ISBA World Meeting, Forte Village Sardinia, Italy, 13 – 17 June 2016

Priors for frequentists, consistency beyond Schwartz

Bas Kleijn, KdV Institute for Mathematics

Part I

Introduction

Bayesian and Frequentist statistics

sample space $(\mathscr{X},\mathscr{B})$ measurable space

i.i.d. data $X^n = (X_1, \dots, X_n) \in \mathcal{X}^n$ frequentist/Bayesian

model $(\mathcal{P}, \mathcal{G})$ model subsets $B, V \in \mathcal{G}$

prior $\Pi: \mathscr{G} \to [0,1]$ probability measure

posterior $\Pi(\cdot|X^n): \mathscr{G} \to [0,1]$ Bayes's rule, inference

Frequentist assume there is P_0 $X^n \sim P_0^n$

Bayes assume $P \sim \Pi$ $X^n \mid P \sim P^n$

Definition of the posterior

Definition 4.1 Assume that all $P \mapsto P^n(A)$ are \mathscr{G} -measurable. Given prior Π , a posterior is any $\Pi(\cdot | X^n = \cdot) : \mathscr{G} \times \mathscr{X}^n \to [0, 1]$

- (i) For any $G \in \mathcal{G}$, $x^n \mapsto \Pi(G|X^n = x^n)$ is \mathcal{B}^n -measurable
- (ii) (Disintegration) For all $A \in \mathcal{B}^n$ and $G \in \mathcal{G}$

$$\int_{A} \Pi(G|X^{n}) dP_{n}^{\Pi} = \int_{G} P^{n}(A) d\Pi(P)$$

where $P_n^{\Pi} = \int P^n d\Pi(P)$ is the prior predictive distribution

Remark 4.2 For frequentists $(X_1, ..., X_n) \sim P_0^n$, so assume $P_0^n \ll P_n^{\sqcap}$

Asymptotic consistency of the posterior

Definition 5.1 Given a model \mathscr{P} with topology and a Borel prior Π , the posterior is consistent at $P \in \mathscr{P}$ if for every open nbd U of P

$$\Pi(U|X^n) \xrightarrow{P} \mathbf{1}$$

Doob's and Schwartz's consistency theorems

Theorem 6.1 (Doob (1948))

Let \mathscr{P} and \mathscr{X} be Polish spaces and let Π be a Borel prior. Assume that $P \mapsto P^n(A)$ is Borel measurable for all n, A. Then the posterior is consistent at P, for Π -almost-all $P \in \mathscr{P}$

Remark 6.2 (Schwartz (1961), Freedman (1963)) Not frequentist!

Theorem 6.3 (Schwartz (1965))

Let $X_1, X_2, ...$ be an i.i.d.-sample from $P_0 \in \mathscr{P}$. Let \mathscr{P} be Hellinger totally bounded and let Π be a Kullback-Leibler (KL-)prior, i.e.

$$\Pi(P \in \mathscr{P} : -P_0 \log dP/dP_0 < \epsilon) > 0$$

for all $\epsilon > 0$. Then the posterior is consistent at P_0 in the Hellinger topology

The Dirichlet process

Definition 7.1 (Dirichlet distribution)

A random variable $p = (p_1, ..., p_k)$ with $p_l \ge 0$ and $\sum_l p_l = 1$ is Dirichlet distributed with parameter $\alpha = (\alpha_1, ..., \alpha_k)$, $p \sim D_{\alpha}$, if it has density

$$f_{\alpha}(p) = C(\alpha) \prod_{l=1}^{k} p_l^{\alpha_l - 1}$$

Definition 7.2 (Dirichlet process, Ferguson 1973-74)

Let α be a finite measure on $(\mathcal{X}, \mathcal{B})$. The Dirichlet process $P \sim D_{\alpha}$ is defined by, (for all finite msb partitions $A = \{A_1, \dots, A_k\}$ of \mathcal{X})

$$(P(A_1),\ldots,P(A_k)) \sim D_{(\alpha(A_1),\ldots,\alpha(A_k))}$$

Weak consistency with Dirichlet priors

Theorem 8.1 (Dirichlet consistency)

Let $X_1, X_2, ...$ be an i.i.d.-sample from P_0 If Π is a Dirichlet prior D_α with finite α such that $supp(P_0) \subset supp(\alpha)$, the posterior is consistent at P_0 in the weak model topology

Remark 8.2 Priors are not necessarily KL for consistency

Remark 8.3 (*Freedman* (1965))

Dirichlet distributions are tailfree: if A' refines A and $A'_{i1} \cup \ldots \cup A'_{il_i} = A_i$, then $(P(A'_{i1}|A_i), \ldots, P(A'_{il_i}|A_i) : 1 \le i \le k)$ is independent of $(P(A_1), \ldots, P(A_k))$.

Remark 8.4 $X^n \mapsto \Pi(P(A)|X^n)$ is $\sigma_n(A)$ -measurable where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Stochastic Block Model

Definition 9.1 At step n, nodes belong to one of K_n unobserved classes: θ_i . We estimate $\theta = (\theta_1, \dots, \theta_n) \in \Theta_n$ upon observation of $X^n = \{X_{ij} : 1 \leq 1 < j \leq n\}$. Edges X_{ij} occur independently with probabilities $Q_{ij}(\theta) = Q(\theta_i, \theta_j)$. The (expected) degree is denoted λ_n .

An SBM network realisation: n = 17, $K_n = 3$, $\lambda_n \approx 4.48$

Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 10.1 *Uniform (or minimax) testability*

$$\sup_{P \in B} P^n \phi_n \to 0, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \to 0$$

Definition 10.2 Pointwise testability for all $P \in B$, $Q \in V$

$$\phi_n \xrightarrow{P-a.s.} 0, \quad \phi_n \xrightarrow{Q-a.s.} 1$$

Definition 10.3 Bayesian testability for Π -almost-all $P \in B$, $Q \in V$

$$\phi_n \xrightarrow{P-a.s.} 0, \quad \phi_n \xrightarrow{Q-a.s.} 1$$

Examples of uniform test sequences

Lemma 11.1 (Uniform Hellinger tests) Let $B, V \subset \mathcal{P}$ be convex with H(B, V) > 0. There exist a D > 0 and uniform test sequence (ϕ_n) s.t.

$$\sup_{P \in B} P^n \phi_n \le e^{-nD}, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \le e^{-nD}$$

Lemma 11.2 (Minimax weak tests) Let $n \ge 1$, $\epsilon > 0$, $P_0 \in \mathscr{P}$ and a msb $f: \mathscr{X}^n \to [0,1]$ be given. Define

$$B = \left\{ P \in \mathscr{P} : |(P^n - P_0^n)f| < \epsilon \right\}, \quad V = \left\{ P \in \mathscr{P} : |(P^n - P_0^n)f| \ge 2\epsilon \right\}$$

There exist a D > 0 and uniform test sequence (ϕ_n) s.t.

$$\sup_{P \in B} P^n \phi_n \le e^{-nD}, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \le e^{-nD}$$

Testing in the Stochastic Block Model

Assume there is are q_n s.t. $0 < q_n < Q_{ij} < 1 - q_n < 1$

Lemma 12.1 For given, $B_n, V_n \subset \Theta_n$, there exists a test ϕ_n s.t.

$$\max_{\theta \in B_n} P_{\theta,n} \phi_n \le e^{-8q_n(1-q_n)} a_n^2 + \log \#(V_n)$$

$$\max_{\theta' \in V_n} P_{\theta',n} (1-\phi_n) \le e^{-8q_n(1-q_n)} a_n^2 + \log \#(B_n)$$

where $a_n^2 = \inf_{\theta \in B_n} \inf_{\theta \in V_n} \sum_{i < j} (Q_{ij}(\theta) - Q_{ij}(\theta'))^2$

Note: $\log \#(V_n), \log \#(B_n) \leq n \log(K_n)$

Remark 12.2 Sharper tests are available (Bickel & Chen (2009); Choi, Wolfe & Airoldi (2012); Mossel, Neeman & Sly (2012, 2014); Abbe, Bandeira & Hull (2014))

Part II

Bayesian testability and prior-a.s.-consistency

A posterior concentration inequality

Lemma 14.1 Let $(\mathscr{P},\mathscr{G})$ be given. For any prior Π , any test function ϕ and any $B, V \in \mathscr{G}$,

$$\int_{B} P\Pi(V|X) d\Pi(P) \le \int_{B} P\phi d\Pi(P) + \int_{V} Q(1-\phi) d\Pi(Q)$$

Corollary 14.2 Consequently, in i.i.d.-context, for any sequences (Π_n) , (B_n) , (V_n) such that $B_n \cap V_n = \emptyset$ and $\Pi_n(B_n) > 0$, we have,

$$\int P^n \Pi(V_n|X^n) d\Pi_n(P|B_n)$$

$$\leq \frac{1}{\Pi(B_n)} \left(\int_{B_n} P^n \phi_n d\Pi_n(P) + \int_{V_n} Q^n (1 - \phi_n) d\Pi_n(Q) \right)$$

Martingale convergence

Proposition 15.1 Let $(\mathcal{P}, \mathcal{G}, \Pi)$ be given. For any $B, V \in \mathcal{G}$, the following are equivalent,

- (i) There exist Bayesian tests (ϕ_n) for B versus V;
- (ii) There exist tests (ϕ_n) such that,

$$\int_{B} P^{n} \phi_{n} d\Pi(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi(Q) \to 0,$$

(iii) For Π -almost-all $P \in B$, $Q \in V$,

$$\Pi(V|X^n) \xrightarrow{P-a.s.} 0, \qquad \Pi(B|X^n) \xrightarrow{Q-a.s.} 0$$

Remark 15.2 Interpretation distinctions between model subsets are Bayesian testable, iff they are picked up by the posterior asymptotically, if(f), the Bayes factor for B versus V is consistent

Prior-almost-sure consistency

Theorem 16.1 Let Hausdorff \mathscr{P} with Borel prior Π be given. Assume that for Π -almost-all $P \in \mathscr{P}$ and any open nbd U of P, there exist a $B \subset U$ with $\Pi(B) > 0$ and Bayesian tests (ϕ_n) for B versus $\mathscr{P} \setminus U$. Then the posterior is consistent at Π -almost-all $P \in \mathscr{P}$

Remark 16.2 Let \mathscr{P} be a Polish space and assume that all $P \mapsto P^n(A)$ are Borel measurable. Then, for any prior Π , any Borel set $V \subset \mathscr{P}$ is Bayesian testable versus $\mathscr{P} \setminus V$.

Corollary 16.3 (More than) Doob's 1948 theorem

Part III

Pointwise testability and frequentist consistency

Le Cam's inequality

Definition 18.1 For $B \in \mathcal{G}$ such that $\Pi(B) > 0$, the local prior predictive distribution is $P_n^{\Pi|B} = \int P^n d\Pi(P|B)$.

Remark 18.2 (Le Cam, unpublished (197?) and (1986))
Rewrite the posterior concentration inequality

$$P_0^n \Pi(V_n|X^n) \le \left\| P_0^n - P_n^{\Pi|B_n} \right\|$$

$$+ \int P^n \phi_n \, d\Pi(P|B_n) + \frac{\Pi(V_n)}{\Pi(B_n)} \int Q^n (1 - \phi_n) \, d\Pi(Q|V_n)$$

Remark 18.3 For some
$$b_n \downarrow 0$$
, $B_n = \{P \in \mathscr{P} : \|P^n - P_0^n\| \le b_n\}$, $a_n^{-1} \sqcap (B_n) \to \infty$

Remark 18.4 Useful in parametric models but "a considerable nuisance" [sic] (Le Cam (1986)) in non-parametric context

Schwartz's theorem revisited

Remark 19.1 Suppose that for all $\delta > 0$, there is a B s.t. $\Pi(B) > 0$ and for all $P \in B$ and large enough n

$$P_0^n \sqcap (V|X^n) \le e^{n\delta} P^n \sqcap (V|X^n)$$

then (by Fatou) for large enough m

$$\sup_{n\geq m} \left[(P_0^n - e^{n\delta} P_n^{\Pi|B}) \Pi(V|X^n) \right] \leq 0$$

Theorem 19.2 Let \mathscr{P} be a model with KL-prior Π ; $P_0 \in \mathscr{P}$. Let $B, V \in \mathscr{G}$ be given and assume that B contains a KL-neighbourhood of P_0 . If there exist Bayesian tests for B versus V of exponential power then

$$\Pi(V|X^n) \xrightarrow{P_0 - a.s.} 0$$

Corollary 19.3 (Schwartz's theorem)

Remote contiguity

Definition 20.1 Given (P_n) , (Q_n) of prob msr's, Q_n is contiguous w.r.t. P_n $(Q_n \triangleleft P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0,1]$

$$P_n\psi_n = o(1) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Definition 20.2 Given (P_n) , (Q_n) of prob msr's and a $a_n \downarrow 0$, Q_n is a_n -remotely contiguous w.r.t. P_n $(Q_n \triangleleft a_n^{-1}P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0,1]$

$$P_n\psi_n = o(a_n) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Remark 20.3 Contiguity is stronger than remote contiguity note that $Q_n \triangleleft P_n$ iff $Q_n \triangleleft a_n^{-1}P_n$ for all $a_n \downarrow 0$.

Definition 20.4 Hellinger transform $\psi(P,Q;\alpha) = \int p^{\alpha}q^{1-\alpha} d\mu$

Le Cam's first lemma

Lemma 21.1 Given (P_n) , (Q_n) like above, $Q_n \triangleleft P_n$ iff any of the following holds:

- (i) If $T_n \xrightarrow{P_n} 0$, then $T_n \xrightarrow{Q_n} 0$
- (ii) Given $\epsilon > 0$, there is a b > 0 such that $Q_n(dQ_n/dP_n > b) < \epsilon$
- (iii) Given $\epsilon > 0$, there is a c > 0 such that $||Q_n Q_n \wedge c P_n|| < \epsilon$
- (iv) If $dP_n/dQ_n \xrightarrow{Q_n-W} f$ along a subsequence, then P(f>0)=1
- (v) If $dQ_n/dP_n \xrightarrow{P_n-W} g$ along a subsequence, then Eg = 1
- (vi) $\liminf_n \psi(P_n,Q_n;\alpha) \to 1$ as $\alpha \uparrow 1$

Criteria for remote contiguity

Lemma 22.1 Given (P_n) , (Q_n) , $a_n \downarrow 0$, $Q_n \triangleleft a_n^{-1}P_n$ if any of the following holds:

- (i) For any bnd msb $T_n: \mathscr{X}^n \to \mathbb{R}$, $a_n^{-1}T_n \xrightarrow{P_n} 0$, implies $T_n \xrightarrow{Q_n} 0$
- (ii) Given $\epsilon > 0$, there is a $\delta > 0$ s.t. $Q_n(dP_n/dQ_n < \delta a_n) < \epsilon$ f.l.e.n.
- (iii) There is a b > 0 s.t. $\liminf_{n \to \infty} b \, a_n^{-1} \, P_n(dQ_n/dP_n > b \, a_n^{-1}) = 1$
- (iv) Given $\epsilon > 0$, there is a c > 0 such that $\|Q_n Q_n \wedge c a_n^{-1} P_n\| < \epsilon$
- (v) Under Q_n , $(a_n dQ_n/dP_n)$ are r.v.'s and every subseq has a weakly convergent subseq
- (vi) $\liminf_{n \to \infty} \lim_{\alpha \uparrow 1} \frac{a_n}{a_n} \psi(P_n, Q_n; \alpha) > 0$

Beyond Schwartz

Theorem 23.1 Let $(\mathscr{P},\mathscr{G})$ with priors (Π_n) and $(X_1,\ldots,X_n) \sim P_0^n$ be given. Assume there are $B,V \in \mathscr{G}$ with $\Pi(B)>0$ and $a_n \downarrow 0$ s.t.

(i) There exist Bayesian tests for B versus V of power a_n ,

$$\int_{B} P^{n} \phi_{n} d\Pi_{n}(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi_{n}(Q) \leq a_{n}$$

(ii) The sequence P_0^n satisfies $P_0^n \triangleleft a_n^{-1} P_n^{\prod_n \mid B}$

Then
$$\Pi_n(V|X^n) \xrightarrow{P_0} 0$$

Application to consistency I

Remark 24.1 (Schwartz (1965))

Take $P_0 \in \mathscr{P}$, and define

$$V_n = \{ P \in \mathcal{P} : H(P, P_0) \ge \epsilon \}$$

$$B_n = \{ P : -P_0 \log dP/dP_0 < \epsilon^2 \}$$

With $N(\epsilon, \mathcal{P}, H) < \infty$, and a_n of form $\exp(-nD)$ the theorem proves Hellinger consistency with KL-priors.

Application to consistency II

Remark 25.1 Dirichlet posteriors $X^n \mapsto \Pi(P(A)|X^n)$ are msb $\sigma_n(A)$ where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Remark 25.2 (Freedman (1965), Ferguson (1973), Lo (1984), ...) Take $P_0 \in \mathcal{P}$, and define

$$V_n = V := \{ P \in \mathscr{P} : |(P_0 - P)f| \ge 2\epsilon \}$$

 $B_n = B := \{ P : |(P_0 - P)f| < \epsilon \}$

for some bounded, measurable f. Impose remote contiguity only for ψ_n that are $\sigma_n(A)$ -measurable! Take a_n of form $\exp(-nD)$. The theorem then proves weak consistency with a Dirichlet prior D_{α} , if $\sup(P_0) \subset \sup(\alpha)$.

Consistency with n-dependent neighbourhoods

Theorem 26.1 Let $(\mathscr{P},\mathscr{G})$ with priors (Π_n) and $(X_1,\ldots,X_n) \sim P_0^n$ be given. Assume there are $B_n, V_n \in \mathscr{G}$ and $a_n, b_n \geq 0$, $a_n \downarrow 0$ s.t.

(i) There exist Bayesian tests for B_n versus V_n of power a_n ,

$$\int_{B_n} P^n \phi_n \, d\Pi_n(P) + \int_{V_n} Q^n (1 - \phi_n) \, d\Pi_n(Q) \le \underline{a_n}$$

- (ii) The prior mass of B_n is lower-bounded by b_n , $\Pi_n(B_n) \geq b_n$
- (iii) The sequence P_0^n satisfies $P_0^n \triangleleft b_n a_n^{-1} P_n^{\prod_n \mid B_n}$

Then
$$\Pi_n(V_n|X^n) \xrightarrow{P_0} 0$$

Application to the posterior rate of convergence

Remark 27.1 (Ghosal-Ghosh-vdVaart (2000))

Take $P_0 \in \mathscr{P}$, and define

$$V_n = \{ P \in \mathscr{P} : H(P, P_0) \ge \epsilon_n \}$$

$$B_n = \{ P : -P_0 \log dP / dP_0 < \epsilon_n^2, P_0 \log^2 dP / dP_0 < \epsilon_n^2 \}$$

With $\log N(\epsilon_n, \mathcal{P}, H) \leq n\epsilon_n^2$, and a_n and b_n of form $\exp(-Kn\epsilon_n^2)$ the theorem proves Hellinger consistency at rate ϵ_n with GGV-priors.

Remark 27.2 Other B_n are possible! (see Kleijn and Zhao (201x))

Consistent Bayes factors

Theorem 28.1 Let the model $(\mathcal{P},\mathcal{G})$ with priors (Π_n) be given. Given $B, V \in \mathcal{G}$ with $\Pi(B), \Pi(V) > 0$ s.t.

(i) There exist Bayesian tests for B versus V of power $a_n \downarrow 0$,

$$\int_{B} P^{n} \phi_{n} d\Pi_{n}(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi_{n}(Q) \leq a_{n}$$

- (ii) For every $P \in B$, $P^n \triangleleft a_n^{-1} P_n^{\prod_n \mid B}$
- (iii) For every $Q \in V$, $Q^n \triangleleft a_n^{-1} P_n^{\prod_n \mid V}$

Then the posterior odds or Bayes factors,

$$B_n = \frac{\Pi(B|X^n)}{\Pi(V|X^n)} \frac{\Pi(V)}{\Pi(B)}$$

for B versus V are consistent.