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Part I

Introduction



Bayesian and Frequentist statistics

sample space (Z,9%) measurable space

i.i.d. data X"=(X1,...,Xp) € Z™ frequentist/Bayesian
model (A2,9) model subsets B,V € ¢4
prior Mn:¥ — [0, 1] probability measure
posterior n¢-|xm™) :9 — [0, 1] Bayes's rule, inference

Frequentist assume thereis Pp X" ~ PC"}

Bayes assume P ~ Tl X" P~ P"



Definition of the posterior

Definition 4.1 Assume that all P~ P"(A) are 9-measurable. Given
prior T, a posterior is any M(-| X" =) .9 x " — [0, 1]

(i) Forany Ge ¥, «" — (G X" = 2") is #A"-measurable
(ii) (Disintegration) For all A € 8™ and G € 4
/AI‘I(G|X”) AP = /G P"(A) dN(P)

where P! = [ P dl1(P) is the prior predictive distribution

Remark 4.2 For frequentists (X1,...,Xn) ~ P}, so assume P} < P}!



Asymptotic consistency of the posterior
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Definition 5.1 Given a model &2 with topology and a Borel prior T,
the posterior is consistent at P € &2 if for every open nbd U of P
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Doob's and Schwartz’s consistency theorems

Theorem 6.1 (Doob (1948))
Let & and 4 be Polish spaces and let I'l be a Borel prior. Assume

that P — P™(A) is Borel measurable for all n,A. Then the posterior
is consistent at P, for N-almost-all P €¢ &

Remark 6.2 (Schwartz (1961), Freedman (1963)) Not frequentist!

Theorem 6.3 (Schwartz (1965))

Let X1,X»o,... be an i.i.d.-sample from Py € &2. Let & be Hellinger
totally bounded and let N be a Kullback-Leibler (KL-)prior, i.e.

N(Pe P : —PylogdP/dPy <e) >0

for all e > 0. Then the posterior is consistent at Py in the Hellinger
topology



The Dirichlet process

Definition 7.1 (Dirichlet distribution)
A random variable p = (p1,...,pr) Withp; > 0 and Y ;p; = 1 is Dirichlet
distributed with parameter oo = (o, ..., ), p~ Dq, if it has density

k
fa(p) = C(a) I] PP
=1

Definition 7.2 (Dirichlet process, Ferguson 1973-74)
Let o be a finite measure on (Z,9%). The Dirichlet process P ~ D,
is defined by, (for all finite msb partitions A = {A1,...,AL} of Z7)

(P(A1), ..., P(AR)) ~ D(a(ay),...a(4p))



Weak consistency with Dirichlet priors

Theorem 8.1 (Dirichlet consistency)

Let X1,Xo,... be an i.i.d.-sample from Py If Il is a Dirichlet prior Dy
with finite v such that supp(Py) C supp(«), the posterior is consistent
at Py in the weak model topology

Remark 8.2 Priors are not necessarily KL for consistency

Remark 8.3 (Freedman (1965))

Dirichlet distributions are tailfree: if A’ refines A and Al U, UA} =
A;, then (P(A;1|AZ-),...,P(Aft.li|AZ-) 1 < ¢ < k) is independent of
(P(A1),..., P(Ag)).

Remark 8.4 X" — M(P(A)|X"™) is on(A)-measurable where o, (A) is
generated by products of the form [[i_, B; with B; = {X; € A} or
B; ={X; & A}.



Stochastic Block Model

Definition 9.1 At step n, nodes belong to one of K, unobserved

classes: 0;. We estimate 6 = (61,...,60,) € ©, upon observation of
Edges occur independently with

probabilities Q;;(0) = Q(0;,0;). The (expected) degree is denoted




Bayesian and Freqgquentist testability

For B,V be two (disjoint) model subsets

Definition 10.1 Uniform (or minimax) testability

sup P"¢p — 0, sup Q@"(1—¢n) —0
PeB QeV

Definition 10.2 Pointwise testability all

P-a.s. 0, b Q-a.s. 1

Pn
Definition 10.3 Bayesian testability M-almost-all

P-a.s. 0, b (Q-a.s. 1

bn
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Examples of uniform test sequences

Lemma 11.1 (Uniform Hellinger tests) Let B,V C & be convex with
H(B,V) > 0. There exist a D > 0 and uniform test sequence (¢n) S.t.

sup P"¢p < e_”D, sup Q"(1 — ¢n) < e~
PeB QeV

Lemma 11.2 (Minimax weak tests) Letn>1, € >0, Phe & and a
msb f: 2™ — [0,1] be given. Define

B={Pe2 :|(P"-P})fl<e}, V={PeP:|(P"-P§)f|> 2
There exist a D > 0 and uniform test sequence (¢n) S.t.

sup P"¢n < e_“D, sup Q"(1 — ¢n) < e~
PeB QeV
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Testing in the Stochastic Block Model

Assume there is are gn s.t. 0 <gn < Q;; <1—-qgn <1

Lemma 12.1 For given, B,,V, C ©,, there exists a test ¢, S.t.

5naBX P@ n¢n é 6_8QTL(1_QTL) a%'l_lOg #(Vn)
¥ 57%) ’

2
max Py (1 — ¢p) < e~ 8an(1=an) an+109 7 (Bn)
0'eVn

where a% = inf@EBn iﬂf@evn Z’L<](QZ](0) — QZJ(Q/))Q
Note: log #(Vr),log #(Bn) < nlog(Kn)

Remark 12.2 Sharper tests are available (Bickel & Chen (2009);
Choi, Wolfe & Airoldi (2012); Mossel, Neeman & Sly (2012, 2014);
Abbe, Bandeira & Hull (2014))
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Part 11

Bayesian testability
and prior-a.s.-consistency



A posterior concentration inequality

Lemma 14.1 Let (£,9) be given. For any prior 1, any test function
¢ and any B,V € ¥,

/B PM(V|X)dn(P) < /B Pedn(pP) + ‘/V Q(1 — ¢)dlN(Q)

Corollary 14.2 Consequently, ini.i.d.-context, for any sequences (INy,),
(Brn), (V) such that B, NV, = @ and Ny(By) > 0, we have,

/P”I‘I(Vn|X”) M, (P|Bn)

< ﬂ(Bn)(/ Prondnn(P) + [ Q (1 - 6n) (@)
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Martingale convergence

Proposition 15.1 Let (£,%,) be given. For any B,V € ¥, the
following are equivalent,

(i) There exist Bayesian tests (¢n) for B versus V;

(ii) There exist tests (¢n) such that,
[ P 6ndn(P)+ [ Q"(1 = ¢n)dN(Q) O,
B 1%

(iii) For M-almost-all Pe B, Q €V,

P-a.s.
—_—

nv|x™) Q-a.s.

0, N(B|X") 0
Remark 15.2 Interpretation distinctions between model subsets are
Bayesian testable, iff they are picked up by the posterior asymptoti-

cally, if(f), the Bayes factor for B versus V is consistent
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Prior-almost-sure consistency

Theorem 16.1 Let Hausdorff &2 with Borel prior Tl be given. Assume
that for lN-almost-all P € &2 and any open nbd U of PP, there exist
a B cC U with I'(B) > 0 and Bayesian tests (¢n) for B versus &\ U.
Then the posterior is consistent at lN-almost-all P € &

Remark 16.2 Let & be a Polish space and assume that all P
P"(A) are Borel measurable. Then, for any prior M, any Borel set
V C & is Bayesian testable versus &2\ V.

Corollary 16.3 (More than) Doob’s 1948 theorem
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Part Il

Pointwise testability
and frequentist consistency



Le Cam’s inequality

Definition 18.1 For B € &4 such that I'(B) > 0, the local prior pre-
dictive distribution is PL'2 = [ P dn(P|B).

Remark 18.2 (L.e Cam, unpublished (1977) and (1986))
Rewrite the posterior concentration inequality

PIM(Vp|X™) < Hpgf _ pHiBn

M(Vn)
N(Bn)

+ [ P"¢n dn(P|By) + [ Q"1 = ¢n) dN(QIV)

Remark 18.3 For some b, | 0, B, ={P € & ||P" — P} < byn},
a, 1 M(Br) = oo

Remark 18.4 Useful in parametric models but “a considerable nui-
sance” [sic] (Le Cam (1986)) in non-parametric context
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Schwartz’'s theorem revisited

Remark 19.1 Suppose that for all § > 0, there is a B s.t. N(B) >0
and for all P B and large enough n

PEO(V|X™) < ™ PII(V]X™)
then (by Fatou) for large enough m

sup [(PZ — e P "y xmy| < o

n>m
Theorem 19.2 Let & be a model with KL-prior N, Py € &. Let
B,V € 4 be given and assume that B contains a Kl-neighbourhood
of Py. If there exist Bayesian tests for B versus V of exponential
power then

n(v|xm) =%, q

Corollary 19.3 (Schwartz's theorem)
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Remote contiguity

Definition 20.1 Given (P,), (Qn) of prob msr’s, Qn is contiguous
w.r.t. P, (Qn<Py), if for any msb ¢, : 2™ — [0, 1]

Pnyn =0o(1l) = Qni¥n =o0(1)

Definition 20.2 Given (P), (Qn) of prob msr's and a a, | 0, Qn
Is an-remotely contiguous w.r.t. Py (QnQa,,;an), if for any msb
@bn : %n — [07 1]

Ppim = O(Cln) — Qnin = o(1)

Remark 20.3 Contiguity is stronger than remote contiguity
note that Qn < Py, iff Qn < a, 1P, for all an | 0.

Definition 20.4 Hellinger transform (P, Q: o) = [ p“gt*dpu
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Le Cam’s first lemma

Lemma 21.1 Given (P,), (Qn) like above, Qn< P, iff any of the
following holds:

() 1 7, 2 0, then T, 2250

(ii) Given e > 0, there is a b > 0 such that Qn(dQn/dP, >b) < €

(iii) Given ¢ > 0, there is a ¢ > 0 such that ||Qn — Qn N c Pl < €
(iv) If dP,/dQ), ———»f along a subsequence, then P(f >0) =1

(v) If dQ),,/d P, LW'>9 along a subsequence, then Eg =1
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Criteria for remote contiguity

Lemma 22.1 Given (P), (Qn), an | 0, Qn<a, P, if any of the
following holds:

(i) For any bnd msb T, : Z™ = R, a, 1Ty n, 0, implies Ty, % 0

(ii) Given e >0, thereisad >0 s.t. Qn(dP,/dQn < dan) < e f.le.n.
(iii) Thereis ab>0 s.t. liminfy,sooba, ' Ppo(dQn/dPp > ba,l) =1
(iv) Given e > 0, there is a ¢ > 0 such that ||Qn — Qn A ca, TPy < €

(v) Under Qn, (andQ),/dF,) are r.v.’s and every subseq has a weakly
convergent subseq

(vi) liminfplimgr an™ %Y (Pn, Qn; o) > 0
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Beyond Schwartz

Theorem 23.1 Let (£,%) with priors (M) and (X1,...,Xn) ~ PY
be given. Assume there are B,V € ¢ with I'(B) > 0 and a, | O s.t.

(i) There exist Bayesian tests for B versus V of power an,

/B Py, dMn(P) + /v Q"(1 — ¢n) dMa(Q) < an

(ii) The sequence PY satisfies P < a,* plinlB

Then 1,(V]X") 220
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Application to consistency 1

Remark 24.1 (Schwartz (1965))
Take Py € &2, and define

Va={Pe P:H(P Py > ¢}
Bn ={P: —PylogdP/dPy < €}

With N(e, #,H) < oo, and a, of form exp(—nD) the theorem proves
Hellinger consistency with KL-priors.
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Application to consistency II

Remark 25.1 Dirichlet posteriors X™ — M(P(A)|X™) are msb o,(A)
where on(A) is generated by products of the form [[_, B; with B; =
{Xi c A} or Bi gl {XZ € A}

Remark 25.2 (Freedman (1965), Ferguson (1973), Lo (1984), ...)
Take Py € &2, and define

Vo=V ={PeZ:|(FPo— P)f| > 2¢}
By, =B :={P:|(Fy— P)f| <¢}
for some bounded, measurable f. Impose remote contiguity only for

v that are on(A)-measurable! Take a, of form exp(—nD). The
theorem then proves weak consistency with a Dirichlet prior Dy, if

supp(Py) C supp(a).
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Consistency with n-dependent neighbourhoods

Theorem 26.1 Let (£2,¥) with priors (My) and (Xy1,...,Xn) ~ P}
be given. Assume there are B,,V, € ¥ and ay,,b, > 0, ap | O s.t.

(i) There exist Bayesian tests for By versus Vi, of power ay,

P 6ndMa(P) + [ Q"(1 = ¢n) dMa(Q) < an
J Bp, JVn

(ii) The prior mass of B,, is lower-bounded by by, My (Bn) > by,

(iii) The sequence P} satisfies P} < bna, 1 PE”'B"

P,
Then I, (V,|X") =50
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Application to the posterior rate of convergence

Remark 27.1 (Ghosal-Ghosh-vdVaart (2000))
Take Py € &2, and define

Bp = {P: —PylogdP/dPy < €2, Pylog? dP/dPy < €2}

With log N(en, 2, H) < ne2, and an and by, of form exp(—Kne2) the
theorem proves Hellinger consistency at rate e, with GGV-priors.

Remark 27.2 Other By are possible! (see Kleijn and Zhao (201x))
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Consistent Bayes factors

Theorem 28.1 Let the model (£,%) with priors (I1,,) be given.
Given B,V € ¢ with N(B),N(V) > 0 s.t.

(i) There exist Bayesian tests for B versus V of power an | 0O,

[ P éndNa(P)+ [ Q"(1 = én) dMn(Q) < an
JB JV

(ii) For every P€ B, P" Qa;, ! PB"'B

(iii) Forevery Q eV, Q" < a ! PE"'V

T hen the posterior odds or Bayes factors,
_ NBIX™) (V)
CMVIX™)TI(B)
for B versus V are consistent.

n
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