn)2 > 4C(1− log(λ)), (6)

then the posterior recovers the community assignment almost exactly

with error rate kn = λn.
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Recovery in the Kesten-Stigum phase (II)

Corollary 14.1 Weak consistency (Mossel, Neeman, Sly (2016))

If the sequences cn and dn satisfy,

(cn − dn)2

2(cn + dn)
→∞, (7)

the posterior recovers the true community assignment almost exactly

with any error rate kn ≥ λnn for some vanishing fraction λn → 0.

Corollary 14.2 Let 0 < λn < 1/2 be given, such that λn → 0, λnn→
∞. If, for some constant C > 1 and large enough n,

(
√
cn −

√
dn)2 + 4Clog(λn)→∞, (8)

then the posterior recovers the community assignments almost exactly

with error rate kn = λnn.
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Part III
Uncertainty quantification



Bayesian and frequentist uncertainty quantified

Definition 16.1 Given n ≥ 1, a prior Πn and data Xn, a credible set

of credible level 1− γ is any D(Xn) ⊂ Θn such that:

Π(D(Xn)|Xn) ≥ 1− γ,

PΠn-almost-surely. In case γ = 0, D(Xn) is the support of the poste-

rior.

Definition 16.2 Given θn ∈ Θn and data Xn ∼ Pθn, a confidence set

C(Xn) ⊂ Θn of confidence level 1−α is defined by any xn 7→ C(xn) ⊂
Θn such that,

Pθn

(
θn ∈ C(Xn)

)
≥ 1− α.
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Enlargement of credible sets

Lemma 17.1 Fix n ≥ 1, let θn ∈ Θn, Xn ∼ Pθn be given. For any

B ⊂ Θn, 0 < β < 1,

EθnΠ(B|Xn) ≥ 1− β ⇒ Pθn

(
B ∩D(Xn) 6= ∅

)
≥ 1−

β

1− γ
.

for any credible set D(Xn) ⊂ Θn of credible level 1− γ.

θ

B(θ)

D

C

Enlargement of D by sets B(θ) to form C
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Credible sets are confidence sets (I)

Proposition 18.1 For fixed n ≥ 1, suppose Xn ∼ Pθn with θn ∈ Θn.

Every credible set D(Xn) of credible level 1− γ is a confidence set of

confidence level,

Pθn

(
θn ∈ D(Xn)

)
≥ 1−

n

2(1− γ)
ρ(pn, qn)n/2 enρ(pn,qn)n/2

. (9)

Method 18.2 For graph size n, realised graph Xn = xn, known p, q

and realised posterior Π(·|Xn = xn), choose a desired confidence level

0 < 1− α < 1, we choose credible level,

1− γ = min{1, (n/2α)ρ(p, q)n/2 enρ(p,q)n/2
}. (10)
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Credible sets are confidence sets (II)

Example 19.1 Take p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. ρ(p, q) = 0.6 and (n/2)ρ(p, q)n/2 ≈ 0.0211. As n varies,

any (unenlarged) credible set of credible level 1− γ is a confidence

set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95
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Enlarged credible sets are confidence sets (I)

The k-enlargement C(Xn) of D(Xn) is the union of all Hamming balls

of radius k ≥ 1 that are centred on points in D(Xn),

C(Xn) =
{
θn ∈ Θn : ∃ηn∈Dn(Xn), k(θn, ηn) ≤ k

}
,

Proposition 20.1 For fixed n ≥ 1, suppose Xn ∼ Pθn with θn ∈ Θn.

Define k = dλne. Then the k-enlargement C(Xn) of any credible set

D(Xn) of level 1− γ is a confidence set of confidence level,

Pθn

(
θn ∈ C(Xn)

)
≥ 1−

1

2(1− γ)

(
e
λρ(pn, qn)n/2

)λn(
1− e

λρ(pn, qn)n/2
)−1

.
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Enlarged credible sets are confidence sets (II)

Example 21.1 Again p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. For λ = 0.05 and varying graph size n,

any 0.05n-enlarged credible set of credible level 1− γ is also a

confidence set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95 (λ = 0.05)
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Enlarged credible sets are confidence sets (III)

Example 22.1 Again p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. For λ = 0.1 and varying graph size n,

any 0.1n-enlarged credible set of credible level 1− γ is also a

confidence set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95 (λ = 0.1)
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Enlarged credible sets are confidence sets (IV)

Example 23.1 Again p = 0.9, q = 0.1 and confidence level 1 − α =

0.95. For λ = 0.25 and varying graph size n,

any 0.25n-enlarged credible set of credible level 1− γ is also a

confidence set of confidence level 0.95

10 20 30 40 50

1

1− γ

0

n

Required credible level for confidence level 1− α = 0.95 (λ = 0.25)
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Part IV
Asymptotic uncertainty quantification



Asymptotic credible and confidence sets

Definition 25.1 Let (Θ,G ) with priors Πn and a collection D of

measurable subsets of Θ be given. Credible sets (Dn) of credible

levels 1− o(an) are maps Dn : Xn → D such that,

Π(Θ \Dn(Xn)|Xn) = o(an),

PΠn
n -almost-surely.

Definition 25.2 Maps x 7→ Cn(x) ⊂ Θ are asymptotically consistent

confidence sets (of levels 1− o(an)), if,

Pθ,n
(
θ 6∈ Cn(Xn)

)
→ 0, (= o(an))

for all θ ∈ Θ. Cn is asymptotically informative, if for all θ′ 6= θ,

Pθ′,n

(
θ ∈ Cn(Xn)

)
→ 0
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Credible sets with converging posteriors

Theorem 26.1 Suppose that 0 < ε ≤ 1, Pθ0,n
� PΠn

n and

Π
(
dn(θn, θ0,n) ≤ rn

∣∣∣ Xn
) Pθ0,n−−−−→1

Let D̂n(Xn) = Bn(θ̂n, r̂n) be level-1− ε credible balls of minimal radii.

Then with high Pθ0,n-probability r̂n ≤ rn and the sets,

Cn(Xn) = Bn(θ̂n, r̂n + rn) ⊂ Bn(θ̂n,2rn)

have asymptotic coverage,

Pθ0,n

(
θ0,n ∈ Cn(Xn)

)
→ 1,
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Credible sets without converging posteriors

Theorem 27.1 Let 0 ≤ an ≤ 1, an ↓ 0 and bn > 0 such that an = o(bn)

be given and let Dn denote level-(1− an) credible sets. Furthermore,

for all θ ∈ Θ, let Bn be set functions such that,

(i) Πn(Bn(θ0)) ≥ bn,

(ii) Pθ0,nC bna
−1
n P

Πn|Bn(θ0)
n .

Then the credible sets Dn, enlarged by the sets Bn, are asymptotically

consistent confidence sets Cn, that is,

Pθ0,n

(
θ0 ∈ Cn(Xn)

)
→ 1.
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Discussion

Sharpness of the bounds If posterior concentration bounds are not

sharp, lower bounds for credible levels become unnecessary high and

enlargement radii become unnecessarily large.

Early stopping Since only community assignments with high posterior

probabilities are needed in credible sets of low credible level, small

MCMC samples may not hamper the construction of confidence sets:

some form of early stopping of the MCMC sequence may be justified.

Generalization and cross validation All of this generalizes and can be

verified by simulation and cross validation.

Thank you for your attention

arXiv:2108.07078 [math.ST]
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Extra Remote contiguity



Remote contiguity

Definition 30.1 Given (Pn), (Qn), Qn is contiguous w.r.t. Pn (QnCPn),

if for any msb ψn : X n → [0,1]

Pnψn = o(1) ⇒ Qnψn = o(1)

Definition 30.2 Given (Pn), (Qn) and a an ↓ 0, Qn is an-remotely

contiguous w.r.t. Pn (QnC a−1
n Pn), if for any msb ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Remark 30.3 Contiguity is stronger than remote contiguity

note that QnCPn iff QnC a−1
n Pn for all an ↓ 0.
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Le Cam’s first lemma

Lemma 31.1 Given (Pn), (Qn) like above, QnCPn iff:

(i) If Tn
Pn−−→0, then Tn

Qn−−→0

(ii) Given ε > 0, there is a b > 0 such that Qn(dQn/dPn > b) < ε

(iii) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c Pn‖ < ε

(iv) If dPn/dQn
Qn-w.−−−−−→ f along a subsequence, then P (f > 0) = 1

(v) If dQn/dPn
Pn-w.−−−−→ g along a subsequence, then Eg = 1
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Criteria for remote contiguity

Lemma 32.1 Given (Pn), (Qn), an ↓ 0, QnC a−1
n Pn if any of the

following holds:

(i) For any bnd msb Tn : X n → R, a−1
n Tn

Pn−−→0, implies Tn
Qn−−→0

(ii) Given ε > 0, there is a δ > 0 s.t. Qn(dPn/dQn < δ an) < ε f.l.e.n.

(iii) There is a b > 0 s.t. lim infn→∞ b a−1
n Pn(dQn/dPn > ba−1

n ) = 1

(iv) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(v) Under Qn, every subsequence of (an(dPn/dQn)−1) has a weakly

convergent subsequence
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