BNP Workshop, Seoul National University, Korea, 15 June 2018

On the frequentist validity of Bayesian limits

arXiv:1611.08444 [math.ST]

Bas Kleijn

KdV Institute for Mathematics

UNIVERSITEIT VAN AMSTERDAM

Part I Introduction and Motivation

Bayesian and Frequentist statistics

sample spaces	$(\mathscr{X}_n,\mathscr{B}_n)$	prob msr's $M^1(\mathscr{X}_n)$
data	$X^n = (X_1, \ldots, X_n) \in \mathscr{X}_n$	sequential experiment
parameter space	(Θ, \mathscr{G})	if <i>i.i.d.</i> : $(\mathcal{P}, \mathcal{G})$
parameter	$ heta\in \Theta$	if <i>i.i.d.</i> : $P \in \mathscr{P}$
model	$\Theta \to M^1(\mathscr{X}_n) : \theta \mapsto P_{\theta,n}$	not always <i>i.i.d.</i>
priors	${\sf \Pi}_n:\mathscr{G} o [0,1]$	probability measure
posterior	$\Pi(\cdot X^n):\mathscr{G}\to[0,1]$	Bayes's rule, inference

 $\begin{array}{ll} \mbox{Frequentist} & \mbox{assume there is } \theta_0 & X^n \sim P_{\theta_0,n} \\ \mbox{Bayes} & \mbox{assume } \theta \sim \Pi & X^n \, | \, \theta \sim P_{\theta,n} \end{array}$

Definition of the posterior

Definition 4.1 Assume that all $\theta \mapsto P_{\theta,n}(A)$ are \mathscr{G} -measurable. Fix $n \geq 1$. Given prior Π_n , a posterior is any $\Pi(\cdot | X^n = \cdot) : \mathscr{G} \times \mathscr{X}_n \to [0, 1]$

(i) For any $G \in \mathscr{G}$, $x^n \mapsto \prod (G | X^n = x^n)$ is \mathscr{B}_n -measurable

(ii) (Bayes's Rule/Disintegration) For all $A \in \mathscr{B}_n$ and $G \in \mathscr{G}$ $\int_A \Pi(G|X^n) dP_n^{\Pi} = \int_G P_{\theta,n}(A) d\Pi_n(\theta)$ where $P_n^{\Pi} = \int P_{\theta,n} d\Pi_n(\theta)$ is the prior predictive distribution

Remark 4.2 For frequentists $X^n \sim P_{0,n}$, so assume $P_{0,n} \ll P_n^{\sqcap}$

Asymptotic consistency of the posterior

Definition 5.1 Given Θ (Hausdorff completely regular) and a Borel prior Π , the posterior is consistent at $\theta \in \Theta$ if for every nbd U of θ

The i.i.d. consistency theorems (I)

Theorem 6.1 (Bayesian, Doob (1948)) Assume that $X^n = (X_1, ..., X_n)$ are i.i.d. Let \mathscr{P} and \mathscr{X} be Polish spaces and let Π be a Borel prior. Then the posterior is consistent at P, for Π -almost-all $P \in \mathscr{P}$

Example 6.2 For some $Q \in \mathscr{P}$, take $\Pi = \delta_Q$. Then $\Pi(\cdot|X^n) = \delta_Q$ as well, P_n^{Π} -almost-surely. If $X_1, \ldots, X_n \sim P_0^n$ (require $P_0^n \ll P_n^{\Pi} = Q^n$), the posterior is not frequentist consistent.

Non-trivial counterexamples are due to Schwartz (1961) and Freedman (1963,1965,...)

The i.i.d. consistency theorems (II)

Theorem 7.1 (Frequentist, Schwartz (1965)) Let X_1, X_2, \ldots be i.i.d.- P_0 for some $P_0 \in \mathscr{P}$. If,

(i) For every nbd U of P_0 , there are $\phi_n : \mathscr{X}_n \to [0,1]$, s.t.

$$P_0^n \phi_n = o(1), \quad \sup_{Q \in U^c} Q^n (1 - \phi_n) = o(1),$$
 (1)

(ii) and Π is a Kullback-Leibler prior, i.e. for all $\delta > 0$,

$$\Pi\left(P\in\mathscr{P}: -P_0\log\frac{dP}{dP_0}<\delta\right)>0,\tag{2}$$

then $\Pi(U|X^n) \xrightarrow{P_0-a.s.} 1.$

The Dirichlet process

Definition 8.1 (*Dirichlet distribution*) $A \ p = (p_1, ..., p_k) \ p_l \ge 0$ and $\sum_l p_l = 1$ is Dirichlet distributed with parameter $\alpha = (\alpha_1, ..., \alpha_k), \ p \sim D_{\alpha}$, if it has density

Definition 8.2 (Dirichlet process, Ferguson 1973,1974) Let \mathscr{X} be Polish and let α be a finite Borel msr on $(\mathscr{X}, \mathscr{B})$. The Dirichlet process $P \sim D_{\alpha}$ is defined by,

$$(P(A_1),\ldots,P(A_k)) \sim D_{(\alpha(A_1),\ldots,\alpha(A_k))}$$

The i.i.d. consistency theorems (III)

Theorem 9.1 (Frequentist, Dirichlet consistency) Let $X_1, X_2, ...$ be an i.i.d.-sample from P_0 If Π is a Dirichlet prior D_{α} with finite α such that $supp(P_0) \subset supp(\alpha)$, the posterior is consistent at P_0 in Prohorov's weak topology

Remark 9.2 (Freedman (1963)) Dirichlet priors are tailfree: if A' refines A and $A'_{i1} \cup \ldots \cup A'_{il_i} = A_i$, then $(P(A'_{i1}|A_i), \ldots, P(A'_{il_i}|A_i) : 1 \le i \le k)$ is independent of $(P(A_1), \ldots, P(A_k))$.

Remark 9.3 $X^n \mapsto \prod(P(A)|X^n)$ is $\sigma_n(A)$ -measurable where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Part II Bayesian test sequences

Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 11.1 Uniform testability

$$\sup_{\theta \in B} P_{\theta,n} \phi_n \to 0, \quad \sup_{\theta \in V} P_{\theta,n} (1 - \phi_n) \to 0$$

Definition 11.2 *Pointwise testability for all* $\theta \in B$, $\eta \in V$

$$\phi_n \xrightarrow{P_{\theta,n}} 0, \quad \phi_n \xrightarrow{P_{\eta,n}} 1$$

Definition 11.3 *Bayesian testability for* Π *-almost-all* $\theta \in B$, $\eta \in V$

$$\phi_n \xrightarrow{P_{\theta,n}} 0, \quad \phi_n \xrightarrow{P_{\eta,n}} 1$$

11

A posterior concentration inequality (I)

Lemma 12.1 Let $(\mathscr{P}, \mathscr{G})$ be given. For any prior \square , any test function ϕ and any $B, V \in \mathscr{G}$,

$$\int_{B} P \Pi(V|X) \, d \Pi(P) \leq \int_{B} P \phi \, d \Pi(P) + \int_{V} Q(1-\phi) \, d \Pi(Q)$$

Proof Due to Bayes's Rule and monotone convergence,

$$\int (1 - \phi(X)) \, \Pi(V|X) \, dP^{\Pi} = \int_V P(1 - \phi) \, d\Pi(P).$$

Accordingly,

$$\int_{B} P[(1-\phi(X)) \Pi(V|X)] d\Pi(P)$$

$$\leq \int (1-\phi(X)) \Pi(V|X) dP^{\Pi} = \int_{V} P(1-\phi) d\Pi(P).$$

The lemma now follows from the fact that $\prod(V|X) \leq 1$.

A posterior concentration inequality (II)

Definition 13.1 For $B \in \mathscr{G}$ such that $\prod_n(B) > 0$, the local prior predictive distribution is defined, for every $A \in \mathscr{B}_n$,

$$P_n^{\Pi|B}(A) = \int P_{\theta,n}(A) \, d\Pi_n(\theta|B) = \frac{1}{\Pi(B)} \int_B P_{\theta,n}(A) \, d\Pi_n(\theta)$$

Corollary 13.2 Consequently, for any sequences (Π_n) , (B_n) , (V_n) such that $B_n \cap V_n = \emptyset$ and $\Pi_n(B_n) > 0$, we have,

$$P_n^{\Pi|B_n} \Pi(V_n|X^n) := \int P_{\theta,n} \Pi(V_n|X^n) \, d\Pi_n(\theta|B_n)$$

$$\leq \frac{1}{\Pi_n(B_n)} \left(\int_{B_n} P_{\theta,n} \phi_n \, d\Pi_n(\theta) + \int_{V_n} P_{\theta,n}(1-\phi_n) \, d\Pi_n(\theta) \right)$$

Martingale convergence

Proposition 14.1 Let $(\Theta, \mathscr{G}, \Pi)$ be given. For any $B, V \in \mathscr{G}$, the following are equivalent,

(i) There exist Bayesian tests (ϕ_n) for B versus V;

(ii) There exist tests (ϕ_n) such that,

$$\int_{B} P_{\theta,n} \phi_n \, d \Pi(\theta) + \int_{V} P_{\theta,n} (1 - \phi_n) \, d \Pi(\theta) o 0,$$

(iii) For Π -almost-all $\theta \in B$, $\eta \in V$,

$$\Pi(V|X^n) \xrightarrow{P_{\theta,n}} 0, \quad \Pi(B|X^n) \xrightarrow{P_{\eta,n}} 0$$

Remark 14.2 Interpretation distinctions between model subsets are Bayesian testable, iff they are picked up by the posterior asymptotically, iff, the Bayes factor for B versus V is consistent

Prior-almost-sure consistency

Corollary 15.1 Let Hausdorff completely regular Θ with Borel prior Π be given. Then the following are equivalent,

(i) for Π -almost-all $\theta \in \Theta$ and any nbd U of θ there exist a msb $B \subset U$ with $\Pi(B) > 0$ and Bayesian tests (ϕ_n) for B vs $V = \Theta \setminus U$,

(ii) the posterior is consistent at Π -almost-all $\theta \in \Theta$.

Remark 15.2 Let \mathscr{P} be a Polish space and assume that all $P \mapsto P^n(A)$ are Borel measurable. Then, for any prior Π , any Borel set $V \subset \mathscr{P}$ is Bayesian testable versus $\mathscr{P} \setminus V$.

Corollary 15.3 (More than) Doob's 1948 theorem

Part III Remote contiguity

Le Cam's inequality

Definition 17.1 For $B \in \mathscr{G}$ such that $\Pi_n(B) > 0$, the local prior predictive distribution is $P_n^{\Pi|B} = \int P_{\theta,n} d\Pi_n(\theta|B)$.

Remark 17.2 (Le Cam, unpublished (197X) and (1986)) Rewrite the posterior concentration inequality

$$\begin{aligned} P_0^n \Pi(V_n | X^n) &\leq \left\| P_0^n - P_n^{\Pi | B_n} \right\| \\ &+ \int P^n \phi_n \, d\Pi(P | B_n) + \frac{\Pi(V_n)}{\Pi(B_n)} \int Q^n (1 - \phi_n) \, d\Pi(Q | V_n) \end{aligned}$$

Remark 17.3 Useful in parametric models (e.g. BvM) but "a considerable nuisance" [sic, Le Cam (1986)] in non-parametric context

Schwartz's theorem revisited

Remark 18.1 Suppose that for all $\delta > 0$, there is a B s.t. $\Pi(B) > 0$ and for Π -almost-all $\theta \in B$ and large enough n

 $P_0^n \Pi(V|X^n) \le e^{n\delta} P_{\theta,n} \Pi(V|X^n)$

then (by Fatou) for large enough m

$$\limsup_{n\to\infty} \left[(P_0^n - e^{n\delta} P_n^{\prod|B}) \prod (V|X^n) \right] \le 0$$

Theorem 18.2 Let \mathscr{P} be a model with KL-prior Π ; $P_0 \in \mathscr{P}$. Let $B, V \in \mathscr{G}$ be given and assume that B contains a KL-neighbourhood of P_0 . If there exist Bayesian tests for B versus V of exponential power then

$$\Pi(V|X^n) \xrightarrow{P_0 - a.s.} 0$$

Corollary 18.3 (Schwartz's theorem)

Remote contiguity

Definition 19.1 Given (P_n) , (Q_n) , Q_n is contiguous w.r.t. P_n $(Q_n \triangleleft P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0, 1]$

$$P_n\psi_n = o(1) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Definition 19.2 Given (P_n) , (Q_n) and a $a_n \downarrow 0$, Q_n is a_n -remotely contiguous w.r.t. P_n $(Q_n \triangleleft a_n^{-1}P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0, 1]$

$$P_n\psi_n = o(a_n) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Remark 19.3 Contiguity is stronger than remote contiguity note that $Q_n \triangleleft P_n$ iff $Q_n \triangleleft a_n^{-1}P_n$ for all $a_n \downarrow 0$.

Definition 19.4 Hellinger transform $\psi(P,Q;\alpha) = \int p^{\alpha}q^{1-\alpha} d\mu$

Le Cam's first lemma

Lemma 20.1 Given (P_n) , (Q_n) like above, $Q_n \triangleleft P_n$ iff: (i) If $T_n \xrightarrow{P_n} 0$, then $T_n \xrightarrow{Q_n} 0$ (ii) Given $\epsilon > 0$, there is a b > 0 such that $Q_n(dQ_n/dP_n > b) < \epsilon$ (iii) Given $\epsilon > 0$, there is a c > 0 such that $||Q_n - Q_n \wedge cP_n|| < \epsilon$ (iv) If $dP_n/dQ_n \xrightarrow{Q_n - w} f$ along a subsequence, then P(f > 0) = 1(v) If $dQ_n/dP_n \xrightarrow{P_n - w} g$ along a subsequence, then Eg = 1(vi) $\liminf_n \psi(P_n, Q_n; \alpha) \to 1$ as $\alpha \uparrow 1$

Criteria for remote contiguity

Lemma 21.1 Given (P_n) , (Q_n) , $a_n \downarrow 0$, $Q_n \triangleleft a_n^{-1}P_n$ if any of the following holds:

(i) For any bnd msb $T_n : \mathscr{X}^n \to \mathbb{R}, a_n^{-1}T_n \xrightarrow{P_n} 0$, implies $T_n \xrightarrow{Q_n} 0$

(ii) Given $\epsilon > 0$, there is a $\delta > 0$ s.t. $Q_n(dP_n/dQ_n < \delta a_n) < \epsilon$ f.l.e.n.

(iii) There is a b > 0 s.t. $\liminf_{n \to \infty} b a_n^{-1} P_n(dQ_n/dP_n > b a_n^{-1}) = 1$

(iv) Given $\epsilon > 0$, there is a c > 0 such that $\|Q_n - Q_n \wedge c a_n^{-1} P_n\| < \epsilon$

(v) Under Q_n , every subsequence of $(a_n(dP_n/dQ_n)^{-1})$ has a weakly convergent subsequence

[(vi) $\lim_{\alpha \uparrow 1} \liminf_{n \neq n} a_n^{-\alpha} \psi(P_n, Q_n; \alpha) > 0$]

Part IV Frequentist consistency

Beyond Schwartz

Theorem 23.1 Let $(\Theta, \mathscr{G}, \Pi)$ and $(X_1, \ldots, X_n) \sim P_{0,n}$ be given. Assume there are $B, V \in \mathscr{G}$ with $\Pi(B) > 0$ and $a_n \downarrow 0$ s.t.

(i) There exist Bayesian tests for B versus V of power a_n ,

$$\int_{B} P_{\theta,n} \phi_n \, d\Pi(\theta) + \int_{V} P_{\theta,n} (1 - \phi_n) \, d\Pi(\theta) = o(a_n)$$

(ii) The sequence $(P_{0,n})$ satisfies $P_{0,n} \triangleleft a_n^{-1} P_n^{\prod B}$

Then $\Pi(V|X^n) \xrightarrow{P_0} 0$

Application to i.i.d. consistency (I)

Remark 24.1 (Schwartz (1965)) Take $P_0 \in \mathcal{P}$, and define

 $V_n = \{P \in \mathscr{P} : H(P, P_0) \ge \epsilon\}$ $B_n = \{P : -P_0 \log dP/dP_0 < \frac{1}{2}\epsilon^2\}$

With $N(\epsilon, \mathscr{P}, H) < \infty$, and a_n of form $\exp(-nD)$ the theorem proves Hellinger consistency with KL-priors.

Application to i.i.d. consistency (II)

Remark 25.1 Dirichlet posteriors $X^n \mapsto \prod(P(A)|X^n)$ are msb $\sigma_n(A)$ where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Remark 25.2 (Freedman (1965), Ferguson (1973), ...) Take $P_0 \in \mathscr{P}$, and define

$$V_n = V := \{P \in \mathscr{P} : |P_0(A) - P(A)| \ge 2\epsilon\}$$

 $B_n = B := \{P : |P_0(A) - P(A)| < \epsilon\}$

for some measurable A. Impose remote contiguity only for ψ_n that are $\sigma_n(A)$ -measurable! Take a_n of form $\exp(-nD)$. The theorem then proves weak consistency with a Dirichlet prior D_{α} , if $\operatorname{supp}(P_0) \subset$ $\operatorname{supp}(\alpha)$.

Consistency with *n*-dependence

Theorem 26.1 Let $(\mathscr{P}, \mathscr{G})$ with priors (\prod_n) and $(X_1, \ldots, X_n) \sim P_{0,n}$ be given. Assume there are $B_n, V_n \in \mathscr{G}$ and $a_n, b_n \geq 0$, $a_n = o(b_n)$ s.t.

(i) There exist Bayesian tests for B_n versus V_n of power a_n ,

$$\int_{B_n} P_{\theta,n} \phi_n \, d\Pi_n(\theta) + \int_{V_n} P_{\theta,n}(1 - \phi_n) \, d\Pi_n(\theta) = o(a_n)$$
(ii) The prior mass of B_n is lower-bounded by b_n , $\Pi_n(B_n) \ge b_n$
(iii) The sequence $(P_{0,n})$ satisfies $P_0^n \triangleleft b_n a_n^{-1} P_n^{\Pi_n \mid B_n}$

Then $\prod_n (V_n | X^n) \xrightarrow{P_0} 0$

(ii)

Application to i.i.d. consistency (III)

Remark 27.1 (Barron-Schervish-Wasserman (1999), Ghosal-GhoshvdVaart (2000), Shen-Wasserman (2001)) Take $P_0 \in \mathscr{P}$, and define

 $V_n = \{P \in \mathscr{P} : H(P, P_0) \ge \epsilon_n\}$

 $B_n = \{P : -P_0 \log dP/dP_0 < \frac{1}{2}\epsilon_n^2, P_0 \log^2 dP/dP_0 < \frac{1}{2}\epsilon_n^2\}$

With $\log N(\epsilon_n, \mathscr{P}, H) \leq n\epsilon_n^2$, and a_n and b_n of form $\exp(-Kn\epsilon_n^2)$ the theorem proves Hellinger consistency at rate ϵ_n

Remark 27.2 Larger B_n are possible, under conditions on the model (see Kleijn and Zhao (201x))

Consistent Bayes factors

Theorem 28.1 Let the model $(\mathscr{P}, \mathscr{G})$ with priors (Π_n) be given. Given $B, V \in \mathscr{G}$ with $\Pi(B), \Pi(V) > 0$ s.t.

(i) There are Bayesian tests for B versus V of power $a_n \downarrow 0$,

$$\int_{B} P_{\theta,n} \phi_n \, d\Pi_n(\theta) + \int_{V} P_{\theta,n}(1-\phi_n) \, d\Pi_n(\theta) = o(a_n)$$

(ii) For every $\theta \in B$, $P_{\theta,n} \triangleleft a_n^{-1} P_n^{\prod_n | B}$

(iii) For every $\eta \in V$, $P_{\eta,n} \triangleleft a_n^{-1} P_n^{\prod_n | V}$

Then or Bayes factors (or posterior odds),

$$B_n = \frac{\prod(B|X^n)}{\prod(V|X^n)} \frac{\prod(V)}{\prod(B)}$$

for B versus V are consistent.

Random-walk goodness-of-fit testing (I)

Given (S, \mathscr{S}) state space for a discrete-time, stationary Markov process with transition kernel $P(\cdot|\cdot) : \mathscr{S} \times S \to [0, 1]$, the data consists of random walks X^n .

Choose a finite partition $\alpha = \{A_1, \ldots, A_N\}$ of S and 'bin the data': Z^n in finite state space S_{α} . Z^n is stationary Markov chain on S_{α} with transition probabilities

$$p_{\alpha}(k|l) = P(X_i \in A_k | X_{i-1} \in A_l),$$

We assume that p_{α} is ergodic with equilibrium distribution π_{α} .

We are interested in Bayes factors for goodness-of-fit testing of transition probabilities.

Random-walk goodness-of-fit testing (II)

Fix $P_0, \epsilon > 0$ and hypothesize on 'bin probabilities' $p_{\alpha}(k, l) = p_{\alpha}(k|l)\pi_{\alpha}(l)$, $H_0 : \max_{k,l} \left| p_{\alpha}(k, l) - p_0(k, l) \right| < \epsilon, \quad H_1 : \max_{k,l} \left| p_{\alpha}(k, l) - p_0(k, l) \right| \ge \epsilon,$ Define, for $\delta_n \downarrow 0$,

$$B_{n} = \{p_{\alpha} \in \Theta : \max_{k,l} | p_{\alpha}(k,l) - p_{0}(k,l) | < \epsilon - \delta_{n} \}$$

$$V_{k,l} = \{p_{\alpha} \in \Theta : | p_{\alpha}(k,l) - p_{0}(k,l) | \ge \epsilon \},$$

$$V_{+,k,l,n} = \{p_{\alpha} \in \Theta : p_{\alpha}(k,l) - p_{0}(k,l) \ge \epsilon + \delta_{n} \},$$

$$V_{-,k,l,n} = \{p_{\alpha} \in \Theta : p_{\alpha}(k,l) - p_{0}(k,l) \le -\epsilon - \delta_{n} \}.$$

Random-walk goodness-of-fit testing (III)

Choquet $p_{\alpha}(k|l) = \sum_{E \in \mathscr{E}} \lambda_E E(k|l)$ where the N^N transition kernels E are deterministic. Define,

$$S_n = \left\{ \lambda_{\mathscr{E}} \in S^{N^N} : \lambda_E \ge \lambda_n / N^{N-1}, \text{ for all } E \in \mathscr{E} \right\},\$$

for $\lambda_n \downarrow 0$.

Theorem 31.1 Choose a prior $\Pi \ll \mu$ on S^{N^N} with continuous density that is everywhere strictly positive. Assume that,

(i)
$$n\lambda_n^2 \delta_n^2 / \log(n) \to \infty$$
,
(ii) $\Pi(B \setminus B_n), \Pi(\Theta \setminus S_n) = o(n^{-(N^N/2)})$,
(iii) $\Pi(V_{k,l} \setminus (V_{+,k,l,n} \cup V_{-,k,l,n})) = o(n^{-(N^N/2)})$, for all $1 \le k, l \le N$.

Then the Bayes factors F_n for H_0 versus H_1 are consistent.

Part V Uncertainty quantification

Credible sets and confidence sets

Let ${\mathscr D}$ denote a collection of measurable subsets of Θ

Definition 33.1 Let (Θ, \mathscr{G}) with priors Π_n be given. Denote the sequence of posteriors by $\Pi(\cdot|\cdot) : \mathscr{G} \times \mathscr{X}_n \to [0,1]$. A sequence of credible sets (D_n) of credible levels $1 - a_n$ (with $a_n \downarrow 0$) is a sequence of set-valued maps $D_n : \mathscr{X}_n \to \mathscr{D}$ such that,

 $\Pi(\Theta \setminus D_n(X^n)|X^n) = o(a_n),$

 $P_n^{\prod_n}$ -almost-surely.

Definition 33.2 A sequence of maps $x \mapsto C_n(x) \subset \Theta$ forms an asymptotically consistent sequence of confidence sets, if,

 $P_{\theta_0,n}\Big(\theta_0 \in C_n(X^n)\Big) \to \mathbf{1}$

for all $\theta_0 \in \Theta$.

Enlargement of credible sets (I)

Definition 34.1 Let *D* be a credible set in Θ and let *B* denote a set function $\theta \mapsto B(\theta) \subset \Theta$. A model subset *C* is said to be a confidence set associated with *D* under *B*, if for all $\theta \in \Theta \setminus C$,

 $B(\theta) \cap D = \emptyset$

Definition 34.2 The intersection C_0 of all C like above is a confidence set associated with D under B, called the minimal confidence set associated with D under B.

Enlargement of credible sets (II)

A credible set D and its associated confidence set C under B in terms of Venn diagrams: additional points $\theta \in C \setminus D$ are characterized by non-empty intersection $B(\theta) \cap D \neq \emptyset$.

Enlarged credible sets are confidence sets

Theorem 36.1 Let $0 \le a_n \le 1$, $a_n \downarrow 0$ and $b_n > 0$ such that $a_n = o(b_n)$ be given and let D_n denote level- $(1 - a_n)$ credible sets. Furthermore, for all $\theta \in \Theta$, let B_n be set functions such that,

(i) $\Pi_n(B_n(\theta_0)) \geq \underline{b}_n$,

(*ii*) $P_{\theta_0,n} \triangleleft b_n a_n^{-1} P_n^{\prod_n | B_n(\theta_0)}$.

Then any confidence sets C_n associated with the credible sets D_n under B_n are asymptotically consistent, that is,

 $P_{\theta_0,n}\Big(\theta_0 \in C_n(X^n)\Big) \to \mathbf{1}.$

Methodology: confidence sets from posteriors (I)

Corollary 37.1 Given (Θ, \mathscr{G}) , (Π_n) and (B_n) with $\Pi_n(B_n) \ge b_n$ and $P_{\theta,n} \triangleleft P_n^{\Pi_n|B_n}$, any credible sets D_n of level $1 - a_n$ with $a_n = o(b_n)$ have associated confidence sets under B_n that are asymptotically consistent.

Next, assume that $(X_1, X_2, \ldots, X_n) \in \mathscr{X}^n \sim P_0^n$ for some $P_0 \in \mathscr{P}$.

Corollary 37.2 Let Π_n denote Borel priors on \mathscr{P} , with constant C > 0and rate sequence $\epsilon_n \downarrow 0$ such that:

$$\Pi_n \Big(P \in \mathscr{P} : -P_0 \log \frac{dP}{dP_0} < \epsilon_n^2, \, P_0 \Big(\log \frac{dP}{dP_0} \Big)^2 < \epsilon_n^2 \Big) \ge e^{-Cn\epsilon_n^2}.$$

Given credible sets D_n of level $1 - \exp(-C'n\epsilon_n^2)$, for some C' > C. Then radius- ϵ_n Hellinger-enlargements C_n are asymptotically consistent confidence sets. Methodology: confidence sets from posteriors (II)

Note the relation between diameters,

 $\operatorname{diam}_{H}(C_{n}(X^{n})) = \operatorname{diam}_{H}(D_{n}(X^{n})) + 2\epsilon_{n}.$

If, in addition, tests satisfying

$$\int_{B_n} P_{\theta,n} \phi_n(X^n) \, d\Pi_n(\theta) + \int_{V_n} P_{\theta,n}(1 - \phi_n(X^n)) \, d\Pi_n(\theta) = o(a_n),$$

with $a_n = \exp(-C'n\epsilon_n^2)$ exist, the posterior is Hellinger consistent at rate ϵ_n , so that $\dim_H(D_n(X^n)) \leq M\epsilon_n$ for some M > 0.

If ϵ_n is the minimax rate of convergence for the problem, the confidence sets $C_n(X^n)$ are rate-optimal (Low, (1997)).

Remark 38.1 Rate-adaptivity (Hengartner (1995), Cai, Low and Xia (2013), Szabó, vdVaart, vZanten (2015)) is not possible like this because a definite choice for the sets in B_n is required.

Conclusions

- (i) There is a systematic way of taking Bayesian limits into frequentist limits based on generalization of Schwartz's prior mass condition
- (ii) Bayesian tests are natural: place low prior weight where testing is difficult, and high weight where testing is easy, ideally.
- (iii) Development of new Bayesian methods benefits from a simple, insightful, fully general perspective to guide the search for suitable priors
- (iv) Methodology: use priors that induce remote contiguity to enable conversion of credible sets to confidence sets

Thank you for your attention

arXiv:1611.08444 [math.ST]