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Bayesian philosophy

Bayesian school of statistics differs from the Frequentist school.

Bayesians have a different perspective on data and models.

In particular, no true, underlying distribution P0 of the data.

Bayesians have a belief concerning the mechanism that generates the

data. The data itself is used to correct this belief.

Mathematically

Belief is represented by a prior probability measure Π on the model.

The data X1, . . . , Xn is incorporated by conditioning, resulting in a

posterior Π( · |X1, . . . , Xn) probability measure on the model.
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Motivating example (Savage, 1961)

Example 3.1 Consider the following three statistical experiments:

A lady who drinks milk in her tea claims to be able to tell which

was poured first, the tea or the milk. In ten trials, she is correct

every time

A music expert claims to be able to tell whether a page of music

was written by Haydn or by Mozart. In ten trials conducted, he

correctly determines the composer every time.

A drunken friend says that he can predict heads or tails of a fair

coin-flip. In ten trials, he is right every time.
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Frequentist analysis

We analyse the Bayesian procedure from a frequentist perspective.

Assumption sample X1, . . . , Xn i.i.d. P0-distributed

We shall concentrate on the large-sample behaviour of the posterior.

Typical questions

• Consistency Does the posterior concentrate in the point P0 ∈P

• Rate of convergence How fast does concentration occur?

• Limiting shape Which shape does a concentrating posterior have?

• Asymptotic testing Is the Bayes factor consistent?

in the limit n→∞.
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Goal

The question

Given the model, which priors give rise

to posteriors with good

frequentist convergence properties?

The answer

To formulate theorems that assert

asymptotic properties of the posterior,

under conditions on the prior and the model.
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Course schedule

Lecture 1 Bayesian Basics

Bayesian formalism, estimation, coverage, testing

Lecture 2 The Bernstein-von Mises theorem

Limit shape in smooth parametric models, semi-parametrics

Lecture 3 Bayes and the Infinite

Consistency, Doob’s theorem, Schwartz’s theorem

Lecture 4 More posterior consistency

Barron’s, Walker, Ghosh-Ghosal-van der Vaart

Lecture 5 Remote contiguity and Bayes factors

Consistency with non-i.i.d. data, testing of hypotheses
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Lecture I
Bayesian Basics

In the first lecture, the basic formalism of Bayesian statistics is

introduced and its formulation as a frequentist method of in-

ference is given. We discuss such notions as the prior and pos-

terior, Bayesian point estimators like the posterior mean and

MAP estimators, credible intervals, odds ratios and Bayes fac-

tors. All of these are compared to more common frequentist

inferential tools, like the MLE, confidence sets and Neyman-

Pearson tests.



Bayesian and Frequentist statistics

sample space (X ,B) measurable space

i.i.d. data Xn = (X1, . . . , Xn) ∈X n frequentist/Bayesian

model (P,G ) model subsets B, V ∈ G

parametrization Θ→P : θ 7→ Pθ model distributions

prior Π : G → [0,1] probability measure

posterior Π( · |Xn) : G → [0,1] Bayes’s rule, inference

Frequentist assume there is P0 Xn ∼ Pn0
Bayes assume P ∼ Π Xn |P ∼ Pn
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Bayes’s Rule and Disintegration

Definition 10.1 Assume that all P 7→ Pn(A) are G -measurable. Given

prior Π, a posterior is any Π( · |Xn = ·) : G ×X n → [0,1] s.t.

(i) For any G ∈ G , xn 7→ Π(G|Xn = xn) is Bn-measurable

(ii) (Disintegration) For all A ∈ Bn and G ∈ G∫
A

Π(G|Xn) dPΠ
n =

∫
G
Pn(A) dΠ(P )

where PΠ
n =

∫
Pn dΠ(P ) is the prior predictive distribution

Remark 10.2 For frequentists (X1, . . . , Xn) ∼ Pn0 , so assume

Pn0 � PΠ
n
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Posteriors in dominated models

Theorem 11.1 Assume P = {Pθ : θ ∈ Θ} is dominated by a σ-finite

µ on (Y ,B) with densities pθ = dPθ/dµ. Then,

Π( θ ∈ G |Y ) =
∫
G
pθ(Y ) dΠ(θ)

/ ∫
Θ
pθ(Y ) dΠ(θ),

for all G ∈ G . This version of the posterior is regular.
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Proof

The prior predictive has a density with respect to µ,

PΠ(B) =
∫

Θ

∫
B
pθ(y) dµ(y) dΠ(θ) =

∫
B

(∫
Θ
pθ(y) dΠ(θ)

)
dµ(y).

So the prior predictive density pΠ : Y → R is equal to the denominator

of the posterior. Note,∫
B

Π(G|Y = y) dPΠ(y) =
∫
B

(∫
G
pθ(Y ) dΠ(θ)

/ ∫
Θ
pθ(Y ) dΠ(θ)

)
dPΠ(y)

=
∫
B

∫
G
pθ(y) dΠ(θ) dµ(y) =

∫
G
Pθ(B) dΠ(θ),

so the disintegration equality holds.
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Proof

Since PΠ(pΠ > 0) = 1, the denominator is non-zero and the posterior

is well-defined PΠ-a.s. For y s.t. pΠ(y) > 0 and (Gn) disjoint,

Π
(
θ ∈

⋃
n≥1

Gn

∣∣∣∣ Y = y

)
= C(y)

∫
∪nGn

pθ(y) dΠ(θ)

= C(y)
∫ ∑
n≥1

1{θ∈Gn} pθ(y) dΠ(θ)

=
∑
n≥1

C(y)
∫
Gn
pθ(y) dΠ(θ) =

∑
n≥1

Π( θ ∈ Gn |Y = y ),

by monotone convergence. The posterior is well-defined and σ-additive,

PΠ-a.s.
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Prior to posterior

The Bayesian procedure consists of the following steps

(i) Based on the background of the data Y , choose a model P,

usually with parameterization Θ→P : θ 7→ Pθ.

(ii) Also choose a prior measure Π on P (reflecting “belief”). Usually

a measure on Θ is defined, inducing a measure on P.

(iii) Calculate the posterior as a function of the data Y .

(iv) Observe a realization of the data Y = y, substitute in the posterior

and do statistical inference.
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Posterior predictive distribution

Definition 15.1 Consider data Y from (Y ,B), a model P and prior

Π. Assume that the posterior Π( · |Y ) is regular. The posterior pre-

dictive distribution is defined,

P̂ (B) =
∫
P
P (B) dΠ(P |Y ),

for every event B ∈ B.

Lemma 15.2 The posterior predictive distribution is a probability

measure, almost surely.

Lemma 15.3 Endow P with the topology of total variation and a

Borel prior Π. Suppose, either, that P is relatively compact, or, that

Π is Radon. Then P̂ lies in the closed convex hull of P, almost surely.
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Proof

Let ε > 0 be given. There exist {P1, . . . , PN} ⊂ P such that the

balls Bi = {P ′ ∈ P : ‖P ′ − Pi‖ < ε} cover P. Define Ci+1 = Bi+1 \
∪ij=1Bj (C1 = B1), then {C1, . . . , CN} is a partition of P. Define

λi = Π(Ci |Y ) (almost surely) and note,

‖P̂ −
N∑
i=1

λi Pi‖ = sup
B∈B

∣∣∣∣∣
N∑
i=1

∫
Ci

(P (B)− Pi(B)) dΠ(P |Y = y )

∣∣∣∣∣
≤

N∑
i=1

∫
Ci

sup
B∈B

∣∣∣P (B)− Pi(B)
∣∣∣ dΠ(P |Y = y )≤ ε.

So there exist elements in co(P) that are arbitrarily close to P̂ in

total variation. Conclude that P̂ lies in its closure.
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Posterior mean

Definition 17.1 Let P be a model parameterized by a closed, convex

Θ, subset of Rd. Let Π be a Borel prior. If θ is integrable with respect

to the posterior, the posterior mean is defined

θ̂1(Y ) =
∫

Θ
θ dΠ( θ |Y )∈ Θ,

almost-surely.

Remark 17.2 Convexity of Θ is necessary for interpretation
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Maximum-a-posteriori estimator

Definition 18.1 Let P be a model parametrized by Θ with prior Π.

Assume that the posterior is dominated by σ-finite measure µ on Θ,

with density θ 7→ π(θ|Y ). The maximum-a-posteriori (MAP) estimator

θ̂2 is defined by,

π(θ̂2|Y ) = sup
θ∈Θ

π(θ|Y ).

Provided that such a point exists and is unique, the MAP-estimator

is defined almost-surely.

Typically, the MAP-estimator maximizes

Θ→ R : θ 7→
n∏
i=1

pθ(Xi)π(θ),

which is equivalent to log-likelihood maximization with penalty logπ(θ).

18



Frequentist coverage

Definition 19.1 Assume that Y ∼ Pθ0
for some θ0 ∈ Θ. Choose

a confidence level α ∈ (0,1). Then a subset Cα of Θ is a level-α

confidence set if,

Pθ
(
θ ∈ Cα

)
≥ 1− α,

for all θ ∈ Θ.

An asymptotic version exists, where we require that a sequence (Cα,n)

satisfies,

lim inf
n→∞ Pnθ

(
θ ∈ Cα,n

)
≥ 1− α,

for all θ ∈ Θ

Typically confidence sets are based on an estimator θ̂, or rather, on

the distribution θ̂ has (the so-called sampling distribution).
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Credible sets

Definition 20.1 Let Θ parameterizing a model P for data Y , with

prior Π. Choose a credible level α ∈ (0,1). Then a subset Dα ∈ G of

Θ is a level-α credible set if,

Π
(
θ ∈ Dα

∣∣∣ Y ) ≥ 1− α,

almost-surely.

An asymptotic version exists, where we require that a sequence (Dα,n)

satisfies,

lim inf
n→∞ Π

(
θ ∈ Dα,n

∣∣∣ Yn) ≥ 1− α,

almost-surely.

Typically, credible sets in parametric models are level sets of the pos-

terior density, the so-called HPD-credible sets.
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Randomized testing

Definition 21.1 Let P = {Pθ : θ ∈ Θ} be a model for data Y .

Assume given two hypotheses H0 and H1 for θ,

H0 : θ0 ∈ Θ0, H1 : θ0 ∈ Θ1.

where {Θ0,Θ1} are a partition of Θ. A test function φ is a map

φ : Y → [0,1] used as a randomized test: given a realisation Y = y

we reject H0 with probability φ(y).

The Neyman-Pearson lemma proves optimality of

φ(y) =


1 if pθ1

(y) > cpθ0
(y)

γ(x) if pθ1
(y) = cpθ0

(y)
0 if pθ1

(y) < cpθ0
(y)

,

for H0 : P = Pθ0
versus H1 : P = Pθ1

.
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Odds ratios and Bayes factors

Definition 22.1 Let Θ parameterize a model P for data Y with

prior Π. Let {Θ0,Θ1} be a partition of Θ such that Π(Θ0) > 0 and

Π(Θ1) > 0. The prior odds ratio and posterior odds ratio are defined

by Π(Θ0)/Π(Θ1) and Π(Θ0|Y )/Π(Θ1|Y ). The Bayes factor for Θ0

versus Θ1is defined,

B =
Π(Θ0|Y )

Π(Θ1|Y )

Π(Θ1)

Π(Θ0)
.

Subjectivist Accept H0 if the posterior odds are greater than 1

Objectivist Accept H0 if the Bayes factor is greater than 1

22



Test sequences and asymptotics

Consider the case of data that forms a sequence (Yn), modelled with

Pn = {Pθ,n : θ ∈ Θ} and hypotheses H0 : θ ∈ B and H1 : θ ∈ V for

subsets B, V ⊂ Θ s.t. B ∩ V = ∅.

A typical example: Yn = (X1, . . . , Xn) i.i.d., with Pθ,n = Pnθ

A test sequence (φn) is (asymptotically) consistent if,

Pθ,nφn → 0 and Qn,θ′(1− φn)→ 0,

for all θ ∈ B, θ′ ∈ V . (φn) is uniformly (asymptotically) consistent if,

sup
θ∈B

Pθ,nφn → 0 and sup
θ′∈V

Qn,θ′(1− φn)→ 0,
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Bayesian tests

A test sequence (φn) is Π-a.s. (asymptotically) consistent if,

Pθ,nφn → 0 and Qn,θ′(1− φn)→ 0,

for all Π-almost-all θ ∈ B, θ′ ∈ V .

Theorem 24.1 (BK, unpublished) Let (P,G ,Π) be given. For any

B, V ∈ G , B ∩ V = ∅, the following are equivalent,

(i) There exists a Π-a.s. consistent test sequence for B versus V ;

(ii) There exists a test sequence (φn) s.t.∫
B
Pθ,nφn dΠ(θ) +

∫
V
Qn,θ′(1− φn) dΠ(θ)→ 0

(iii) The posterior satisfies Π(V |Xn)
P -a.s.−−−−−→0 and Π(B|Xn)

Q-a.s.−−−−−→0,

for Π-almost-all P ∈ B, Q ∈ V .
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Optimal tests and the minimax theorem

We say that (φn) is minimax optimal if,

sup
θ∈Θ0

Pnθ φn + sup
θ∈Θ1

Pnθ (1− φn) = inf
ψ

(
sup
θ∈Θ0

Pnθ ψ + sup
θ∈Θ1

Pnθ (1− ψ)
)
,

Theorem 25.1 Assume that Φ and Θ are convex, that φ 7→ R(θ, φ)

is convex for every θ and that the map θ 7→ R(θ, φ) is concave for

every φ. Futhermore, suppose that Φ is compact and φ 7→ R(θ, φ) is

continuous for all θ. Then there exists a minimax optimal test φ∗ and,

sup
θ∈Θ

R(θ, φ∗) = inf
φ∈Φ

sup
θ∈Θ

R(θ, φ) = sup
θ∈Θ

inf
φ∈Φ

R(θ, φ).
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Examples of uniform test sequences

In the following, fix n ≥ 1 and consider i.i.d. data Y = (X1, . . . , Xn).

The model P contains probability measures P s.t. Y ∼ Pn.

Lemma 26.1 (Minimax Hellinger tests) Let B, V ⊂P be convex with

H(B, V ) > 0. There exist a uniform test sequence (φn) s.t.

sup
P∈B

Pnφn ≤ e−
1
2nH

2(B,V ), sup
Q∈V

Qn(1− φn) ≤ e−
1
2nH

2(B,V ).
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Proof

The minimax risk π(B, V ) for testing B versus Q is

π(B, V ) = inf
φ

sup
(P,Q)∈B×V

(Pφ+Q(1− φ))

Apply the minimax theorem,

inf
φ

sup
P,Q

(Pφ+Q(1− φ)) = sup
P,Q

inf
φ

(Pφ+Q(1− φ))

On the r.h.s. φ can be chosen (P,Q)-dependently; minimal for φ =

1{p < q} (remember the Neyman-Pearson test)

π(B, V ) = sup
P,Q

(P (p < q) +Q(p ≥ q))

27



Proof

Note that:

P (p < q) +Q(p ≥ q) =
∫
p<q

p dµ+
∫
p≥q

q dµ

≤
∫
p<q

p1/2q1/2 dµ+
∫
p≥q

p1/2q1/2 dµ = 1− 1
2H

2(P,Q) ≤ e−
1
2H

2(P,Q).

This relates minimax testing power to the Hellinger distance between

P and Q. For product measures, n-th power.

π(Pn, Qn) ≤ e−
1
2nH

2(P,Q).
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Weak tests

In the following, fix n ≥ 1 and consider i.i.d. data Y = (X1, . . . , Xn).

The model P contains probability measures P s.t. Y ∼ Pn.

Lemma 29.1 (Weak tests) Let ε > 0, P0 ∈ P and a measurable

f : X n → [0,1] be given. Define,

B =
{
P ∈P : |(Pn − Pn0 )f | < ε

}
, V =

{
P ∈P : |(Pn − Pn0 )f | ≥ 2ε

}
.

There exist a D > 0 and uniformly consistent test sequence (φn) s.t.

sup
P∈B

Pnφn ≤ e−nD, sup
Q∈V

Qn(1− φn) ≤ e−nD.

Proof relies on Hoeffding’s inequality
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Lecture II
The Bernstein-Von Mises theorem

The second lecture is devoted to regular estimation problems

and the Bernstein-von Mises theorem, both parametrically and

semi-parametrically. We discuss regularity, local asymptotic

normality, efficiency and the consequences and applications of

the parametric Bernstein-von Mises theorem. We then turn to

semiparametrics, considering consistency under perturbation,

integral lAN and the semi-parametric Bernstein-von Mises the-

orem. Semi-parametric bias is mentioned as a major obstacle.



Example Parametric regression

Questions

Observe i.i.d. Y1, . . . , Yn, Yi = θ + ei (or Yi = θ Xi + ei, etcetera) with

a normally distributed error (of known variance). The density for the

observation is,

pθ0
(x) = φ(x− θ0),

where φ is the density for the relevant normal distribution. Note the

Fisher information for location is non-singular.

What should we expect of the posterior for θ in this model?

If we generalize to include non-parametric modelling freedom,

what can be said about the (marginal) posterior for θ?
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Convergence of the posterior
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Local Asymptotic Normality LAN

Definition 33.1 (Le Cam (1960))

There is a ˙̀θ0
∈ L2(Pθ0

) with Pθ0
˙̀θ0

= 0 s.t. for any (hn) = O(1),

n∏
i=1

p
θ0+n−1/2hn

pθ0

(Xi) = exp
(
hTn∆′n,θ0

−1
2h

T
nIθ0

hn + oPθ0
(1)

)
,

where ∆′n,θ0
is given by,

∆′n,θ0
=

1
√
n

n∑
i=1

˙̀θ0
(Xi)

Pθ0-w.
−−−−−→N(0, Iθ0

),

and Iθ0
= Pθ0

˙̀θ0
˙̀T
θ0

is the Fisher information.
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Differentiability in quadratic mean (DQM)

Definition 34.1 (Le Cam (1960))

A model P is differentiable in quadratic mean at θ0 with score ˙̀θ0
if∫ (

p
1/2
θ − p1/2

θ0
− 1

2(θ − θ0) ˙̀θ0
p

1/2
θ0

)2
dµ = o

(
‖θ − θ0‖2

)
.

Then P0 ˙̀θ0
= 0, ˙̀θ0

∈ L2(Pθ0
) and Iθ0

= P0 ˙̀θ0
˙̀θ0

is the Fisher infor-

mation.

Lemma 34.2 (Le Cam (1960))

The model P is DQM at θ0 iff P is LAN at θ0.

Remark 34.3 Sufficient is differentiability of θ 7→ pθ(y) for every y.
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Estimator regularity and the convolution
theorem

Definition 35.1 An estimator sequence θ̂n for a parameter θ0 is said

to be regular, if for every hn = O(1), with θn = θ0 + n−1/2hn

√
n(θ̂n − θn)

Pθn-w.
−−−−−→Lθ0

for some (hn)-independent limit distribution Lθ0
.

Theorem 35.2 (Hájek, 1970)

Assume that the model is LAN at θ0 with non-singular Fisher informa-

tion Iθ0
. Suppose θ̂n is a regular estimator for θ0 with limit Lθ0

. Then

there exists a probability kernel Mθ0
such that Lθ = N(0, I−1

θ0
) ∗Mθ0

.
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Regular estimation and efficiency

Definition 36.1 Given an asymptotic estimation problem with i.i.d.-

P0 data and non-singular Fisher information I0, an influence function

∆n is,

∆n = I−1
0 ∆′n =

1
√
n

n∑
i=1

I−1
0

˙̀θ0
(Xi)

P0-w.−−−−→N(0, I−1
0 )

Theorem 36.2 (Fisher, Cramér, Rao, Le Cam, Hájek)

An estimator θ̂n is efficient if and only if it is asymptotically linear:

√
n(θ̂n − θ0) = ∆n,θ0

+ oP0
(1),

for some influence function ∆n,θ0

Pθ0-w.
−−−−−→N(0, I−1

θ0
).

Remark 36.3 asymptotic bias equals zero because Pθ0
˙̀θ0

= 0.
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Efficiency of the maximum likelihood estimator

For all n ≥ 1, let X1, . . . , Xn denote i.i.d. data with marginal P0.

Theorem 37.1 (see van der Vaart (1998))

Assume that P = {Pθ : θ ∈ Θ} with Θ open in Rk and that there exists

a θ0 ∈ Θ s.t. P0 = Pθ0
. Furthermore, assume that P is LAN at θ0 and

that Iθ0
is non-singular. Also assume there exists an L2(Pθ0

)-function
˙̀ s.t. for any θ, θ′ in a neighbourhood of θ0 and all x,∣∣∣ log pθ(x)− log pθ′(x)

∣∣∣ ≤ ˙̀(x) ‖θ − θ′‖,

If the ML estimate θ̂n is consistent, it is efficient,

√
n(θ̂n − θ0)

Pθ0-w.
−−−−−→N(0, I−1

θ0
).
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Parametric Bernstein-von Mises theorem

Theorem 38.1 (Le Cam (1953), h =
√
n(θ − θ0))

Let P = {Pθ : θ ∈ Θ ⊂ Rd} with thick prior ΠΘ be LAN at θ0 with

non-singular Iθ0
. Assume that for every sequence of radii Mn →∞,

Π
(
‖h‖ ≤Mn

∣∣∣ X1, . . . , Xn
) P0−−→1

Then the posterior converges to normality as follows

sup
B

∣∣∣∣Π(h ∈ B ∣∣∣ X1, . . . , Xn
)
−N

∆n,θ0
,I−1
θ0

(B)
∣∣∣∣ P0−−→0

Remark 38.2 With θ̂n any efficient estimator,

sup
B

∣∣∣∣Π( θ ∈ B ∣∣∣ X1, . . . , Xn
)
−Nθ̂n,(nIθ0)−1(B)

∣∣∣∣ P0−−→0

Remark 38.3 (BK and van der Vaart, 2012) There’s a version for

the misspecified situation (P0 6∈P).
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Consequences and applications

i. Bayesian point estimators are efficient

ii. Confidence intervals based on the sampling distribution of an ef-

ficient estimator and credible sets coincide asymptotically

Model selection with the Bayesian Information Criterion (BIC). Con-

sider parameter spaces Θk ⊂ Rk, (k ≥ 1) with models Pk for i.i.d.

data X1, . . . , Xn. Define,

BIC(θ, k) = −2 logLn(X1, . . . , Xn; θ1, . . . , θk) + k log(n)

Minimization of BIC(θ1, . . . , θk; k) with respect to θ and k is penalized

ML estimate that selects a value of k. Closely related to AIC, RIC,

MDL and other model selection methods.
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Efficiency of formal Bayes estimators

Definition 40.1 Let Y , P, Π be like before and let ` : Rk → [0,∞)

be a loss function. The posterior risk is defined almost-surely,

t 7→
∫

Θ
`
(√

n(t− θ)
)
dΠ(θ|Y ).

A minimizer θ̂3,n of posterior risk is called the formal Bayes estimator

associated with ` and Π

Theorem 40.2 (Le Cam (1953,1986) and van der Vaart (1998))

Assume that the BvM theorem holds and that ` is non-decreasing

and `(h) ≤ 1 + ‖h‖p for some p > 0 such that
∫
‖θ‖p dΠ(θ) <∞. Then

√
n(θ̂3,n−θ0) converges weakly to the minimizer of

∫
`(t−h) dN

Z,I−1
θ0

(h)

where Z ∼ N(0, I−1
θ0

).
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Example Semiparametric regression

New Question

Observe i.i.d. X1, . . . , Xn, Xi = θ+ ei (or Yi = θ Xi+ ei, etcetera) with

a symmetrically distributed error. Density for X’s is,

pθ0,η0
(x) = η0(x− θ0),

where η ∈ H is a symmetric Lebesgue density on R. We assume that η

is smooth and that the Fisher information for location is non-singular.

Adaptivity Stein (1956), Bickel (1982)

For inference on θ0 it does not matter whether we know η0 or not!

√
n(θ̂n − θ0)

Pθ0,η0
-w.

−−−−−−−→N(0, I−1
θ0,η0

)

where Iθ0,η0
is the Fisher information.
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Parametric/Semi-parametric analogy

Parametric posterior

The posterior density θ 7→ dΠ(θ|X1, . . . , Xn)

n∏
i=1

pθ(Xi) dΠ(θ)
/ ∫

Θ

n∏
i=1

pθ(Xi) dΠ(θ)

with LAN requirement on the likelihood.

Semiparametric analog

The marginal posterior density θ 7→ dΠ(θ|X1, . . . , Xn)∫
H

n∏
i=1

pθ,η(Xi) dΠH(η) dΠΘ(θ)
/ ∫

Θ

∫
H

n∏
i=1

pθ,η(Xi) dΠH(η) dΠΘ(θ)

with integral LAN requirement on ΠH-integrated likelihood.
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Integral local asymptotic normality ILAN

Definition 43.1 Given a nuisance prior ΠH, the localized integrated

likelihood is,

sn(h) =
∫
H

n∏
i=1

p
θ0+n−1/2h,η

pθ0,η0

(Xi) dΠH(η),

Definition 43.2 sn is said to have the ILAN property, if for every

hn = OP0
(1)

log
sn(hn)

sn(0)
= hTn ∆̃′n,θ0,η0

−1
2h

T
n Ĩθ0,η0

hn + oP0
(1),

where the efficient ∆̃′n,θ0,η0
is given by

∆̃′n,θ0,η0
=

1
√
n

∞∑
i=1

˜̀θ0,η0

Pθ0,η0
-w.

−−−−−−−→N(0, Ĩθ0,η0
)
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Consistency under
√
n-perturbation

θ

D(θ,ρ)

(θ0,η0)

H

Θ

η*(θ)

U0

Given ρn ↓ 0 we speak of consistency under n−1/2-perturbation at rate

ρn, if for all hn = OP0
(1).

Πn

(
D(θ, ρn)

∣∣∣ θ = θ0 + n−1/2hn ; X1, . . . , Xn
) P0−−→1
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Integral LAN

η*

ζ =1

ζ =0

ζ =2

ζ =3

ζ =4

Θ

(θ0,η0)

n -1/2

H

ζ =5

ζ =6

g ζ =0

g ζ =1

g ζ =-1

g ζ =-3

g ζ =-2

g ζ =2

g ζ =-4

reparametrize (θ, ζ) 7→ (θ, η∗(θ) + ζ)
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Semiparametric Bernstein-von Mises theorem

Theorem 46.1 (Bickel and BK (2012))

Let P = {Pθ,η : θ ∈ Θ, η ∈ H} with thick prior ΠΘ and nuisance prior

ΠH. Assume ILAN at Pθ0,η0
with non-singular Ĩθ0,η0

. Assume that for

every sequence of radii Mn →∞,

Π
(
‖h‖ ≤Mn

∣∣∣ X1, . . . , Xn
) P0−−→1

Then the posterior converges marginally to normality as follows

sup
B

∣∣∣∣Π(h ∈ B ∣∣∣ X1, . . . , Xn
)
−N

∆̃n,θ0,η0
,Ĩ−1
θ0,η0

(B)
∣∣∣∣ P0−−→0

BOTH ILAN and
√
n-consistency are sensitive to semiparametric bias!

46



Semiparametric bias

An estimator θ̂n for θ0 is regular but asymptotically biased if,
√
n(θ̂n − θ0) = ∆̃n,θ0,η0

+ µn,θ0,η0
+ oP0

(1),

with ∆̃n,θ0,η0

P0-w.−−−−→N(0, Ĩ−1
θ0η0

) and µn,θ0,η0
= O(1) or worse. Typi-

cally, ∣∣∣µn,θ0,η0

∣∣∣ ≤ n−1/2 sup
η∈Dn

∣∣∣ Ĩ−1
θ0,η0

Pθ0,η
˜̀θ0,η0

∣∣∣
where Dn describes some form of localization for η ∈ H around η0.

Theorem 47.1 (approximate, see Schick (1986), Klaassen (1987))

An efficient estimator for θ0 exists if and only if there exists an esti-

mator ∆̂n for the influence function, whose asymptotic bias vanishes

at a rate strictly faster than
√
n,

Pnθn,η∆̂n = o(n−1/2),
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Example Regression with symmetric errors

Theorem 48.1 (Chae, Kim and BK (201?))

Let X1, . . . , Xn be i.i.d.-Pθ0,η0
, i.e. Xi = θ0 + ei with e distributed as a

symmetric normal location mixture η0 from H of the form,

η(x) =
∫
φ(x− z) dF (z)

(where F is symmetric and φ denotes the standard normal density).

With thick prior ΠΘ and nuisance prior ΠH that has full weak support,

the posterior converges marginally to normality

sup
B

∣∣∣∣Π(h ∈ B ∣∣∣ X1, . . . , Xn
)
−N

∆̃n,θ0,η0
,Ĩ−1
θ0,η0

(B)
∣∣∣∣ P0−−→0

where ˜̀θ0,η0
(X) = ṗθ0,η0

/pθ0,η0
(X) and Ĩθ0,η0

= P0˜̀2
θ0,η0

.
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Lecture III
Bayes and the Infinite

In the third lecture we consider application of Bayesian meth-

ods in non-parametric models: we do not focus on the con-

struction of non-parametric priors but on the requirements for

such priors to lead to consistent posteriors. After a review of

the consequences of posterior consistency, we turn to Doob’s

theorem, Freedman’s counterexamples and Schwartz’s theo-

rem, which we prove. We also point out the limitations of

Schwartz’s theorem.



Frequentist consistency

Let X1, . . . , Xn be i.i.d.-Pθ0
-distributed

Consider a point-estimator θ̂n(X).

An estimator is said to be (strongly) consistent if

θ̂n
Pθ0(−a.s.)
−−−−−−−−→ θ0.

E.g. if the topology is metric, a consistent estimator θ̂n is found

at a distance from θ0 greater than some ε > 0 with Pnθ0
-probability

arbitrarily small, if we make the sample large enough.

Since θ0 is unknown, we have to prove this for all θ ∈ Θ before it is

useful.
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Frequentist rate of convergence

Next, suppose that θ̂n
Pθ0−−−→ θ0. Let (rn) be a sequence rn ↓ 0.

We say that θ̂n converges to θ0 at rate rn if

r−1
n ‖θ̂n − θ0‖ = OPθ0

(1)

So rn compensates the decrease in distance between θ̂n and θ0, such

that the fraction is bounded in probability.

Or: the rn are the radii of balls around θ̂n that shrink (just) slowly

enough to still capture θ0 with high probability.
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Frequentist limit distribution

Suppose that θ̂n converges to θ0 at rate rn.

Let Lθ0
be a non-degenerate but tight distribution. If

r−1
n (θ̂n − θ0)

Pθ0-w.
−−−−−→Lθ0

,

we say that θ̂n converges to θ0 at rate rn with limit-distribution Lθ0
.

So if we blow up the difference between θ̂n and θ0 by exactly the

right factors r−1
n , we keep up with convergence and arrive at a stable

distribution Lθ0
.

52



Posterior consistency

Given P0-i.i.d. Xn, P with prior Π, do posteriors concentrate on P0?
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Definition 53.1 Given a model P with Borel prior Π, the posterior

is (strongly) consistent at P ∈P if for every neighbourhood U of P

Π(U |Xn)
P (−a.s.)−−−−−−→1 (1)
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Consistency is Prokhorov’s tight convergence

Theorem 54.1 Let P be a uniform model with Borel prior Π. The

posterior is strongly consistent, if and only if, for every bounded,

continuous f : P → R,∫
f(P ) dΠ(P |Xn)

P0-a.s.−−−−−→ f(P0), (2)

which we denote by Π( · |X1, . . . , Xn)
w−→ δP0

.

Remark 54.2 All weak, polar and metric topologies are uniform:

U = {P ∈P : |(P−P0)f | < ε}, V = {P ∈P : sup
f∈B
|(P − P0)f | < ε},

W = {P ∈P : d(P, P0) < ε},

for ε > 0 and functions 0 ≤ f ≤ 1 measurable (or smaller class).
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Proof

Assume (1). Let f : P → R be bounded (|f | ≤ M) and continuous.

Let η > 0 be given. Let U be a neighbourhood of P0 s.t. |f(P ) −
f(P0)| ≤ η for all P ∈ U . Integrate f with respect to the posterior and

to δP0
: ∣∣∣∣∫

P
f(P ) dΠn(P |X1, . . . , Xn)− f(P0)

∣∣∣∣
≤
∫
P\U

|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

+
∫
U
|f(P )− f(P0)| dΠn(P |X1, . . . , Xn)

≤ 2M Πn( P \ U |X1, X2, . . . , Xn )

+ sup
P∈U

|f(P )− f(P0)|Πn(U |X1, X2, . . . , Xn )

≤ η + o(1), (n→∞).

Consequently, (2) holds.
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Proof

Conversely, assume (2) holds. Let U be an open neighbourhood

of P0. Because P is completely regular, there exists a continuous

f : P → [0,1] that separates {P0} from P \ U , i.e. f = 1 at {P0} and

f = 0 on P \ U .

lim inf
n→∞ Πn(U |X1, X2, . . . , Xn ) = lim inf

n→∞

∫
P

1U(P ) dΠn(P |X1, . . . , Xn)

≥ lim inf
n→∞

∫
P
f(P ) dΠn(P |X1, . . . , Xn) =

∫
P
f(P ) dδP0

(P )= 1,

P0-almost-surely. Consequently, (1) holds.
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Consistency of Bayesian point estimators

Theorem 57.1 Suppose that P is a is endowed with the topology

of total variation. Assume that the posterior is strongly consistent.

Then the posterior mean P̂n is a P0-almost-surely consistent point-

estimator in total-variation.
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Proof

Extend P 7→ ‖P −P0‖ to the convex hull of P. Since P 7→ ‖P −P0‖ is

convex, Jensen says,

‖P̂n − P0‖ =
∥∥∥∥∫

P
P dΠn(P |X1, . . . , Xn )− P0

∥∥∥∥
≤
∫
P
‖P − P0‖ dΠn(P |X1, . . . , Xn ).

Since P
Πn-w.−−−−−→P0 under Πn = Πn( · |X1, . . . , Xn ) and P 7→ ‖P − P0‖ is

bounded and continuous, the r.h.s. converges to the expectation of

‖P − P0‖ under the limit law δP0
, which equals zero. Hence

P̂n
P0−a.s.−−−−−−→P0,

in total variation.
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Doob’s theorem

Theorem 59.1 (Doob (1948))

Suppose that the parameter space Θ and the sample space X are

Polish spaces endowed with their respective Borel σ-algebras. Assume

that Θ → P : θ 7→ Pθ is one-to-one. Then for any prior Π on Θ the

posterior is consistent, Π-almost-surely.

Proof An application of Doob’s martingale convergence theorem (see

van der Vaart (1998) or Ghosh and Ramamoorthi (2003)), combined

with a difficult argument on existence of a measurable f : X ∞ → Θ

s.t. f(X1, X2, . . .) = θ, P∞θ − a.s. for all θ ∈ Θ (Le Cam’s accessibility

(Breiman, Le Cam, Schwartz (1964), Le Cam (1986)).
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Freedman’s point

Remark 60.1 Doob’s theorem says nothing about specific points: it

is always possible that P0 belongs to the null-set for which inconsis-

tency occurs.

Remark 60.2 (Non-parametric counterexamples)

Schwartz (1961), Freedman (1963,1965), Diaconis and Freedman

(1986), Cox (1993), Freedman and Diaconis (1998). Basically what

is shown is that Doob’s null-set of inconsistency can be rather large.

Example 60.3 Let X1, X2 . . .∈ N be i.i.d.-P0. The full model is the

unit simplex in `1, P = {(pi) ∈ [0,1] : pi ≥ 0,Σipi = 1}. Let Pi =

{P ∈P : pi = 0} with prior Πi of full support Pi. Define Π′ =
∑
i λiΠi

for (λi) s.t. λi > 0, Σiλi = 1. For some fixed P , choose Π = 1
2Π′+1

2δP .

Π has full support on P. Nonetheless, if P0(X = i) > 0 for all i ≥ 1,

then the posterior is inconsistent (it converges to δP ).
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Schwartz’s theorem

Theorem 61.1 (Schwartz (1965))

Assume that

(i) For every ε > 0, there is a test sequence (φn) s.t.

Pn0φn → 0, sup
{P :d(P,P0)>ε}

Pn(1− φn)→ 0.

(ii) Let Π be a KL-prior, i.e. for every η > 0,

Π
(
P ∈P : −P0 log

p

p0
≤ η

)
> 0,

Then the posterior is strongly consistent at P0.

Theorem 61.2 Let P be Hellinger totally bounded and let Π a KL-

prior. Then the posterior is Hellinger consistent at P0.
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Proof of Schwartz’s theorem

Let ε, η > 0 be given. Define

V = {P ∈P : d(P, P0) ≥ ε }.

Split the n-th posterior (of V ) with the test functions φn and take

the lim sup:

lim sup
n→∞

Πn(V |X1, . . . , Xn) ≤ lim sup
n→∞

Πn(V |X1, . . . , Xn)(1− φn)

+ lim sup
n→∞

Πn(V |X1, . . . , Xn)φn.
(3)

Define Kη = {P ∈P : −P0 log(p/p0) ≤ η}. For every P ∈ Kη, LLN∣∣∣∣Pn log
p

p0
− P0 log

p

p0

∣∣∣∣→ 0, (P0 − a.s.).
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Proof of Schwartz’s theorem

So for every α > η and all P ∈ Kη,

n∏
i=1

p

p0
(Xi) ≥ e−nα,

Pn0 -almost-surely. Use this to lower-bound the denominator

lim inf
n→∞ enα

∫
P

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ lim inf

n→∞ enα
∫
Kη

n∏
i=1

p

p0
(Xi) dΠ(P )

≥
∫
Kη

lim inf
n→∞ enα

n∏
i=1

p

p0
(Xi) dΠ(P ) ≥ Π(Kη) > 0.
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Proof of Schwartz’s theorem

The first term in (3) can be bounded as follows

lim sup
n→∞

Πn(V |X1, . . . , Xn)(1− φn)(X1, . . . , Xn)

≤
lim sup
n→∞

enα
∫
V

n∏
i=1

(p/p0)(Xi) (1− φn)(X1, . . . , Xn) dΠ(P )

lim inf
n→∞ enα

∫
P

n∏
i=1

(p/p0)(Xi) dΠ(P )

≤
1

Π(Kη)
lim sup
n→∞

fn(X1, . . . , Xn),

(4)

where we use the (non-negative)

fn(X1, . . . , Xn) = enα
∫
V

n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn) dΠ(P ).
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Proof of Schwartz’s theorem, interlude

At this stage in the proof we need the following lemma, which says

that uniform consistency of testing can be assumed to be of expo-

nential power without loss of generality.

Lemma 65.1 Suppose that for given ε > 0 there exists a sequence

of tests (φn) such that:

Pn0φn → 0, sup
P∈Vε

Pn(1− φn)→ 0,

where Vε = {P ∈ P : d(P, P0) ≥ ε}. Then there exists a sequence of

tests (ωn) and positive constants C,D such that:

Pn0ωn ≤ e
−nC, sup

P∈Vε
Pn(1− ωn) ≤ e−nD (5)
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Proof of Schwartz’s theorem

The previous lemma guarantees that there exists a constant β > 0

such that for large enough n,

P∞0 fn = Pn0 fn = enα
∫
V
Pn0

( n∏
i=1

p

p0
(Xi) (1− φn)(X1, . . . , Xn)

)
dΠ(P )

≤ enα
∫
V
Pn(1− φn) dΠ(P ) ≤ e−n(β−α).

(6)

Choose η < β and α such that η < α < 1
2(β + η). Markov’s inequality

P∞0
(
fn > e−

n
2(β−η)

)
≤ e

n
2(β−η) P∞0 fn ≤ en(α−1

2(β+η)).
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Proof of Schwartz’s theorem

Hence
∑∞
n=1 P

∞
0 (fn > exp−n2(β − η)) converges. By the first Borel-

Cantelli lemma

0 = P∞0

( ∞⋂
N=1

⋃
n≥N

{
fn > e−

n
2(β−η)

})
≥ P∞0

(
lim sup
n→∞

(
fn− e−

n
2(β−η)

)
> 0

)
So fn → 0, (P0 − a.s.) and hence

Πn(V |X1, . . . , Xn) (1− φn)(X1, . . . , Xn)
P0-a.s.−−−−−→0.

The other term in (3) is treated similarly: Pn0 Π(V |X1, . . . , Xn)φn ≤
Pn0φn ≤ e−nC; use Markov’s inequality and the first Borel-Cantelli

lemma again to show that:

Π(V |X1, . . . , Xn)φn(X1, . . . , Xn)
P0-a.s.−−−−−→0. (7)

Combination of (4) and (7) proves that (3) equals zero.
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... but there are very nasty examples

Example 68.1 Consider P0 on R with Lebesgue density p0 supported

on an interval of width one but unknown location. With η(x) > 0, if

x ∈ (0,1) and η(x) = 0 otherwise, and θ ∈ R:

pθ(x) = η(x− θ) 1[θ,θ+1](x)

Note that if θ 6= θ′,

−Pθ,η log
pθ′,η

pθ,η
=∞

Kullback-Leibler neighbourhoods are singletons: no prior can be a

Kullback-Leibler prior in this model!
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Lecture IV
More posterior consistency

In the fourth lecture, we delve deeper into the theory on pos-

terior convergence, motivated by examples that show the lim-

itations of Schwartz’s prior mass condition. We prove an al-

ternative consistency theorem that does not rely on KL-priors.

We also make contact with Barron’s theorem, Walker’s theo-

rem and the Ghosal-Ghosh-van der Vaart theorem on the rate

of posterior convergence. Particularly, we indicate that GGV-

priors suffer from limitations as well, and we derive a theorem

on posterior rates of convergence with weaker prior-mass con-

dition. [arxiv: 1308.1263v3]



Recall Schwartz

Theorem 70.1 (Schwartz (1965))

Let P be Hellinger totally bounded and let Π a KL-prior, i.e. for η > 0,

Π
(
P ∈P : −P0 log

p

p0
≤ η

)
> 0,

Then the posterior is Hellinger consistent at P0.

Example 70.2 Consider P0 on R with density,

pθ(x) = η(x− θ) 1[θ,θ+1](x),

for some θ ∈ R. Note that if θ 6= θ′,

−Pθ,η log
pθ′,η′

pθ,η
=∞

no prior can be a Kullback-Leibler prior in this model!
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Walker’s theorem

Theorem 71.1 (Walker (2004))

Let P be Hellinger separable. Let {Vi : i ≥ 1} be a countable cover

of P by balls of radius ε. If Π is a Kullback-Leibler prior and,∑
i≥1

Π(Vi)
1/2 <∞

then Π(H(P, P0) > ε |X1, . . . , Xn )
P0-a.s.−−−−−→0.
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The Ghosal-Ghosh-van der Vaart theorem

Theorem 72.1 (Ghosal, Ghosh and van der Vaart, 2000)

Let (εn) be such that εn ↓ 0 and nε2n →∞. Let C > 0 and Pn ⊂P be

such that, for large enough n,

(i) N(εn,Pn, H) ≤ e−nε2n

(ii) Π(P \Pn) ≤ e−nε2n(C+4)

(iii) the prior Π is a GGV-prior, i.e.

Π
(
P ∈P : −P0 log

dP

dP0
< ε2n, P0

(
log

dP

dP0

)2
< ε2n

)
≥ e−Cnε

2
n

Then Π(P ∈P : H(P, P0) > Mεn |X1, . . . , Xn )
P0−−→0 for some M > 0.
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... but here’s another tricky example

Example 73.1 Consider the distributions Pa, (a ≥ 1), defined by,

pa(k) = Pa(X = k) =
1

Za

1

ka(log k)3

for all k ≥ 2, with Za =
∑
k≥2 k

−a(log k)−3 <∞. For a = 1, b > 1,

−Pa log
pb
pa
<∞, Pa

(
log

pb
pa

)2
=∞

Schwartz’s KL-condition for the prior for the parameter a can be

satisfied but GGV priors do not exist.

Remark 73.2 With (log k)2 instead of (log k)2, KL-priors also fail.
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Posterior convergence

Recall the prior predictive distribution PΠ
n (A) =

∫
P Pn(A) dΠ(P ).

Theorem 74.1 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V1, . . . , VN

be a finite collection of model subsets. If there exist constants Di > 0

and test sequences (φi,n) for all 1 ≤ i ≤ N such that,

Pn0φi,n + sup
P∈Vi

Pn0
dPn

dPΠ
n

(1− φi,n) ≤ e−nDi, (8)

for large enough n, then any V ⊂
⋃

1≤i≤N Vi receives posterior mass

zero asymptotically,

Π(V |X1, . . . , Xn )
P0-a.s.−−−−−→0. (9)
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Proof

If Π(Vi|X1, . . . , Xn)
P0-a.s.−−−−−→0 for all 1 ≤ i ≤ N then the assertion is

proved. So pick some i and consider,

Pn0 Π(Vi|X1, . . . , Xn) ≤ Pn0φn + Pn0 Π(Vi|X1, . . . , Xn)(1− φn)

By Fubini,

Pn0 Π(Vi|X1, . . . , Xn)(1− φn) =
∫
V

dPn

PΠ
n

(1− φn) dΠ(P )

≤ Π(Vi) sup
P∈Vi

P0

(
dPn

dPΠ
n

)
(1− φn) ≤ e−nDi

Apply Markov and Borel-Cantelli to conclude that,

lim sup
n→∞

Π(Vi|X1, . . . , Xn) = 0.
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Minimax test sequence

Lemma 76.1 Let V ⊂P be given and assume that Pn0 (dPn/dPΠ
n ) <

∞ for all P ∈ V . For every B there exists a test sequence (φn) such

that,

Pn0φn+ sup
P∈V

Pn0
dPn

dPΠ
n

(1− φn)

≤ inf
0≤α≤1

Π(B)−α
∫ (

sup
P∈co(V )

P0

(
dP

dQ

)α)n
dΠ(Q|B).

i.e. testing power is bounded in terms of Hellinger transforms.

The construction is technically close to that needed for the analysis

of posteriors for misspecified models, i.e. when P0 6∈ P (see, Kleijn

and van der Vaart (2006)).
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Sketch of the proof

Let QΠ
n (A) be the prior predictive with Π( · |B): PΠ

n (A) ≥ Π(B)QΠ
n (A)

and using Jensen’s inequality,

Pn0

(
dP (n)

dPΠ
n

)α
≤ Π(B)−α Pn0

(
dP (n)

dQΠ
n

)α
≤ Π(B)−α Pn0

∫ (
dP (n)

dQn

)α
dΠ(Q|B),

Hellinger transforms “sub-factorize” over convex hulls of products

sup
P (n)∈co(V n)

∫
Pn0

(
dP (n)

dQn

)α
dΠ(Q|B) ≤

∫
sup

P (n)∈co(V n)
Pn0

(
dP (n)

dQn

)α
dΠ(Q|B)

≤
∫ (

sup
P∈V

P0

(
dP

dQ

)α)n
dΠ(Q|B).

(see lemma 3.14 in Kleijn (2003))
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A new consistency theorem

For α ∈ [0,1], model subsets B,W and a given P0, define,

πP0
(W,B;α) = sup

P∈W
sup
Q∈B

P0

(
dP

dQ

)α

Theorem 78.1 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V1, . . . , VN be

model subsets. If there exist subsets B1, . . . , BN such that Π(Bi) > 0,

πP0
( co(Vi), Bi ) < 1

and supQ∈Bi P0(dP/dQ) <∞ for all P ∈ Vi, then,

Π(V |X1, . . . , Xn )
P0-a.s.−−−−−→0

for any V ⊂
⋃

1≤i≤N Vi.

With theorem 78.1 consistency in the fixed-width domain example

(for priors of full support on R) is demonstrated without problems.
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Flexibility

Given a consistency question, i.e. given P and V , the approach is

uncommitted regarding the prior and B. We look for neighbourhoods

B of P0 (of course such that supQ∈B P0(dP/dQ) < ∞ for all P ∈ V ),

which

(i) allow (uniform) control of P0(p/q)α,

(ii) allow convenient choice of a prior such that Π(B) > 0.

The two requirements on B leave room for a trade-off between being

‘small enough’ to satisfy (i), but ‘large enough’ to enable a choice for

Π that leads to (ii).

So we are no longer committed to KL-priors!
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Relation with Schwartz’s KL condition

Lemma 80.1 Let P0 ∈ B ⊂ P and W ⊂ P be given. Assume there

is an a ∈ (0,1) such that for all Q ∈ B and P ∈ W , P0(dP/dQ)a <∞.

Then,

πP0
(W,B) < 1

if and only if,

sup
Q∈B

−P0 log
dQ

dP0
< inf
P∈W

−P0 log
dP

dP0
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Consistency in KL-divergence

Theorem 81.1 Let Π be a Kullback-Leibler prior. Define V = {P ∈
P : −P0 log(dP/dP0) ≥ ε} and assume that for some KL neighbour-

hood B of P0, supQ∈B P0(dP/dQ) < ∞ for all P ∈ V . Also assume

that V is covered by subsets V1, . . . , VN such that,

inf
P∈co(Vi)

−P0 log
dP

dP0
> 0

for all 1 ≤ i ≤ N . Then,

Π(−P0 log(dP/dP0) < ε |X1, . . . , Xn )
P0-a.s.−−−−−→1
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Relation with priors that charge metric balls

Note that if we choose α = 1/2,

P0

(
p

q

)1/2
=
∫ (

p0

q

)1/2
p

1/2
0 p1/2 dµ

=
∫
p

1/2
0 p1/2 dµ+

∫ ((
p0

q

)1/2
− 1

)(
p0

q

)1/2(p
q

)1/2
dQ

≤ 1−
1

2
H(P0, P )2 +H(P0, Q)

∥∥∥∥p0

q

∥∥∥∥1/2

2,Q

∥∥∥∥pq
∥∥∥∥1/2

2,Q
.

So if ‖p/q‖2,Q is bounded, a lower bound to H(co(V ), P0) and an

upper bound for H(Q,P0) guarantee π(co(V ), B; 1
2) < 1.
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Borel priors of full support

Theorem 83.1 Suppose that P is Hellinger totally bounded. Assume

an L > 0 and a Hellinger ball B′ centred on P0 such that,∥∥∥∥pq
∥∥∥∥

2,Q
=
(∫

p2

q
dµ

)1/2
< L, for all P ∈P and Q ∈ B′

If Π(B) > 0 for all Hellinger neighbourhoods of P0, the posterior is

Hellinger consistent, P0-almost-surely.

Lemma 83.2 If the KL divergence P → R : Q 7→ −P log(dQ/dP ) is

continuous, then a Borel prior of full support is a KL prior. If P is

metrizable, all net priors of full support are KL priors.
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Separable models and Barron’s sieves

Theorem 84.1 Let V be given. Assume that there are K,L > 0,

submodels (Pn)n≥1 and a B with Π(B) > 0, such that,

(i) there is a cover V1, . . . , VNn for V ∩Pn of order Nn ≤ exp(1
2Ln),

such that for every 1 ≤ i ≤ Nn,

πP0
( co(Vi), B ) ≤ e−L

and supQ∈B P0(dP/dQ) <∞ for all P ∈ Vi;

(ii) Π(P \Pn) ≤ exp(−nK) and,

sup
P∈V \Pn

sup
Q∈B

P0

(
dP

dQ

)
≤ e

K
2

Then Π(V |X1, . . . , Xn )
P0-a.s.−−−−−→0.
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A new theorem for separable models

Theorem 85.1 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V be a

model subset with a countable cover V1, V2, . . . and B1, B2, . . . such

that Π(Bi) > 0 and for P ∈ Vi, we have supQ∈Bi P0(dP/dQ) < ∞.

Then,

Pn0 Π(V |X1, . . . , Xn) ≤
∑
i≥1

inf
0≤α≤1

Π(Vi)
α

Π(Bi)α
π
(
co(Vi), Bi;α

)n
.
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Relation with Walker’s condition

Corollary 86.1 Assume that Pn0 � PΠ
n for all n ≥ 1. Let V be a

subset with a countable cover V1, V2, . . .. and a B such that Π(B) > 0

and for all i ≥ 1, P ∈ Vi, supQ∈B P0(dP/dQ) <∞. Also assume,

sup
i≥1

πP0

(
co(Vi), B

)
< 1

If the prior satisfies Walker’s condition,∑
i≥1

Π(Vi)
1/2 <∞

Then Π(V |X1, . . . , Xn)
P0-a.s.−−−−−→0.
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Posterior rates of convergence

Theorem 87.1 Assume that Pn0 � PΠ
n for all n ≥ 1. Let (εn) be

such that εn ↓ 0 and nε2n → ∞. Define Vn = {P ∈ P : d(P, P0) > εn},
submodels Pn ⊂ P and subsets Bn such that supQ∈Bn P0(p/q) < ∞
for all P ∈ Vn. Assume that,
(i) there is an L > 0 such that Vn∩Pn has a cover Vn,1, Vn,2, . . . , Vn,Nn

of order Nn ≤ exp(1
2Lnε

2
n), such that,

πP0

(
co(Vn,i), Bn

)
≤ e−Lnε

2
n

for all 1 ≤ i ≤ Nn.

(ii) there is a K > 0 such that Π(P\Pn) ≤ e−Knε
2
n and Π(Bn) ≥

e−
K
2 nε

2
n, while also,

sup
P∈P\Pn

sup
Q∈Bn

P0

(
dP

dQ

)
< e

K
4 ε

2
n

Then Π(P ∈P : d(P, P0) > εn |X1, . . . , Xn )
P0−−→0.
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Posterior rates with Schwartz’s KL priors

Theorem 88.1 Let εn be such that εn ↓ 0 and nε2n → ∞. For

M > 0, define Vn = {P ∈ P : H(P0, P ) > Mεn}, Bn = {Q ∈ P :

−P0 log(dQ/dP0) < ε2n}. Assume that,

(i) for all P ∈ Vn, sup{P0(dP/dQ) : Q ∈ Bn} <∞

(ii) there is an L > 0, such that N(εn,P, H) ≤ eLnε2n

(iii) there is a K > 0, such that for large enough n ≥ 1,

Π
(
P ∈P : −P0 log

dP

dP0
< ε2n

)
≥ e−Knε

2
n

then Π(P ∈P : H(P, P0) > Mεn |X1, . . . , Xn )
P0−−→0, for some M > 0.

With theorem 88.1
√
n-consistency in the heavy-tailed example 73.1

obtains (for uniform priors on bounded intervals in R).
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Estimation of support boundary I: model

Model

Define Θ = {(θ1, θ2) ∈ R2 : 0 < θ2 − θ1 < σ} (for some σ > 0)

and let H be a convex collection of Lebesgue probability densities

η : [0,1]→ [0,∞) with a function f : (0, a)→ R, f > 0 such that,

inf
η∈H

min
{∫ ε

0
η dµ,

∫ 1

1−ε
η dµ

}
≥ f(ε), (0 < ε < a)

The semi-parametric model P = {Pθ,η : θ ∈ Θ, η ∈ H},

pθ,η(x) =
1

θ2 − θ1
η

(
x− θ1

θ2 − θ1

)
1{θ1≤x≤θ2}.

Question

We are interested in marginal consistency for θ. Define the pseudo-

metric d : P ×P → [0,∞),

d(Pθ,η, Pθ′,η′) = max
{
|θ1 − θ′1|, |θ2 − θ′2|

}
.

We want posterior consistency with V = {Pθ,η : d(P,P0) ≥ ε}.
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Estimation of support boundary II: construction

Lemma 90.1 Suppose that P0(p/q) <∞. Then

P0(p/q)α|α=0 = P0(p > 0), P0(p/q)α|α=1 =
∫
p0

q
1{p0>0} dP.

Take B = {Q : ‖(p0/q)− 1‖∞ < δ},

inf
0≤α≤1

P0

(
p

q

)α
≤ (1 + δ) min

{
P0(p > 0), P (p0 > 0)

}
The supports of p and p0 differ by an interval of length ≥ ε,

min
{
P0(p > 0), P (p0 > 0)

}
≤ 1−

f(ε)

σ
.

Conclude: for every ε, δ > 0,

sup
Q∈B

sup
P∈V

inf
0≤α≤1

P0

(
p

q

)α
≤ (1 + δ)

(
1−

f(ε)

σ

)
< 1.
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Estimation of support boundary III: theorem

Theorem 91.1 Let Θ = {(θ1, θ2) ∈ R2 : 0 < θ2 − θ1 < σ} (for some

σ > 0) and convex H with associated f be given. Let Π be a prior on

Θ×H such that,

Π
(
Q : ‖(p0/q)− 1‖∞ < δ

)
> 0,

for all δ > 0. If X1, X2, . . . form an i.i.d.-P0 sample, where P0 = Pθ0,η0
,

then,

Π
(
‖θ − θ0‖ < ε

∣∣∣ X1, . . . , Xn
) P0-a.s.−−−−−→1,

for every ε > 0.

Remark 91.2 The σ-restriction on θ1 − θ2 can be eliminated with

theorem 84.1.
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Lecture V
Remote contiguity and Bayes factors

To conclude, we turn to weak consistency for the Dirichlet

distribution and to non-i.i.d. data with parameter spaces that

grow with the sample size. To prove consistency of the pos-

terior, we require the existence of tests, sufficiency of prior

mass and a property similar to, but weaker than Le Cam’s

notion of contiguity, generalising Schwartz’s Kullback-Leibler

condition for the prior. We also consider the consistency of

Bayes factors for model selection and hypothesis testing.

[arxiv:1606.XXXX]



The Dirichlet process

Definition 93.1 (Dirichlet distribution)

A random variable p = (p1, . . . , pk) with pl ≥ 0 and
∑
l pl = 1 is Dirichlet

distributed with parameter α = (α1, . . . , αk), p ∼ Dα, if it has density

fα(p) = C(α)
k∏
l=1

p
αl−1
l

Definition 93.2 (Dirichlet process, Ferguson 1973-74)

Let α be a finite measure on (X ,B). The Dirichlet process P ∼ Dα

is defined by, (for all finite msb partitions A = {A1, . . . , Ak} of X )(
P (A1), . . . , P (Ak)

)
∼ D(α(A1),...,α(Ak))
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Weak consistency with Dirichlet priors

Theorem 94.1 (Dirichlet consistency)

Let X1, X2, . . . be an i.i.d.-sample from P0 If Π is a Dirichlet prior Dα
with finite α such that supp(P0) ⊂ supp(α), the posterior is consistent

at P0 in the weak model topology

Remark 94.2 Priors are not necessarily KL for consistency

Remark 94.3 (Freedman (1965))

Dirichlet distributions are tailfree: if A′ refines A and A′i1∪ . . .∪A
′
ili

=

Ai, then (P (A′i1|Ai), . . . , P (A′ili|Ai) : 1 ≤ i ≤ k) is independent of

(P (A1), . . . , P (Ak)).

Remark 94.4 Xn 7→ Π(P (A)|Xn) is σn(A)-measurable where σn(A)

is generated by products of the form
∏n
i=1Bi with Bi = {Xi ∈ A} or

Bi = {Xi 6∈ A}.
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Stochastic Block Model

Definition 95.1 At step n, nodes belong to one of Kn unobserved

classes: θi. We estimate θ = (θ1, . . . , θn) ∈ Θn upon observation of

Xn = {Xij : 1 ≤ 1 < j ≤ n}. Edges Xij occur independently with

probabilities Qij(θ) = Q(θi, θj). The (expected) degree is denoted λn.

1

2
3

4

5

6

7 8

9

10

11

12

13

14
15

16

17

A SBM network realisation: n = 17, Kn = 3, λn ≈ 2.24
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Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 96.1 Uniform (or minimax) testability

sup
P∈B

Pnφn → 0, sup
Q∈V

Qn(1− φn)→ 0

Definition 96.2 Pointwise testability for all P ∈ B, Q ∈ V

φn
P -a.s.−−−−−→0, φn

Q-a.s.−−−−−→1

Definition 96.3 Bayesian testability for Π-almost-all P ∈ B, Q ∈ V

φn
P -a.s.−−−−−→0, φn

Q-a.s.−−−−−→1
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A posterior concentration inequality

Lemma 97.1 Let (P,G ) be given. For any prior Π, any test function

φ and any B, V ∈ G such that B ∩ V = ∅,∫
B
PΠ(V |X) dΠ(P ) ≤

∫
B
PφdΠ(P ) +

∫
V
Q(1− φ) dΠ(Q)

Corollary 97.2 Consequently, in i.i.d.-context, for any sequences (Πn),

(Bn), (Vn) such that Bn ∩ Vn = ∅ and Πn(Bn) > 0, we have,∫
PnΠ(Vn|Xn) dΠn(P |Bn)

≤
1

Π(Bn)

(∫
Bn
Pnφn dΠn(P ) +

∫
Vn
Qn(1− φn) dΠn(Q)

)
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Proof

Disintegration: for all A ∈ Bn and V ∈ G ,∫
X

1A(X)Π(V |X) dPΠ =
∫
V

∫
X

1A(X) dP dΠ(P )

So for any Bn-measurable, simple f(X) =
∑J
j=1 cj 1Aj(X),∫

X
f(X)Π(V |X) dPΠ =

∫
V

∫
X
f(X) dP dΠ(P )

Taking monotone limits, we see this equality also holds for any posi-

tive, measurable f : X → R. In particular, with f(X) = (1− φ(X)),∫
P
P
(
(1− φ(X))Π(V |X)

)
dΠ(P ) =

∫
V
P (1− φ(X)) dΠ(P )
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Proof

Since B ⊂P and the integrand is positive,∫
B
P
(
(1− φ)(X)Π(V |X)

)
dΠ(P )

≤
∫
P
P
(
(1− φ(X))Π(V |X)

)
dΠ(P ) =

∫
V
P (1− φ(X)) dΠ(P )

bring the 2nd term on the l.h.s. to the r.h.s. and divide by Π(B) > 0,∫
PΠ(V |X) dΠ(P |B)

≤
1

Π(B)

(∫
B
Pφ(X)Π(V |X) dΠ(P ) +

∫
V
P (1− φ)(X) dΠ(P )

)

≤
1

Π(B)

(∫
B
Pφ(X) dΠ(P ) +

∫
V
P (1− φ)(X) dΠ(P )

)
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Martingale convergence

Proposition 100.1 Let (P,G ,Π) be given. For any B, V ∈ G , the

following are equivalent,

(i) There exist Bayesian tests (φn) for B versus V ;

(ii) There exist tests (φn) such that,∫
B
Pnφn dΠ(P ) +

∫
V
Qn(1− φn) dΠ(Q)→ 0,

(iii) For Π-almost-all P ∈ B, Q ∈ V ,

Π(V |Xn)
P -a.s.−−−−−→0, Π(B|Xn)

Q-a.s.−−−−−→0

Remark 100.2 Interpretation distinctions between model subsets are

Bayesian testable, iff they are picked up by the posterior asymptoti-

cally, if(f), the Bayes factor for B versus V is consistent
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Proof

Condition (i) implies (ii) by dominated convergence. Assume (ii) and

note that by the previous lemma,∫
PnΠ(V |Xn) dΠ(P |B)→ 0.

Martingale convergence (in L1(X ∞ ×P)) implies that there is a g :

X ∞ → [0,1] such that,∫
P∞

∣∣∣Π(V |Xn)− g(X∞)
∣∣∣ dΠ(P,B)→ 0,

So
∫
P∞g dΠ(P |B) = 0, so g = 0, P∞-almost-surely for Π-almost-all

P ∈ B. Using martingale convergence again (now in L∞(X ∞ ×P)),

conclude Π(V |Xn) → 0 P∞-almost-surely for Π-almost-all P ∈ B, i.e.

(iii) follows.

Choose φ(Xn) = Π(V |Xn) to conclude that (i) follows from (iii).
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Prior-almost-sure consistency

Theorem 102.1 Let Hausdorff P with Borel prior Π be given. As-

sume that for Π-almost-all P ∈ P and any open nbd U of P , there

exist a B ⊂ U with Π(B) > 0 and Bayesian tests (φn) for B versus

P \ U . Then the posterior is consistent at Π-almost-all P ∈P

Remark 102.2 Let P be a Polish space and assume that all P 7→
Pn(A) are Borel measurable. Then, for any prior Π, any Borel set

V ⊂P is Bayesian testable versus P \ V .

Corollary 102.3 Doob’s theorem (1948), and much more!
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Le Cam’s inequality

Definition 103.1 For B ∈ G such that Π(B) > 0, the local prior

predictive distribution is P
Π|B
n =

∫
Pn dΠ(P |B).

Remark 103.2 (Le Cam, unpublished (197?) and (1986))

Rewrite the posterior concentration inequality

Pn0 Π(Vn|Xn) ≤
∥∥∥∥Pn0 − PΠ|Bn

n

∥∥∥∥
+
∫
Pnφn dΠ(P |Bn) +

Π(Vn)

Π(Bn)

∫
Qn(1− φn) dΠ(Q|Vn)

Remark 103.3 For some bn ↓ 0, Bn = {P ∈P : ‖Pn − Pn0 ‖ ≤ bn},

a−1
n Π(Bn)→∞

Remark 103.4 Useful in parametric models but “a considerable nui-

sance” [sic] (Le Cam (1986)) in non-parametric context
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Schwartz’s theorem revisited

Remark 104.1 Suppose that for all δ > 0, there is a B s.t. Π(B) > 0

and for all P ∈ B and large enough n

Pn0 Π(V |Xn) ≤ enδPnΠ(V |Xn)

then (by Fatou) for large enough m

sup
n≥m

[
(Pn0 − e

nδP
Π|B
n )Π(V |Xn)

]
≤ 0

Theorem 104.2 Let P be a model with KL-prior Π; P0 ∈ P. Let

B, V ∈ G be given and assume that B contains a KL-neighbourhood

of P0. If there exist Bayesian tests for B versus V of exponential

power then

Π(V |Xn)
P0−a.s.−−−−−−→0

Corollary 104.3 (Schwartz’s theorem)
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Remote contiguity

Definition 105.1 Given (Pn), (Qn) of prob msr’s, Qn is contiguous

w.r.t. Pn (QnCPn), if for any (ψn), ψn : X n → [0,1]

Pnψn = o(1) ⇒ Qnψn = o(1)

Definition 105.2 Given (Pn), (Qn) of prob msr’s and a an ↓ 0, Qn
is an-remotely contiguous w.r.t. Pn (QnC a−1

n Pn), if for any sequence

(ψn), ψn : X n → [0,1]

Pnψn = o(an) ⇒ Qnψn = o(1)

Remark 105.3 Contiguity is stronger than remote contiguity

note that QnCPn iff QnC a−1
n Pn for all an ↓ 0.

Definition 105.4 Hellinger transform ψ(P,Q;α) =
∫

(dP )α(dQ)1−α
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Le Cam’s first lemma

Lemma 106.1 Given (Pn), (Qn) like above, QnCPn iff any of the

following holds:

(i) If Tn
Pn−−→0, then Tn

Qn−−→0

(ii) Given ε > 0, there is a b > 0 such that Qn(dQn/dPn > b) < ε

(iii) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c Pn‖ < ε

(iv) If dPn/dQn
Qn-w.−−−−−→ f along a subsequence, then P (f > 0) = 1

(v) If dQn/dPn
Pn-w.−−−−→ g along a subsequence, then Eg = 1

(vi) lim infnψ(Pn, Qn;α)→ 1 as α ↑ 1
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Criteria for remote contiguity

Lemma 107.1 Given (Pn), (Qn), an ↓ 0, QnC a−1
n Pn if any of the

following holds:

(i) For any bnd msb Tn : X n → R, a−1
n Tn

Pn−−→0, implies Tn
Qn−−→0

(ii) Given ε > 0, there is a δ > 0 s.t. Qn(dPn/dQn > δ an) < ε f.l.e.n.

(iii) There is a b > 0 s.t. lim infn→∞ ba−1
n Pn(dQn/dPn > ba−1

n ) = 1

(iv) Given ε > 0, there is a c > 0 such that ‖Qn −Qn ∧ c a−1
n Pn‖ < ε

(v) Under Qn, (an dQn/dPn) are r.v.’s and every subseq has a weakly

convergent subseq

(vi) lim infn limα↑1 an
−αψ(Pn, Qn;α) > 0
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Beyond Schwartz

Theorem 108.1 Let (P,G ) with priors (Πn) and (X1, . . . , Xn) ∼ Pn0
be given. Assume there are Bn, Vn ∈ G and an, bn ≥ 0, an ↓ 0 s.t.

(i) There exist Bayesian tests for Bn versus Vn of power an,∫
Bn
Pnφn dΠn(P ) +

∫
Vn
Qn(1− φn) dΠn(Q) ≤ an

(ii) The prior mass of Bn is lower-bounded by bn, Πn(Bn) ≥ bn

(iii) The sequence Pn0 satisfies Pn0 C bna−1
n P

Πn|Bn
n

Then Πn(Vn|Xn)
P0−−→0
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Application to consistency I

Remark 109.1 (Schwartz (1965))

Take P0 ∈P, and define

Vn = V := {P ∈P : H(P, P0) ≥ ε}
Bn = B := {P : −P0 log dP/dP0 < ε2}

with an and bn of form exp(−nK). With N(ε,P, H) <∞, the theorem

proves Hellinger consistency with KL-priors.

Remark 109.2 (Ghosal-Ghosh-vdVaart (2000))

Take P0 ∈P, and define

Vn = {P ∈P : H(P, P0) ≥ εn}
Bn = B := {P : −P0 log dP/dP0 < ε2n, P0 log2 dP/dP0 < ε2n}

with an and bn of form exp(−Knε2n). With logN(εn,P, H) ≤ nε2n, the

theorem then proves Hellinger consistency at rate εn with GGV-priors.

Other Bn are possible! (see Kleijn and Zhao (201x))
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Application to consistency II

Remark 110.1 Dirichlet posteriors Xn 7→ Π(P (A)|Xn) are msb σn(A)

where σn(A) is generated by products of the form
∏n
i=1Bi with Bi =

{Xi ∈ A} or Bi = {Xi 6∈ A}.

Remark 110.2 (Freedman (1965), Ferguson (1973), Lo (1984), ...)

Take P0 ∈P, and define

Vn = V := {P ∈P : |(P0 − P )f | ≥ 2ε}
Bn = B := {P : |(P0 − P )f | < ε}

for some bounded, measurable f . Impose remote contiguity only for

ψn that are σn(A)-measurable! Take an and bn of form exp(−nK).

The theorem then proves T1 consistency with a Dirichlet prior Dα, if

supp(P0) ⊂ supp(α).

110



Consistent Bayes factors

Theorem 111.1 Let (P,G ) with priors (Πn) and (X1, . . . , Xn) ∼ Pn0
be given. Assume there are B, V ∈ G with Π(B),Π(V ) > 0 and an ≥ 0,

an ↓ 0 s.t.

(i) There exist Bayesian tests for Bn versus Vn of power an,∫
Bn
Pnφn dΠn(P ) +

∫
Vn
Qn(1− φn) dΠn(Q) ≤ an

(ii) For every P ∈ B, Pn C a−1
n P

Πn|B
n

(iii) For every Q ∈ V , Qn C a−1
n P

Πn|V
n

Then the posterior odds or Bayes factors,

Bn =
Π(B|Xn)

Π(V |Xn)

Π(V )

Π(B)

for B versus V are consistent.
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