
BNP Workshop, Seoul National University, Korea, 15 June 2018

On the frequentist validity of Bayesian limits

arXiv:1611.08444 [math.ST]

Bas Kleijn

KdV Institute for Mathematics



Part I
Introduction and Motivation



Bayesian and Frequentist statistics

sample spaces (Xn,Bn) prob msr’s M1(Xn)

data Xn= (X1, . . . , Xn) ∈Xn sequential experiment

parameter space (Θ,G ) if i.i.d.: (P,G )

parameter θ ∈ Θ if i.i.d.: P ∈P

model Θ→M1(Xn) : θ 7→ Pθ,n not always i.i.d.

priors Πn : G → [0,1] probability measure

posterior Π( · |Xn) : G → [0,1] Bayes’s rule, inference

Frequentist assume there is θ0 Xn ∼ Pθ0,n

Bayes assume θ ∼ Π Xn | θ ∼ Pθ,n
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Definition of the posterior

Definition 4.1 Assume that all θ 7→ Pθ,n(A) are G -measurable. Fix

n ≥ 1. Given prior Πn, a posterior is any Π( · |Xn = ·) : G ×Xn → [0,1]

(i) For any G ∈ G , xn 7→ Π(G|Xn = xn) is Bn-measurable

(ii) (Bayes’s Rule/Disintegration) For all A ∈ Bn and G ∈ G∫
A

Π(G|Xn) dPΠ
n =

∫
G
Pθ,n(A) dΠn(θ)

where PΠ
n =

∫
Pθ,n dΠn(θ) is the prior predictive distribution

Remark 4.2 For frequentists Xn ∼ P0,n, so assume P0,n � PΠ
n

4



Asymptotic consistency of the posterior
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Definition 5.1 Given Θ (Hausdorff completely regular) and a Borel

prior Π, the posterior is consistent at θ ∈ Θ if for every nbd U of θ

Π(U |Xn)
P−−→1
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The i.i.d. consistency theorems (I)

Theorem 6.1 (Bayesian, Doob (1948))

Assume that Xn = (X1, . . . , Xn) are i.i.d. Let P and X be Polish

spaces and let Π be a Borel prior. Then the posterior is consistent at

P , for Π-almost-all P ∈P

Example 6.2 For some Q ∈P, take Π = δQ. Then Π(·|Xn) = δQ as

well, PΠ
n -almost-surely. If X1, . . . , Xn ∼ Pn0 (require Pn0 � PΠ

n = Qn),

the posterior is not frequentist consistent.

Non-trivial counterexamples are due to Schwartz (1961) and Freed-

man (1963,1965,. . . )
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The i.i.d. consistency theorems (II)

Theorem 7.1 (Frequentist, Schwartz (1965))

Let X1, X2, . . . be i.i.d.-P0 for some P0 ∈P. If,

(i) For every nbd U of P0, there are φn : Xn → [0,1], s.t.

Pn0φn = o(1), sup
Q∈Uc

Qn(1− φn) = o(1), (1)

(ii) and Π is a Kullback-Leibler prior, i.e. for all δ > 0,

Π
(
P ∈P : −P0 log

dP

dP0
< δ

)
> 0, (2)

then Π(U |Xn)
P0-a.s.−−−−−→1.
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The Dirichlet process

Definition 8.1 (Dirichlet distribution)

A p = (p1, . . . , pk) pl ≥ 0 and
∑
l pl = 1 is Dirichlet distributed with

parameter α = (α1, . . . , αk), p ∼ Dα, if it has density

fα(p) = C(α)
k∏
l=1

p
αl−1
l

Definition 8.2 (Dirichlet process, Ferguson 1973,1974)

Let X be Polish and let α be a finite Borel msr on (X ,B). The

Dirichlet process P ∼ Dα is defined by,(
P (A1), . . . , P (Ak)

)
∼ D(α(A1),...,α(Ak))
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The i.i.d. consistency theorems (III)

Theorem 9.1 (Frequentist, Dirichlet consistency)

Let X1, X2, . . . be an i.i.d.-sample from P0 If Π is a Dirichlet prior Dα
with finite α such that supp(P0) ⊂ supp(α), the posterior is consistent

at P0 in Prohorov’s weak topology

Remark 9.2 (Freedman (1963))

Dirichlet priors are tailfree: if A′ refines A and A′i1 ∪ . . . ∪ A
′
ili

=

Ai, then (P (A′i1|Ai), . . . , P (A′ili|Ai) : 1 ≤ i ≤ k) is independent of

(P (A1), . . . , P (Ak)).

Remark 9.3 Xn 7→ Π(P (A)|Xn) is σn(A)-measurable where σn(A) is

generated by products of the form
∏n
i=1Bi with Bi = {Xi ∈ A} or

Bi = {Xi 6∈ A}.
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Part II
Bayesian test sequences



Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 11.1 Uniform testability

sup
θ∈B

Pθ,nφn → 0, sup
θ∈V

Pθ,n(1− φn)→ 0

Definition 11.2 Pointwise testability for all θ ∈ B, η ∈ V

φn
Pθ,n−−−→0, φn

Pη,n−−−→1

Definition 11.3 Bayesian testability for Π-almost-all θ ∈ B, η ∈ V

φn
Pθ,n−−−→0, φn

Pη,n−−−→1
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A posterior concentration inequality (I)

Lemma 12.1 Let (P,G ) be given. For any prior Π, any test function

φ and any B, V ∈ G ,∫
B
PΠ(V |X) dΠ(P ) ≤

∫
B
PφdΠ(P ) +

∫
V
Q(1− φ) dΠ(Q)

Proof Due to Bayes’s Rule and monotone convergence,∫
(1− φ(X)) Π(V |X) dPΠ =

∫
V
P (1− φ) dΠ(P ).

Accordingly,∫
B
P [(1−φ(X)) Π(V |X)] dΠ(P )

≤
∫

(1− φ(X)) Π(V |X) dPΠ =
∫
V
P (1− φ) dΠ(P ).

The lemma now follows from the fact that Π(V |X) ≤ 1. �
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A posterior concentration inequality (II)

Definition 13.1 For B ∈ G such that Πn(B) > 0, the local prior

predictive distribution is defined, for every A ∈ Bn,

P
Π|B
n (A) =

∫
Pθ,n(A) dΠn(θ|B) =

1

Π(B)

∫
B
Pθ,n(A) dΠn(θ).

Corollary 13.2 Consequently, for any sequences (Πn), (Bn), (Vn)

such that Bn ∩ Vn = ∅ and Πn(Bn) > 0, we have,

P
Π|Bn
n Π(Vn|Xn) :=

∫
Pθ,nΠ(Vn|Xn) dΠn(θ|Bn)

≤
1

Πn(Bn)

(∫
Bn
Pθ,nφn dΠn(θ) +

∫
Vn
Pθ,n(1− φn) dΠn(θ)

)
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Martingale convergence

Proposition 14.1 Let (Θ,G ,Π) be given. For any B, V ∈ G , the

following are equivalent,

(i) There exist Bayesian tests (φn) for B versus V ;

(ii) There exist tests (φn) such that,∫
B
Pθ,nφn dΠ(θ) +

∫
V
Pθ,n(1− φn) dΠ(θ)→ 0,

(iii) For Π-almost-all θ ∈ B, η ∈ V ,

Π(V |Xn)
Pθ,n−−−→0, Π(B|Xn)

Pη,n−−−→0

Remark 14.2 Interpretation distinctions between model subsets are

Bayesian testable, iff they are picked up by the posterior asymptoti-

cally, iff, the Bayes factor for B versus V is consistent
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Prior-almost-sure consistency

Corollary 15.1 Let Hausdorff completely regular Θ with Borel prior

Π be given. Then the following are equivalent,

(i) for Π-almost-all θ ∈ Θ and any nbd U of θ there exist a msb B ⊂ U
with Π(B) > 0 and Bayesian tests (φn) for B vs V = Θ \ U ,

(ii) the posterior is consistent at Π-almost-all θ ∈ Θ.

Remark 15.2 Let P be a Polish space and assume that all P 7→
Pn(A) are Borel measurable. Then, for any prior Π, any Borel set

V ⊂P is Bayesian testable versus P \ V .

Corollary 15.3 (More than) Doob’s 1948 theorem
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Part III
Remote contiguity



Le Cam’s inequality

Definition 17.1 For B ∈ G such that Πn(B) > 0, the local prior

predictive distribution is P
Π|B
n =

∫
Pθ,n dΠn(θ|B).

Remark 17.2 (Le Cam, unpublished (197X) and (1986))

Rewrite the posterior concentration inequality

Pn0 Π(Vn|Xn) ≤
∥∥∥∥Pn0 − PΠ|Bn

n

∥∥∥∥
+
∫
Pnφn dΠ(P |Bn) +

Π(Vn)

Π(Bn)

∫
Qn(1− φn) dΠ(Q|Vn)

Remark 17.3 Useful in parametric models (e.g. BvM) but “a con-

siderable nuisance” [sic, Le Cam (1986)] in non-parametric context
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Schwartz’s theorem revisited

Remark 18.1 Suppose that for all δ > 0, there is a B s.t. Π(B) > 0

and for Π-almost-all θ ∈ B and large enough n

Pn0 Π(V |Xn) ≤ enδPθ,nΠ(V |Xn)

then (by Fatou) for large enough m

lim sup
n→∞

[
(Pn0 − e

nδP
Π|B
n )Π(V |Xn)

]
≤ 0

Theorem 18.2 Let P be a model with KL-prior Π; P0 ∈ P. Let

B, V ∈ G be given and assume that B contains a KL-neighbourhood

of P0. If there exist Bayesian tests for B versus V of exponential

power then

Π(V |Xn)
P0−a.s.−−−−−−→0

Corollary 18.3 (Schwartz’s theorem)
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Remote contiguity

Definition 19.1 Given (Pn), (Qn), Qn is contiguous w.r.t. Pn (QnCPn),

if for any msb ψn : X n → [0,1]

Pnψn = o(1) ⇒ Qnψn = o(1)

Definition 19.2 Given (Pn), (Qn) and a an ↓ 0, Qn is an-remotely

contiguous w.r.t. Pn (QnC a−1
n Pn), if for any msb ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Remark 19.3 Contiguity is stronger than remote contiguity

note that QnCPn iff QnC a−1
n Pn for all an ↓ 0.

Definition 19.4 Hellinger transform ψ(P,Q;α) =
∫
pαq1−α dµ
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Le Cam’s first lemma

Lemma 20.1 Given (Pn), (Qn) like above, QnCPn iff:

(i) If Tn
Pn−−→0, then Tn

Qn−−→0

(ii) Given ε > 0, there is a b > 0 such that Qn(dQn/dPn > b) < ε

(iii) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c Pn‖ < ε

(iv) If dPn/dQn
Qn-w.−−−−−→ f along a subsequence, then P (f > 0) = 1

(v) If dQn/dPn
Pn-w.−−−−→ g along a subsequence, then Eg = 1

(vi) lim infnψ(Pn, Qn;α)→ 1 as α ↑ 1

20



Criteria for remote contiguity

Lemma 21.1 Given (Pn), (Qn), an ↓ 0, QnC a−1
n Pn if any of the

following holds:

(i) For any bnd msb Tn : X n → R, a−1
n Tn

Pn−−→0, implies Tn
Qn−−→0

(ii) Given ε > 0, there is a δ > 0 s.t. Qn(dPn/dQn < δ an) < ε f.l.e.n.

(iii) There is a b > 0 s.t. lim infn→∞ b a−1
n Pn(dQn/dPn > ba−1

n ) = 1

(iv) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(v) Under Qn, every subsequence of (an(dPn/dQn)−1) has a weakly

convergent subsequence

[(vi) limα↑1 lim infn an−αψ(Pn, Qn;α) > 0]
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Part IV
Frequentist consistency



Beyond Schwartz

Theorem 23.1 Let (Θ,G ,Π) and (X1, . . . , Xn) ∼ P0,n be given. As-

sume there are B, V ∈ G with Π(B) > 0 and an ↓ 0 s.t.

(i) There exist Bayesian tests for B versus V of power an,∫
B
Pθ,nφn dΠ(θ) +

∫
V
Pθ,n(1− φn) dΠ(θ) = o(an)

(ii) The sequence (P0,n) satisfies P0,n C a−1
n P

Π|B
n

Then Π(V |Xn)
P0−−→0
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Application to i.i.d. consistency (I)

Remark 24.1 (Schwartz (1965))

Take P0 ∈P, and define

Vn = {P ∈P : H(P, P0) ≥ ε}

Bn = {P : −P0 log dP/dP0 <
1
2ε

2}

With N(ε,P, H) < ∞, and an of form exp(−nD) the theorem proves

Hellinger consistency with KL-priors.
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Application to i.i.d. consistency (II)

Remark 25.1 Dirichlet posteriors Xn 7→ Π(P (A)|Xn) are msb σn(A)

where σn(A) is generated by products of the form
∏n
i=1Bi with Bi =

{Xi ∈ A} or Bi = {Xi 6∈ A}.

Remark 25.2 (Freedman (1965), Ferguson (1973), ...)

Take P0 ∈P, and define

Vn = V := {P ∈P : |P0(A)− P (A)| ≥ 2ε}

Bn = B := {P : |P0(A)− P (A)| < ε}
for some measurable A. Impose remote contiguity only for ψn that

are σn(A)-measurable! Take an of form exp(−nD). The theorem

then proves weak consistency with a Dirichlet prior Dα, if supp(P0) ⊂
supp(α).
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Consistency with n-dependence

Theorem 26.1 Let (P,G ) with priors (Πn) and (X1, . . . , Xn) ∼ P0,n

be given. Assume there are Bn, Vn ∈ G and an, bn ≥ 0, an = o(bn) s.t.

(i) There exist Bayesian tests for Bn versus Vn of power an,∫
Bn
Pθ,nφn dΠn(θ) +

∫
Vn
Pθ,n(1− φn) dΠn(θ) = o(an)

(ii) The prior mass of Bn is lower-bounded by bn, Πn(Bn) ≥ bn

(iii) The sequence (P0,n) satisfies Pn0 C bna−1
n P

Πn|Bn
n

Then Πn(Vn|Xn)
P0−−→0
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Application to i.i.d. consistency (III)

Remark 27.1 (Barron-Schervish-Wasserman (1999), Ghosal-Ghosh-

vdVaart (2000), Shen-Wasserman (2001))

Take P0 ∈P, and define

Vn = {P ∈P : H(P, P0) ≥ εn}

Bn = {P : −P0 log dP/dP0 <
1
2ε

2
n, P0 log2 dP/dP0 <

1
2ε

2
n}

With logN(εn,P, H) ≤ nε2n, and an and bn of form exp(−Knε2n) the

theorem proves Hellinger consistency at rate εn

Remark 27.2 Larger Bn are possible, under conditions on the model

(see Kleijn and Zhao (201x))
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Consistent Bayes factors

Theorem 28.1 Let the model (P,G ) with priors (Πn) be given.

Given B, V ∈ G with Π(B),Π(V ) > 0 s.t.

(i) There are Bayesian tests for B versus V of power an ↓ 0,∫
B
Pθ,nφn dΠn(θ) +

∫
V
Pθ,n(1− φn) dΠn(θ) = o(an)

(ii) For every θ ∈ B, Pθ,n C a−1
n P

Πn|B
n

(iii) For every η ∈ V , Pη,n C a−1
n P

Πn|V
n

Then or Bayes factors (or posterior odds),

Bn =
Π(B|Xn)

Π(V |Xn)

Π(V )

Π(B)

for B versus V are consistent.
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Random-walk goodness-of-fit testing (I)

Given (S,S ) state space for a discrete-time, stationary Markov pro-

cess with transition kernel P (·|·) : S × S → [0,1], the data consists of

random walks Xn.

Choose a finite partition α = {A1, . . . , AN} of S and ‘bin the data’:

Zn in finite state space Sα. Zn is stationary Markov chain on Sα with

transition probabilities

pα(k|l) = P (Xi ∈ Ak|Xi−1 ∈ Al),

We assume that pα is ergodic with equilibrium distribution πα.

We are interested in Bayes factors for goodness-of-fit testing of tran-

sition probabilities.
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Random-walk goodness-of-fit testing (II)

Fix P0, ε > 0 and hypothesize on ‘bin probabilities’ pα(k, l) = pα(k|l)πα(l),

H0 : max
k,l

∣∣∣ pα(k, l)− p0(k, l)
∣∣∣ < ε, H1 : max

k,l

∣∣∣ pα(k, l)− p0(k, l)
∣∣∣ ≥ ε,

Define, for δn ↓ 0,

Bn = {pα ∈ Θ : max
k,l

∣∣∣ pα(k, l)− p0(k, l)
∣∣∣ < ε− δn}

Vk,l = {pα ∈ Θ :
∣∣∣pα(k, l)− p0(k, l)

∣∣∣ ≥ ε},
V+,k,l,n = {pα ∈ Θ : pα(k, l)− p0(k, l) ≥ ε+ δn},

V−,k,l,n = {pα ∈ Θ : pα(k, l)− p0(k, l) ≤ −ε− δn}.
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Random-walk goodness-of-fit testing (III)

Choquet pα(k|l) =
∑
E∈E λEE(k|l) where the NN transition kernels E

are deterministic. Define,

Sn =
{
λE ∈ SN

N
: λE ≥ λn/NN−1, for all E ∈ E

}
,

for λn ↓ 0.

Theorem 31.1 Choose a prior Π� µ on SN
N

with continuous density

that is everywhere strictly positive. Assume that,

(i) nλ2
nδ

2
n/ log(n)→∞,

(ii) Π(B \Bn),Π(Θ \ Sn) = o(n−(NN/2)),

(iii) Π(Vk,l \ (V+,k,l,n ∪ V−,k,l,n)) = o(n−(NN/2)), for all 1 ≤ k, l ≤ N .

Then the Bayes factors Fn for H0 versus H1 are consistent.
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Part V
Uncertainty quantification



Credible sets and confidence sets

Let D denote a collection of measurable subsets of Θ

Definition 33.1 Let (Θ,G ) with priors Πn be given. Denote the se-

quence of posteriors by Π(·|·) : G ×Xn → [0,1]. A sequence of credi-

ble sets (Dn) of credible levels 1− an (with an ↓ 0) is a sequence of

set-valued maps Dn : Xn → D such that,

Π(Θ \Dn(Xn)|Xn) = o(an),

PΠn
n -almost-surely.

Definition 33.2 A sequence of maps x 7→ Cn(x) ⊂ Θ forms an asymp-

totically consistent sequence of confidence sets, if,

Pθ0,n

(
θ0 ∈ Cn(Xn)

)
→ 1

for all θ0 ∈ Θ.
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Enlargement of credible sets (I)

Definition 34.1 Let D be a credible set in Θ and let B denote a set

function θ 7→ B(θ) ⊂ Θ. A model subset C is said to be a confidence

set associated with D under B, if for all θ ∈ Θ \ C,

B(θ) ∩D = ∅

Definition 34.2 The intersection C0 of all C like above is a confidence

set associated with D under B, called the minimal confidence set

associated with D under B.
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Enlargement of credible sets (II)

θ

B(θ)

D

C

A credible set D and its associated confidence set C under B in terms

of Venn diagrams: additional points θ ∈ C \ D are characterized by

non-empty intersection B(θ) ∩D 6= ∅.
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Enlarged credible sets are confidence sets

Theorem 36.1 Let 0 ≤ an ≤ 1, an ↓ 0 and bn > 0 such that an = o(bn)

be given and let Dn denote level-(1− an) credible sets. Furthermore,

for all θ ∈ Θ, let Bn be set functions such that,

(i) Πn(Bn(θ0)) ≥ bn,

(ii) Pθ0,nC bna
−1
n P

Πn|Bn(θ0)
n .

Then any confidence sets Cn associated with the credible sets Dn

under Bn are asymptotically consistent, that is,

Pθ0,n

(
θ0 ∈ Cn(Xn)

)
→ 1.
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Methodology: confidence sets from posteriors (I)

Corollary 37.1 Given (Θ,G ), (Πn) and (Bn) with Πn(Bn) ≥ bn and

Pθ,nCP
Πn|Bn
n , any credible sets Dn of level 1−an with an = o(bn) have

associated confidence sets under Bn that are asymptotically consis-

tent.

Next, assume that (X1, X2, . . . , Xn) ∈ X n ∼ Pn0 for some P0 ∈P.

Corollary 37.2 Let Πn denote Borel priors on P, with constant C > 0

and rate sequence εn ↓ 0 such that:

Πn

(
P ∈P : −P0 log

dP

dP0
< ε2n, P0

(
log

dP

dP0

)2
< ε2n

)
≥ e−Cnε

2
n.

Given credible sets Dn of level 1 − exp(−C′nε2n), for some C′ > C.

Then radius-εn Hellinger-enlargements Cn are asymptotically consis-

tent confidence sets.
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Methodology: confidence sets from posteriors (II)

Note the relation between diameters,

diamH(Cn(Xn)) = diamH(Dn(Xn)) + 2εn.

If, in addition, tests satisfying∫
Bn
Pθ,nφn(Xn) dΠn(θ) +

∫
Vn
Pθ,n(1− φn(Xn)) dΠn(θ) = o(an),

with an = exp(−C′nε2n) exist, the posterior is Hellinger consistent at

rate εn, so that diamH(Dn(Xn)) ≤Mεn for some M > 0.

If εn is the minimax rate of convergence for the problem, the confi-

dence sets Cn(Xn) are rate-optimal (Low, (1997)).

Remark 38.1 Rate-adaptivity (Hengartner (1995), Cai, Low and Xia

(2013), Szabó, vdVaart, vZanten (2015)) is not possible like this

because a definite choice for the sets in Bn is required.
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Conclusions

(i) There is a systematic way of taking Bayesian limits into frequentist

limits based on generalization of Schwartz’s prior mass condition

(ii) Bayesian tests are natural: place low prior weight where testing

is difficult, and high weight where testing is easy, ideally.

(iii) Development of new Bayesian methods benefits from a simple,

insightful, fully general perspective to guide the search for suitable

priors

(iv) Methodology: use priors that induce remote contiguity to enable

conversion of credible sets to confidence sets

Thank you for your attention
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