DEC statistics seminar, Milano, 12 April 2018

What is asymptotically testable and what is not?

Bas Kleijn

KdV Institute for Mathematics

UNIVERSITEIT VAN AMSTERDAM

Part I Introduction and Motivation

Asymptotic symmetric testing

Observe *i.i.d.* $X^n \sim P^n$, model $P \in \mathscr{P}$. For disjoint $B, V \subset \mathscr{P}$, $H_0 : P \in B$, or $H_1 : P \in V$.

Tests $\phi_n : \mathscr{X}^n \to [0, 1]$; asymptotically, require: (type-I) $P^n \phi_n \to 0$ for $P \in B$, and, (type-II) $P^n(1 - \phi_n) \to 0$ for $P \in V$.

Equivalently, we want,

A testing procedure that chooses for B or V based on X^n for every $n \ge 1$, has property (D) if it is wrong only a finite number of times with P^{∞} -probability one.

Property (D) is sometimes referred to as "discernibility".

Some examples and unexpected answers (I)

Consider non-parametric regression with $f : X \to \mathbb{R}$ and test for smoothness,

$$H_0: f \in C^1(X \to \mathbb{R}), \quad H_1: f \in C^2(X \to \mathbb{R}),$$

Consider a non-parametric density estimation with $p : \mathbb{R} \to [0, \infty)$ and test for square-integrability,

$$H_0: \int x^2 p(x) \, dx < \infty, \quad H_1: \int x^2 p(x) \, dx = \infty.$$

Practical problem we cannot use the data to determine with asymptotic certainty, if CLT applies with our data.

Some examples and unexpected answers (II)

Coin-flip $X^n \sim \text{Bernoulli}(p)^n$ with $p \in [0, 1]$.

Consider Cover's rational mean problem: test for rationality:

 H_0 : $p \in [0,1] \cap \mathbb{Q}$, H_1 : $p \in [0,1] \setminus \mathbb{Q}$.

Consider also Dembo and Peres's irrational alternative:

 $H_0: p \in [0, 1] \cap \mathbb{Q}, \quad H_1: p \in [0, 1] \cap \sqrt{2} + \mathbb{Q},$

Consider ultimately fractal hypotheses, e.g. with Cantor set C,

 H_0 : $p \in C$, H_1 : $p \in [0, 1] \setminus C$.

The Le Cam-Schwartz theorem

Theorem 6.1 (Le Cam-Schwartz, 1960) Let \mathscr{P} be a model for *i.i.d.* data X^n with disjoint subsets B, V. The following are equivalent:

i. there exist (uniformly) consistent tests for B vs V,

ii. there is a sequence of \mathscr{U}_{∞} -uniformly continuous $\psi_n : \mathscr{P} \to [0,1]$,

$$\psi_n(P) \to \mathbf{1}_V(P),\tag{1}$$

(uniformly) for all $P \in B \cup V$.

Topological context uniform space $(\mathscr{P}, \mathscr{U}_{\infty})$.

The Dembo-Peres theorem

Theorem 7.1 (Dembo and Peres, 1995) Let \mathscr{P} be a model dominated by Lebesgue measure μ for i.i.d. data X^n . Model subsets B,V that are contained in disjoint countable unions of closed sets for Prokhorov's weak topology have tests with property (D). If there exists an $\alpha > 1$ such that $\int (dP/d\mu)^{\alpha} d\mu < \infty$ for all $P \in \mathscr{P}$, then the converse is also true.

Topological context L^1 -weakly compact, dominated model \mathscr{P} with Prokhorov's weak topology.

Three forms of testability

Definition 8.1 (ϕ_n) is a uniform test sequence for B vs V, if,

$$\sup_{P \in B} P^n \phi_n \to 0, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \to 0.$$
(2)

Definition 8.2 (ϕ_n) is a pointwise test sequence for B vs V, if,

$$\phi_n(X^n) \xrightarrow{P} 0, \quad \phi_n(X^n) \xrightarrow{Q} 1,$$
 (3)

for all $P \in B$ and $Q \in V$.

Definition 8.3 (ϕ_n) is a Bayesian test sequence for B vs V, if,

$$\phi_n(X^n) \xrightarrow{P} 0, \quad \phi_n(X^n) \xrightarrow{Q} 1,$$
 (4)

for Π -almost-all $P \in B$ and $Q \in V$.

Questions

Existence

Existence of uniform tests?

Existence of pointwise tests?

Existence of Bayesian tests?

Construction

How does one model-select? Are there constructive solutions?

Examples

Select the correct directed, acyclical graph in a graphical model; select the right number of clusters in a clustering model.

Part II Existence

Uniform testability has exponential power

Proposition 11.1 Let \mathscr{P} be a model for *i.i.d.* data with disjoint B and V. The following are equivalent:

i. there exists a uniform test sequence (ϕ_n) ,

$$\sup_{P\in B}P^n\phi_n
ightarrow 0,\quad \sup_{Q\in V}Q^n(1-\phi_n)
ightarrow 0,$$

ii. there is a exponentially powerful uniform test sequence (ψ_n) , i.e. there is a D > 0 such that,

$$\sup_{P \in B} P^n \psi_n \leq e^{-nD}, \quad \sup_{Q \in V} Q^n (1 - \psi_n) \leq e^{-nD}$$

The model as a uniform space (I)

Take \mathscr{X} a separable metrizable space, with Borel σ -algebra \mathscr{B} .

The class \mathscr{F}_n contains all bounded, \mathscr{B}^n -measurable $f : \mathscr{X}^n \to \mathbb{R}$.

For every $n \ge 1$ and $f \in \mathscr{F}_n$, define the entourage,

$$W_{n,f} = \{ (P,Q) \in \mathscr{P} \times \mathscr{P} : |P^n f - Q^n f| < 1 \}.$$

Defines uniformity \mathscr{U}_n (with topology \mathscr{T}_n). Take $\mathscr{U}_{\infty} = \bigcup_{n>1} \mathscr{U}_n$.

$$P \to Q \text{ in } \mathscr{T}_{\infty} \quad \Leftrightarrow \quad \int f \, dP^n \to \int f \, dQ^n,$$

for all $n \ge 1$ and all $f \in \mathscr{F}_n$. Note also,

$$\mathscr{U}_C \subset \mathscr{U}_1 \subset \cdots \subset \mathscr{U}_\infty \subset \mathscr{U}_{TV}.$$

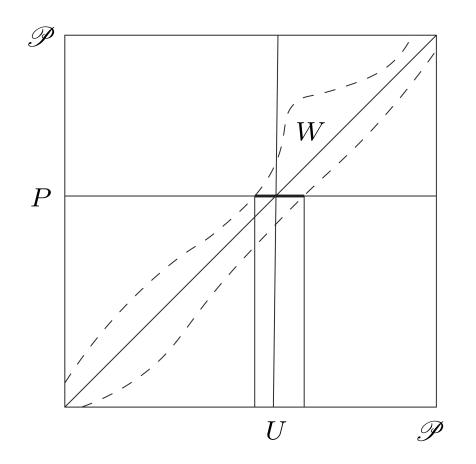


Fig 1. Let $P \in \mathscr{P}$ and entourage W be given. A neighbourhood U corresponds to $U = \{Q \in \mathscr{P} : (Q, P) \in W\}$

Uniform separation (I)

Definition 14.1 Subsets $B, V \subset \mathscr{P}$ are uniformly separated by \mathscr{U}_{∞} , if there exists an entourage $W \in \mathscr{U}_{\infty}$ such that,

 $(B \times V \cup V \times B) \cap W = \emptyset.$

In other words, there are $J, m \ge 1$, $\epsilon > 0$ and bounded, measurable functions $f_1, \ldots, f_J : \mathscr{X}^m \to [0, 1]$ such that, for any $P, Q \in B \cup V$, if,

$$\max_{1 \le j \le J} \left| P^m f_j - Q^m f_j \right| < \epsilon,$$

then either $P, Q \in B$, or $P, Q \in V$. (If the model is \mathcal{T}_{∞} -compact, m = 1 suffices).

Uniform separation (II)

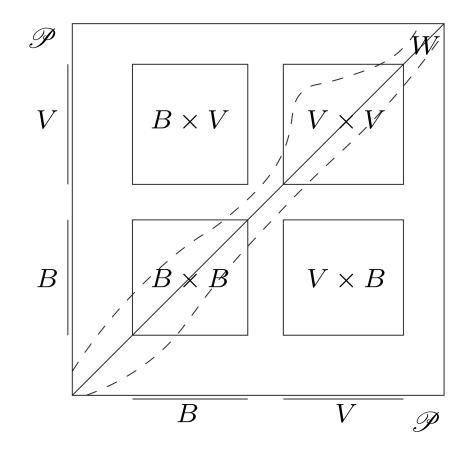


Fig 2. Let $B, V \subset \mathscr{P}$ and entourage W be given. W separates B and V if $B \times V$ and $V \times B$ do not meet W.

Characterisation of uniform testability

Theorem 16.1 Let \mathscr{P} be a model for *i.i.d.* data with disjoint B and V. The following are equivalent:

- (i.) there exist uniform tests ϕ_n for B versus V,
- (ii.) the subsets B and V are uniformly separated by \mathscr{U}_{∞} .

Corollary 16.2 (Parametrised models) Suppose $\mathscr{P} = \{p_{\theta} : \theta \in \Theta\}$, with (Θ, d) compact, metric space and $\theta \to P_{\theta}$ identifiable and \mathscr{T}_{∞} continuous, (that is, for every $f \in \mathscr{F}_n$, $\theta \mapsto \int f dP_{\theta}^n$ is continuous). If $B_0, V_0 \subset \Theta$ with $d(B_0, V_0) > 0$, then the images $B = \{P_{\theta} : \theta \in B_0\}$, $V = \{P_{\theta} : \theta \in V_0\}$ are uniformly testable.

Closures are important

Proposition 17.1 Let \mathscr{P} be a model for i.i.d. data and let B, V be disjoint model subsets with \mathscr{T}_{∞} -closures \overline{B} and \overline{V} . If B, V are uniformly separated by \mathscr{U}_{∞} , then $\overline{B} \cap \overline{V} = \varnothing$. If \mathscr{P} is relatively \mathscr{T}_{∞} -compact, the converse is also true.

Theorem 17.2 (Dunford-Pettis) Assume \mathscr{P} is dominated by a probability measure Q with densities in $\mathscr{P}_Q \subset L^1(Q)$; \mathscr{P}_Q is relatively weakly compact, if and only if, for every $\epsilon > 0$ there is an M > 0 such that,

$$\sup_{P\in\mathscr{P}}\int_{\{dP/dQ>M\}}\frac{dP}{dQ}\,dQ<\epsilon_{2}$$

that is, \mathscr{P}_Q is uniformly Q-integrable.

Pointwise testability: equivalent formulations

Proposition 18.1 Let \mathscr{P} be a model for i.i.d. data and let B, V be disjoint model subsets. The following are equivalent:

i. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,

 $P^n\phi_n
ightarrow 0, \quad Q^n(1-\phi_n)
ightarrow 0,$

ii. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,

$$\phi_n(X^n) \xrightarrow{P} 0, \quad (1 - \phi_n(X^n)) \xrightarrow{Q} 0,$$

iii. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,

$$\phi_n(X^n) \xrightarrow{P-a.s.} 0, \quad (1 - \phi_n(X^n)) \xrightarrow{Q-a.s.} 0$$

Pointwise testability from consistent estimators

Consistent estimators $\widehat{P}_n : \mathscr{X}^n \to \mathscr{P}$: for all P and nbd U of P,

$$P^n(\widehat{P}_n(X^n) \in U) \to 1, \text{ as } n \to \infty.$$

For open $B, V \subset \mathscr{P}$, define $\phi_n(X^n) = \mathbf{1}\{\hat{P}_n \in V\}$. For any $P \in B$, B is a neighbourhood of P so $P^n \phi_n = P^n(\hat{P}_n \in V) \leq P^n(\hat{P}_n \notin B) \rightarrow 0$. For any $Q \in V$, $Q^n(1 - \phi_n) \rightarrow 0$. So (ϕ_n) is a pointwise test sequence for B vs V.

Restrict to $\mathscr{P}' = B \cup V$, then *B* and *V* are *clopen* sets.

Proposition 19.1 If $P \in \mathscr{P}$ can be estimated consistently and B is clopen, there exist pointwise tests for B vs its complement.

Necessary conditions: pointwise non-testability

Suppose that there exist pointwise tests (ϕ_n) for B, V. Define,

 $g_n: \mathscr{P} \to [0,1]: P \mapsto P^n \phi_n,$

which are all \mathscr{U}_{∞} -uniformly continuous.

Proposition 20.1 If there is a pointwise test (ϕ_n) for B vs V, then B, V are both G_{δ} - and F_{σ} -sets with respect to \mathscr{T}_{∞} (in the subspace $B \cup V$).

Corollary 20.2 Suppose $\mathscr{P} = B \cup V$ is Polish in the \mathscr{T}_{∞} -topology. Pairs B, V that are pointwise testable, are both Polish spaces.

Corollary 20.3 If there exists a Baire subspace D of \mathscr{P} in which both $D \cap B$ and $D \cap V$ are dense, then B is not testable versus V.

Pointwise non-testability: examples (I)

Example 21.1 Is Cover's rational means problem testable?

Dunford-Pettis theorem shows that \mathscr{P} is \mathscr{T}_{∞} -compact and $[0,1] \rightarrow \mathscr{P} : p \mapsto P_p$ is a \mathscr{T}_{∞} -homeomorphism. Since [0,1] is a complete metric space, \mathscr{P} is a Baire space for the \mathscr{T}_{∞} -topology. Because both $[0,1] \cap \mathbb{Q}$ and $[0,1] \setminus \mathbb{Q}$ are dense in [0,1], the images $\mathscr{P}_0 := \{P_p : p \in [0,1] \cap \mathbb{Q}\}$ and $\mathscr{P}_1 := \{P_p : p \in [0,1] \setminus \mathbb{Q}\}$ are \mathscr{T}_{∞} -dense in \mathscr{P} : there is no pointwise test for $p \in [0,1] \cap \mathbb{Q}$ versus $p \in [0,1] \setminus \mathbb{Q}$.

Pointwise non-testability: examples (II)

Example 22.1 Is Dembo and Peres's irrational alternative testable?

Any countable \mathscr{P} is Polish in the discrete topology. Any subset B of \mathscr{P} is a countable union of closed sets $(B = \bigcup_{b \in B} \{b\})$, so it remains possible that there exists a pointwise test for Dembo and Peres's problem.

Example 22.2 Is Cantor's fractal alternative testable?

The interval [0,1] is Polish and \mathscr{P} is homeomorphic. The Cantor set *C* is closed and its complement is open. Open sets in metrizable spaces are F_{σ} -sets. So it remains possible there exists a pointwise test for Cantor's fractal alternative.

Pointwise non-testability: examples (III)

Example 23.1 Is integrability of a real-valued X, $P|X| < \infty$, testable? Model $\mathscr{P} = \{all \text{ probability distributions on } \mathbb{R}\}$. \mathscr{P} is Baire space for \mathscr{T}_{TV} . Define,

 $B = \{P \in \mathscr{P} : P|X| < \infty\}, \quad V = \{P \in \mathscr{P} : P|X| = \infty\}.$

B cannot be tested versus V.

Namely Let $P \in B$ and $Q \in V$ be given. For any $0 < \epsilon < 1$, $P' = (1 - \epsilon)P + \epsilon Q$ satisfies $||P' - P|| = \epsilon ||(P + Q)|| \le 2\epsilon$, but $P' \in V$. Conclude that V lies \mathcal{T}_{TV} -dense in \mathcal{P} .

Conversely, Q is tight, so for every $\epsilon > 0$, there exists an M > 0such that $|Q(A) - Q(A||X| \le M)| < \epsilon$ for all measurable $A \subset \mathbb{R}$. Since $Q(\cdot||X| \le M) \in B$, we also see that B lies \mathcal{T}_{TV} -dense in \mathcal{P} .

Pointwise testability in dominated models

Definition 24.1 The testing problem has a (uniform) representation on X, if there exists a \mathscr{T}_{∞} -(uniformly-)continuous, surjective map $f: B \cup V \to X$ such that $f(B) \cap f(V) = \varnothing$.

Definition 24.2 The model is parametrised by Θ , if there exists a \mathscr{T}_{∞} -continuous bijection $P : \Theta \to \mathscr{P}$ (i.e. for every $m \ge 1$ and measurable $f : \mathscr{X}^m \to [0, 1]$, the map $\theta \mapsto \int f \, dP_{\theta}^m$ is continuous).

If Θ is compact, any parametrization is a homeomorphism, so the inverse gives rise to representations of testing problems in \mathscr{P} .

Characterisation of pointwise testability

Theorem 25.1 Let \mathscr{P} be a dominated model for *i.i.d.* data with disjoint B, V. The following are equivalent,

- i. there exists a pointwise test for B vs V,
- ii. the problem has a representation $f : B \cup V \to X$ on a normal space X and there exist disjoint F_{σ} -sets $B', V' \subset X$ such that $f(B) \subset B', f(V) \subset V'$,
- iii. the problem has a uniform representation $\psi : B \cup V \to X$ on a separable, metrizable space X with $\psi(B), \psi(V)$ both F_{σ} and G_{δ} -sets.

Pointwise testability: corollaries (I)

Corollary 26.1 Suppose that \mathscr{P} is dominated and there exist disjoint F_{σ} -sets B', V' in the completion $\widehat{\mathscr{P}}$ (for \mathscr{U}_{∞}) with $B \subset B'$, $V \subset V'$. Then B is pointwise testable versus V.

Corollary 26.2 Suppose that \mathscr{P} is dominated and complete (for \mathscr{U}_{∞}) with disjoint subsets B, V. Then B is pointwise testable versus V, if and only if, there exist disjoint F_{σ} -sets $B', V' \subset \mathscr{P}$ with $B \subset B', V \subset V'$.

Pointwise testability: corollaries (II)

Corollary 27.1 Suppose that \mathscr{P} is dominated and TV-totally-bounded. Then disjoint $B, V \subset \mathscr{P}$ are pointwise testable, if and only if, B, V are both F_{σ} - and G_{δ} -sets in $B \cup V$ (for \mathscr{T}_{TV}).

Corollary 27.2 Suppose that \mathscr{P} is dominated by a probability measure, with a uniformly integrable family of densities. Then disjoint $B, V \subset \mathscr{P}$ are pointwise testable, if and only if, B, V are both F_{σ} - and G_{δ} -sets in $B \cup V$ (for \mathscr{T}_{C}).

Pointwise testability: examples (I)

Example 28.1 Is independence of two events A and B testable? Let $A, B \in \mathscr{B}$ be msb subsets. Consider,

 $H_0: P(A \cap B) = P(A)P(B), \quad H_1: P(A \cap B) \neq P(A)P(B).$ Define \mathscr{U}_1 -continuous $f_i: \mathscr{P} \to [0, 1], \ (i = 1, 2, 3),$

 $f_1(P) = P(A \cap B), \quad f_2(P) = P(A), \quad f_3(P) = P(B),$

and continuous $g: [0,1]^3 \rightarrow [1,-1]$, $g(x_1, x_2, x_3) = x_1 - x_2 x_3$. Now,

 $h: \mathscr{P} \to [0,1]: P \mapsto |g \circ (f_1, f_2, f_3)(P)|,$

is \mathscr{U}_1 -continuous. Then $B = h^{-1}(\{0\})$ is closed (for \mathscr{T}_∞) and (since the complement V' is open in [0,1], it is F_σ , so) $V = h^{-1}(V')$ is F_σ (for \mathscr{T}_∞). So independence of events A and B is asymptotically testable.

Pointwise testability: examples (II)

Example 29.1 Is independence of real-valued X and Y testable? Let $A_k \in \sigma_X, B_l \in \sigma_Y$ be generators. Consider, $H_0 : \forall_{k,l} P(A_k \cap B_l) = P(A_k)P(B_l), H_1 : \exists_{k,l} P(A_k \cap B_l) \neq P(A_k)P(B_l).$ Define \mathscr{U}_1 -continuous $f_{kl,i} : \mathscr{P} \rightarrow [0,1], (i = 1,2,3),$

 $f_{kl,1}(P) = P(A_k \cap B_l), \quad f_{k,2}(P) = P(A_k), \quad f_{l,3}(P) = P(B_l),$ and continuous $g : [0,1]^3 \to [1,-1], \ g(x_1, x_2, x_3) = x_1 - x_2 x_3.$ Now,

 $h: \mathscr{P} \to [0,1]^{\mathbb{N}} : P \mapsto (|g \circ (f_{kl,1}, f_{k,2}, f_{l,3})(P)| : k, l \ge 1),$

is \mathscr{U}_1 -continuous. Then $B = h^{-1}(\{0\})$ is closed (for \mathscr{T}_{∞}) and (since the complement V' is open in $[0,1]^{\mathbb{N}}$, it is F_{σ} , so) $V = h^{-1}(V')$ is F_{σ} (for \mathscr{T}_{∞}). So independence of X and Y is asymptotically testable.

Bayesian testability: equivalent formulations

Theorem 30.1 Let a model $(\mathscr{P}, \mathscr{G}, \Pi)$ with $B, V \in \mathscr{G}$ be given, with $\Pi(B) > 0, \Pi(V) > 0$. The following are equivalent,

- i. there exist Bayesian tests for B vs V,
- ii. there are tests ϕ_n such that for Π -almost-all $P \in B, Q \in V$,

$$P^n \phi_n \to 0, \quad Q^n (1 - \phi_n) \to 0,$$

iii. there are tests $\phi_n : \mathscr{X}^n \to [0, 1]$ such that,

$$\int_{B} P^{n} \phi_{n} d\Pi(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi(Q) \to 0,$$

iv. for Π -almost-all $P \in B$, $Q \in V$,

$$\Pi(V|X^n) \xrightarrow{P} 0, \quad \Pi(B|X^n) \xrightarrow{Q} 0.$$

Characterisation of Bayesian testability

Definition 31.1 Given model $(\mathscr{P}, \mathscr{G}, \Pi)$. An event $B \in \mathscr{B}^{\infty}$ is called a Π -zero-one set, if $P^{\infty}(B) \in \{0, 1\}$, for Π -almost-all $P \in \mathscr{P}$. A model subset $G \in \mathscr{G}$ is called a Π -one set if there is a Π -zero-one set B such that $G = \{P \in \mathscr{P} : P^{\infty}(B) = 1\}$.

Proposition 31.2 (Martingale convergence) Let $(\mathscr{P}, \mathscr{G}, \Pi)$ be given. Let V be a Π -one set. Then, for Π -almost-all $P \in \mathscr{P}$,

$$\Pi(V|X^n) \xrightarrow{P-a.s.} 1_V(P).$$
(5)

Theorem 31.3 Let $(\mathscr{P}, \mathscr{G})$ be a measurable model with a prior Π that is a Radon measure and hypotheses B, V. There is a Bayesian test sequence for B vs V, if and only if, B, V are \mathscr{G} -measurable.

Part III Constructive results

Bayesian testing power

Denote the density for the local prior predictive distribution $P_n^{\Pi|B}$ with respect to $\mu_n = P_n^{\Pi|B} + P_n^{\Pi|V}$ by $p_{B,n}$, and similar for $P_n^{\Pi|V}$.

Proposition 33.1 Let $(\mathscr{P}, \mathscr{G}, \Pi)$ be a model with measurable B, V. There are tests ϕ_n such that,

$$\int_{B} P^{n} \phi_{n} d\Pi(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi(Q)$$

$$\leq \int \left(\Pi(B) p_{B,n}(x) \right)^{\alpha} \left(\Pi(V) p_{V,n}(x) \right)^{1-\alpha} d\mu_{n}(x),$$
(6)

for every $n \ge 1$ and any $0 \le \alpha \le 1$.

Proposition 33.2 For every $n \ge 1$, the test,

 $\phi_n(X^n) = \mathbb{1}\{X^n : \Pi(V|X^n) \ge \Pi(B|X^n)\},\$

based on posterior odds has optimal Bayesian testing power.

Posterior odds model selection for frequentists

Theorem 34.1 For all $n \ge 1$, let the model be a probability space $(\mathscr{P}, \mathscr{G}, \Pi_n)$. Consider disjoint, measurable $B, V \subset \Theta$ with $\Pi_n(B), \Pi_n(V) > 0$ such that,

i. There are Bayesian tests for B vs V of power $a_n \downarrow 0$,

$$\int_{B} P^{n} \phi_{n} d\Pi_{n}(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi_{n}(Q) = o(a_{n}),$$

ii. for all $P \in B$, $P^{n} \triangleleft a_{n}^{-1} P_{n}^{\prod_{n} \mid B}$; for all $Q \in V$, $Q^{n} \triangleleft a_{n}^{-1} P_{n}^{\prod_{n} \mid V}.$

Then the indicators $\phi_n(X^n) = 1\{X^n : \Pi(V|X^n) \ge \Pi(B|X^n)\}$ for posterior odds form a pointwise test sequence for B vs V.

```
See arXiv:1611.08444 [math.ST]
```

Remote contiguity

Definition 35.1 Given (P_n) , (Q_n) and a $a_n \downarrow 0$, Q_n is a_n -remotely contiguous w.r.t. P_n $(Q_n \triangleleft a_n^{-1}P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0, 1]$

$$P_n\psi_n = o(a_n) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Lemma 35.2 $Q_n \triangleleft a_n^{-1}P_n$ if any of the following holds:

- (i) For any bnd msb $T_n: \mathscr{X}^n \to \mathbb{R}, a_n^{-1}T_n \xrightarrow{P_n} 0$, implies $T_n \xrightarrow{Q_n} 0$
- (ii) Given $\epsilon > 0$, there is a $\delta > 0$ s.t. $Q_n(dP_n/dQ_n < \delta a_n) < \epsilon$ f.l.e.n.
- (iii) There is a b > 0 s.t. $\liminf_{n \to \infty} b a_n^{-1} P_n(dQ_n/dP_n > b a_n^{-1}) = 1$

(iv) Given $\epsilon > 0$, there is a c > 0 such that $\|Q_n - Q_n \wedge c a_n^{-1} P_n\| < \epsilon$

(v) Under Q_n , every subsequence of $(a_n(dP_n/dQ_n)^{-1})$ has a further subsequence that converges in \mathcal{T}_C .

Example: KL-neighbourhoods

Example 36.1 Let \mathscr{P} be a model for i.i.d. data X^n . Let P_0, P and $\epsilon > 0$ be such that $-P_0 \log(dP/dP_0) < \epsilon^2$. Then, for large enough n,

$$\frac{dP^n}{dP_0^n}(X^n) \ge e^{-\frac{n}{2}\epsilon^2},\tag{7}$$

with P_0^n -probability one. So for any tests ψ_n ,

$$P^n \psi_n \ge e^{-\frac{1}{2}n\epsilon^2} P_0^n \psi_n. \tag{8}$$

So if $P^n \phi_n = o(\exp(-\frac{1}{2}n\epsilon^2))$ then $P_0^n \phi_n = o(1)$: $P_0^n \triangleleft a_n^{-1}P^n$ with $a_n = \exp(-\frac{1}{2}n\epsilon^2)$.

Consistent model selection

Let \mathscr{P} be a model for *i.i.d.* data $X^n \sim P^n$, $(n \ge 1)$, and suppose that $(\mathscr{P}, \mathscr{G}, \Pi)$ has finite, measurable partition,

 $P \in \mathscr{P} = \mathscr{P}_1 \cup \ldots \cup \mathscr{P}_M.$

Model-selection Which $1 \leq i \leq M$? (such that $P \in \mathscr{P}_i$)

Theorem 37.1 Assume that for all $1 \le i < j \le M$,

 \mathscr{P}_i and \mathscr{P}_i are \mathscr{U}_{∞} -uniformly separated.

Let $1 \leq i \leq M$ be such that $P \in \mathscr{P}_i$. If Π is a KL-prior, then indicators for posterior odds,

$$\phi_n(X^n) = \mathbb{1}\Big\{X^n : \Pi(\mathscr{P}_i | X^n) \ge \sum_{j \neq i} \Pi(\mathscr{P}_j | X^n)\Big\},\$$

are a pointwise test for \mathscr{P}_i vs $\cup_{j\neq i} \mathscr{P}_j$.

Example: select the DAG (I)

Observe an *i.i.d.* X^n of vectors of discrete random variables $X_i = (X_{1,i}, \ldots, X_{k,i}) \in \mathbb{Z}^k$. We assume that $X \sim P$ follows a graphical model,

$$P_{\mathscr{A},\theta}(X_1 \in B_1, \ldots, X_k \in B_k) = \prod_{i=1}^k P_{\theta_i}(X_i \in B_i | \mathscr{A}_i)$$

where $\mathscr{A}_i \subset \{1, \ldots, k\}$ denotes the *parents* of X_k . Together, the \mathscr{A}_i describe a directed, a-cyclical graph.

Family \mathscr{F} of kernels $p_{\theta}(\cdot|\cdot) : \mathbb{Z} \times \mathbb{Z}^{l} \to [0,1]$, for $\theta \in \Theta$, $1 \leq l \leq k$. Assume that Θ is compact and,

$$\theta \mapsto \sum_{x \in \mathbb{Z}} f(x) P_{\theta}(x | z_1, \dots, z_l)$$

is continuous, for every bounded $f : \mathbb{Z} \to \mathbb{R}$ and all $z_1, \ldots, z_l \in \mathbb{Z}$.

Example: select the DAG (II)

The DAG $\mathscr{A} = (\mathscr{A}_i : 1 \leq i \leq k)$ represents a number of conditional independence statements concerning the components X_1, \ldots, X_k : for all $1 \leq i < j \leq k$, given $X_l = z$ for all $l \in \mathscr{A}_i \cup \mathscr{A}_j$, X_i is independent of X_j .

Define the submodels $\mathscr{P}_{\mathscr{A}} = \{P_{\mathscr{A},\theta} : \theta \in \Theta^k\}$, for all \mathscr{A} . Given a conditional independence relation for \mathscr{A} , we require that, for all θ , all $z \in \mathbb{Z}$, all $A, B \subset \mathbb{Z}$, any $\mathscr{A}' \neq \mathscr{A}$,

 $\left| P_{\mathscr{A}',\theta}(X_i \in A, X_j \in B | X_l = z) - P_{\mathscr{A}',\theta}(X_i \in A | X_l = z) P_{\mathscr{A}',\theta}(X_j \in B | X_l = z) \right| > \epsilon,$

for some $\epsilon > 0$ that depends only on \mathscr{A} and \mathscr{A}' .

With a KL-prior posterior odds for $\mathscr{P}_{\mathscr{A}}$ select the correct DAG \mathscr{A} .

Example: how many clusters? (I)

Observe *i.i.d.* $X^n \sim P^n$, where P dominated with density p.

Clusters Family \mathscr{F} of kernels $\varphi_{\theta} : \mathbb{R} \to [0, \infty)$, with parameter $\theta \in \Theta$. Assume Θ compact and,

 $\theta \mapsto \int f(x)\varphi_{\theta}(x)\,dx,$

is continuous, for every bounded, measurable $f:\mathbb{R}\to\mathbb{R}.$ Define $\Theta_M'=\Theta^M/\sim.$

Model Assume that there is an M > 0 such that p can be written as,

$$p_{\lambda,\theta}(x) = \sum_{m=1}^{M} \lambda_m p_{\theta_m}(x),$$

for some $M \ge 1$, with $\lambda \in S_M = \{\lambda \in [0, 1]^M : \sum_m \lambda_m = 1\}$, $\theta \in \Theta'_M$.

Example: how many clusters? (II)

Assume *M* less than some known *M'*. Choose prior $\Pi_{\lambda,M}$ for $\lambda \in S_M$ such that, for some $\epsilon > 0$,

$$\Pi_{\lambda,M} (\lambda \in S_M : \epsilon < \min\{\lambda_m\}, \max\{\lambda_m\} < 1 - \epsilon) = 1$$

For $\theta \in \Theta'_M$ also choose a prior $\Pi_{\theta,M}$ that 'stays away from the edges'. Define,

$$\Pi = \sum_{M=1}^{M'} \mu_M \Pi_{\lambda,M} \times \Pi_{\theta,M}.$$

(for $\sum_M \mu_M = 1$).

If Π is a KL-prior, posterior odds select the correct number of clusters M. If there are no M' and ϵ known, there are sequences $M'_n \to \infty$ and $\epsilon_n \downarrow 0$ with priors Π_n that finds the correct number of clusters.