EcoSta2018, City University of Hong Kong, 19 June 2018

What is asymptotically testable and what is not?

Bas Kleijn

KdV Institute for Mathematics

Universiteit van Amsterdam

Asymptotic symmetric testing

Observe i.i.d. data $X^{n} \sim P^{n}$, model $P \in \mathscr{P}$; for disjoint $B, V \subset \mathscr{P}$,

$$
H_{0}: P \in B, \quad \text { or } \quad H_{1}: P \in V .
$$

Look for test functions $\phi_{n}: \mathscr{X}^{n} \rightarrow[0,1]$ s.t.

$$
P^{n} \phi_{n}\left(X^{n}\right) \rightarrow 0, \quad \text { and } \quad Q^{n}\left(1-\phi_{n}\left(X^{n}\right)\right) \rightarrow 0
$$

for all $P \in B$ and all $Q \in V$.

Equivalently, we want,

A testing procedure that chooses for B or V based on $X^{n} \sim P^{n}$ for every $n \geq 1$, has property (D) if it is wrong only a finite number of times with P^{∞}-probability one.

Property (D) is sometimes referred to as "discernibility".

Some examples and unexpected answers (I)

Consider non-parametric regression with $f: X \rightarrow \mathbb{R}$ and test for smoothness,

$$
H_{0}: f \in C^{1}(X \rightarrow \mathbb{R}), \quad H_{1}: f \in C^{2}(X \rightarrow \mathbb{R})
$$

Consider a non-parametric density estimation with $p: \mathbb{R} \rightarrow[0, \infty)$ and test for square-integrability,

$$
H_{0}: \int x^{2} p(x) d x<\infty, \quad H_{1}: \int x^{2} p(x) d x=\infty
$$

Practical problem we cannot use the data to determine with asymptotic certainty, if CLT applies with our data.

Some examples and unexpected answers (II)

Coin-flip $X^{n} \sim \operatorname{Bernoulli}(p)^{n}$ with $p \in[0,1]$.

Consider Cover's rational mean problem (1973):

$$
H_{0}: p \in[0,1] \cap \mathbb{Q}, \quad H_{1}: p \in[0,1] \backslash \mathbb{Q} .
$$

Consider also Dembo and Peres's irrational alternative (1995):

$$
H_{0}: p \in[0,1] \cap \mathbb{Q}, \quad H_{1}: p \in[0,1] \cap \sqrt{2}+\mathbb{Q}
$$

Consider ultimately fractal hypotheses, e.g. with Cantor set C,

$$
H_{0}: p \in C, \quad H_{1}: p \in[0,1] \backslash C
$$

Three forms of testability

Definition 5.1 (ϕ_{n}) is a uniform test sequence for B vs V, if,

$$
\begin{equation*}
\sup _{P \in B} P^{n} \phi_{n} \rightarrow 0, \quad \sup _{Q \in V} Q^{n}\left(1-\phi_{n}\right) \rightarrow 0 . \tag{1}
\end{equation*}
$$

Definition $5.2\left(\phi_{n}\right)$ is a pointwise test sequence for B vs V, if,

$$
\begin{equation*}
\phi_{n}\left(X^{n}\right) \xrightarrow{P} 0, \quad \phi_{n}\left(X^{n}\right) \xrightarrow{Q} 1, \tag{2}
\end{equation*}
$$

for all $P \in B$ and $Q \in V$.
Definition 5.3 (ϕ_{n}) is a Bayesian test sequence for B vs V, if,

$$
\begin{equation*}
\phi_{n}\left(X^{n}\right) \xrightarrow{P} 0, \quad \phi_{n}\left(X^{n}\right) \xrightarrow{Q} 1, \tag{3}
\end{equation*}
$$

for Π-almost-all $P \in B$ and $Q \in V$.

Posterior odds model selection for frequentists

Johnson \& Rossell (JRSSB, 2010), Taylor \& Tibshirani (PNAS, 2016)

Theorem 6.1 Given measurable $B, V \subset \Theta(\Pi(B), \Pi(V)>0)$ and,
i. there are Bayesian tests for B vs V of power $a_{n} \downarrow 0$,

$$
\int_{B} P^{n} \phi_{n} d \Pi(P)+\int_{V} Q^{n}\left(1-\phi_{n}\right) d \Pi(Q)=o\left(a_{n}\right)
$$

ii. and, for all $P \in B, P^{n} \triangleleft a_{n}^{-1} P_{n}^{\Pi \mid B}$; for all $Q \in V, Q^{n} \triangleleft a_{n}^{-1} P_{n}^{\Pi \mid V}$,
then posterior odds give rise to a pointwise test for B vs V.

See BK, "The frequentist validity of Bayesian limits", arXiv:1611.08444 [math.ST]

Example: KL-neighbourhoods

Definition 7.1 Given $\left(P_{n}\right),\left(Q_{n}\right)$ and $a a_{n} \downarrow 0, Q_{n}$ is a_{n}-remotely contiguous w.r.t. $P_{n}\left(Q_{n} \triangleleft a_{n}^{-1} P_{n}\right)$, if for any $m s b \psi_{n}: \mathscr{X}^{n} \rightarrow[0,1]$

$$
P_{n} \psi_{n}=o\left(a_{n}\right) \quad \Rightarrow \quad Q_{n} \psi_{n}=o(1)
$$

Example 7.2 Let \mathscr{P} be a model for i.i.d. data X^{n}. Let P_{0}, P and $\epsilon>0$ be such that $-P_{0} \log \left(d P / d P_{0}\right)<\epsilon^{2}$. Then, for large enough n,

$$
\begin{equation*}
\frac{d P^{n}}{d P_{0}^{n}}\left(X^{n}\right) \geq e^{-\frac{n}{2} \epsilon^{2}} \tag{4}
\end{equation*}
$$

with P_{0}^{n}-probability one. So for any tests ψ_{n},

$$
\begin{equation*}
P^{n} \psi_{n} \geq e^{-\frac{1}{2} n \epsilon^{2}} P_{0}^{n} \psi_{n} \tag{5}
\end{equation*}
$$

So if $P^{n} \phi_{n}=o\left(\exp \left(-\frac{1}{2} n \epsilon^{2}\right)\right)$ then $P_{0}^{n} \phi_{n}=o(1)$: $P_{0}^{n} \triangleleft a_{n}^{-1} P^{n}$ with $a_{n}=\exp \left(-\frac{1}{2} n \epsilon^{2}\right)$.

Example: select the DAG (I)

Observe an i.i.d. X^{n} of vectors of discrete random variables $X_{i}=$ $\left(X_{1, i}, \ldots, X_{k, i}\right) \in \mathbb{Z}^{k}, 1 \leq i \leq n$.

Define a family \mathscr{F} of kernels $p_{\theta}(\cdot \mid \cdot): \mathbb{Z} \times \mathbb{Z}^{l} \rightarrow[0,1]$, for $\theta \in \Theta, 1 \leq l \leq k$. Assume that Θ is compact and,

$$
\theta \mapsto \sum_{x \in \mathbb{Z}} f(x) P_{\theta}\left(x \mid z_{1}, \ldots, z_{l}\right)
$$

is continuous, for every bounded $f: \mathbb{Z} \rightarrow \mathbb{R}$ and all $z_{1}, \ldots, z_{l} \in \mathbb{Z}$.
$X \sim P$ follows a graphical model,

$$
P_{\mathscr{A}, \theta}\left(X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right)=\prod_{i=1}^{k} P_{\theta_{i}}\left(X_{i} \in B_{i} \mid \mathscr{A}_{i}\right)
$$

where $\mathscr{A}_{i} \subset\{1, \ldots, k\}$ denotes the parents of $X_{i}\left(\right.$ and $\left.\mathscr{A}_{i j}=\mathscr{A}_{i} \cup \mathscr{A}_{j}\right)$. Together, the \mathscr{A}_{i} describe a directed, a-cyclical graph (DAG).

Example: select the DAG (II)

The $\operatorname{DAG} \mathscr{A}=\left(\mathscr{A}_{i}: 1 \leq i \leq k\right)$ represents a number of conditional independence statements concerning the components X_{1}, \ldots, X_{k}.

$$
\begin{aligned}
& P_{\mathscr{A}, \theta}\left(C_{1} \in \cdot, \ldots, A_{3} \in \cdot\right) \\
& =P_{\theta_{C, 1}}\left(\cdot \mid B_{1}\right) \times P_{\theta_{C, 2}}\left(\cdot \mid B_{1}, B_{2}\right) \\
& \quad \times P_{\theta_{B, 1}}\left(\cdot \mid A_{1}\right) \times P_{\theta_{B_{2}}}\left(\cdot \mid A_{2}, A_{3}\right) \\
& \quad \times P_{\theta_{A, 1}}(\cdot) \times P_{\theta_{A, 2}}(\cdot) \times P_{\theta_{A, 3}}(\cdot)
\end{aligned}
$$

Fig 1. An small example DAG: No arrow means $X_{i} \perp X_{j} \mid \mathscr{A}_{i j}$. $\mathscr{A}_{C_{1}}=$ $\left\{B_{1}\right\}, \mathscr{A}_{B_{2}}=\left\{A_{2}, A_{3}\right\}$, so given B_{1}, A_{2} and A_{3}, C_{1} is independent of B_{2}.

Example: select the DAG (III)

Define the submodels $\mathscr{P}_{\mathscr{A}}=\left\{P_{\mathscr{A}, \theta}: \theta \in \Theta^{k}\right\}$, for all \mathscr{A}. Given any $\mathscr{A}^{\prime} \neq \mathscr{A}$, there is a pair $X_{i} \perp X_{j} \mid \mathscr{A}_{i j}$ but $X_{i} \not \perp X_{j} \mid \mathscr{A}_{i j}^{\prime}$.

Require that, for all θ, all $A, B \subset \mathbb{Z}$,

$$
\left|P_{\mathscr{A}^{\prime}, \theta}\left(X_{i} \in A, X_{j} \in B \mid \mathscr{A}_{i j}\right)-P_{\mathscr{A}^{\prime}, \theta}\left(X_{i} \in A \mid \mathscr{A}_{i j}\right) P_{\mathscr{A}^{\prime}, \theta}\left(X_{j} \in B \mid \mathscr{A}_{i j}\right)\right|>\epsilon,
$$

for some $\epsilon>0$ that depends only on \mathscr{A} and \mathscr{A}^{\prime}.

With a KL-prior posterior odds for $\mathscr{P}_{\mathscr{A}}$ select the correct DAG \mathscr{A}.

Uniform testability: equivalent formulations

Proposition 11.1 Let \mathscr{P} be a model for i.i.d. data with disjoint B

 and V. The following are equivalent:i. there exists a uniform test sequence $\left(\phi_{n}\right)$,

$$
\sup _{P \in B} P^{n} \phi_{n} \rightarrow 0, \quad \sup _{Q \in V} Q^{n}\left(1-\phi_{n}\right) \rightarrow 0
$$

ii. there is a exponentially powerful uniform test sequence $\left(\psi_{n}\right)$,

$$
\sup _{P \in B} P^{n} \psi_{n} \leq e^{-n D}, \quad \sup _{Q \in V} Q^{n}\left(1-\psi_{n}\right) \leq e^{-n D}
$$

The model as a uniform space

Fig 2. Let $P \in \mathscr{P}$ and entourage $W \in \mathscr{U}_{\infty}$ be given. Define neighbourhood $U \in \mathscr{T}_{\infty}$ as $U=\{Q \in \mathscr{P}:(Q, P) \in W\}$

Uniform separation (II)

Fig 3. B and V are uniformly separated by \mathscr{U}_{∞} if there is a $W \in \mathscr{U}_{\infty}$ that does not meet $B \times V$ and $V \times B$.

Characterisation of uniform testability

Theorem 14.1 Let \mathscr{P} be a model for i.i.d. data with disjoint B and
V. The following are equivalent:
(i.) there are uniform tests ϕ_{n} for B versus V,
(ii.) B and V are uniformly separated by \mathscr{U}_{∞}.

Corollary 14.2 (Parametrised models) Suppose $\mathscr{P}=\left\{p_{\theta}: \theta \in \Theta\right\}$, with (Θ, d) compact, metric space and $\theta \rightarrow P_{\theta}$ identifiable and $\mathscr{T}_{\infty^{-}}$ continuous, (that is, for every $f \in \mathscr{F}_{n}, \theta \mapsto \int f d P_{\theta}^{n}$ is continuous). If $B_{0}, V_{0} \subset \Theta$ with $d\left(B_{0}, V_{0}\right)>0$, then the images $B=\left\{P_{\theta}: \theta \in B_{0}\right\}$, $V=\left\{P_{\theta}: \theta \in V_{0}\right\}$ are uniformly testable.

Pointwise testability: equivalent formulations

Proposition 15.1 Let \mathscr{P} be a model for i.i.d. data and let B, V be disjoint model subsets. The following are equivalent:
i. there are tests $\left(\phi_{n}\right)$ such that, for all $P \in B$ and $Q \in V$,

$$
P^{n} \phi_{n} \rightarrow 0, \quad Q^{n}\left(1-\phi_{n}\right) \rightarrow 0,
$$

ii. there are tests $\left(\phi_{n}\right)$ such that, for all $P \in B$ and $Q \in V$,

$$
\phi_{n}\left(X^{n}\right) \xrightarrow{P} 0, \quad\left(1-\phi_{n}\left(X^{n}\right)\right) \xrightarrow{Q} 0,
$$

iii. there are tests $\left(\phi_{n}\right)$ such that, for all $P \in B$ and $Q \in V$,

$$
\phi_{n}\left(X^{n}\right) \xrightarrow{P \text {-a.s. }} 0, \quad\left(1-\phi_{n}\left(X^{n}\right)\right) \xrightarrow{Q \text {-a.s. }} 0 .
$$

Pointwise testability in dominated models

Definition 16.1 The testing problem has a (uniform) representation on X, if there exists a \mathscr{T}_{∞}-(uniformly-)continuous, surjective map $f: B \cup V \rightarrow X$ such that $f(B) \cap f(V)=\varnothing$.

Definition 16.2 The model is parametrised by Θ, if there exists a \mathscr{T}_{∞}-continuous bijection P. : $\Theta \rightarrow \mathscr{P}$ (i.e. for every $m \geq 1$ and measurable $f: \mathscr{X}^{m} \rightarrow[0,1]$, the $\operatorname{map} \theta \mapsto \int f d P_{\theta}^{m}$ is continuous).

Characterisation of pointwise testability

Theorem 17.1 Let \mathscr{P} be a dominated model for i.i.d. data with disjoint B, V. The following are equivalent,
i. there exists a pointwise test for B vs V,
ii. the problem has a representation $f: B \cup V \rightarrow X$ on a normal space X and there exist disjoint F_{σ}-sets $B^{\prime}, V^{\prime} \subset X$ such that $f(B) \subset B^{\prime}, f(V) \subset V^{\prime}$,
iii. the problem has a uniform representation $\psi: B \cup V \rightarrow X$ on a separable, metrizable space X with $\psi(B), \psi(V)$ both $F_{\sigma^{-}}$and $G_{\delta^{-}}$ sets.

Finite entropy and uniform integrability

Corollary 18.1 Suppose that \mathscr{P} is dominated and $T V$-totally-bounded. Then disjoint $B, V \subset \mathscr{P}$ are pointwise testable, if and only if, B, V are both $F_{\sigma^{-}}$and $G_{\delta^{-}}$sets in $B \cup V\left(\right.$ for $\left.\mathscr{T}_{T V}\right)$.

Corollary 18.2 Suppose that \mathscr{P} is dominated by a probability measure, with a uniformly integrable family of densities. Then disjoint $B, V \subset \mathscr{P}$ are pointwise testable, if and only if, B, V are both $F_{\sigma^{-}}$and G_{δ}-sets in $B \cup V\left(\right.$ for $\left.\mathscr{T}_{C}\right)$.

Bayesian testability: equivalent formulations

Theorem 19.1 Let a model $(\mathscr{P}, \mathscr{G}, \Pi)$ with $B, V \in \mathscr{G}$ be given, with $\Pi(B)>0, \Pi(V)>0$. The following are equivalent,
i. there exist Bayesian tests for B vs V,
ii. there are tests ϕ_{n} such that for Π-almost-all $P \in B, Q \in V$,

$$
P^{n} \phi_{n} \rightarrow 0, \quad Q^{n}\left(1-\phi_{n}\right) \rightarrow 0
$$

iii. there are tests $\phi_{n}: \mathscr{X}^{n} \rightarrow[0,1]$ such that,

$$
\int_{B} P^{n} \phi_{n} d \Pi(P)+\int_{V} Q^{n}\left(1-\phi_{n}\right) d \Pi(Q) \rightarrow 0
$$

iv. for Π-almost-all $P \in B, Q \in V$,

$$
\Pi\left(V \mid X^{n}\right) \xrightarrow{P} 0, \quad \Pi\left(B \mid X^{n}\right) \xrightarrow{Q} 0 .
$$

Characterisation of Bayesian testability

Theorem 20.1 Let $(\mathscr{P}, \mathscr{G})$ be a measurable model with a prior Π that is a Radon measure and hypotheses B, V. There is a Bayesian test sequence for B vs V, if and only if, B, V are \mathscr{G}-measurable.

Consistent model selection

Let \mathscr{P} be a model for i.i.d. data $X^{n} \sim P^{n},(n \geq 1)$, and suppose that $(\mathscr{P}, \mathscr{G}, \Pi)$ has finite, measurable partition,

$$
P \in \mathscr{P}=\mathscr{P}_{1} \cup \ldots \cup \mathscr{P}_{M}
$$

Model-selection Which $1 \leq i \leq M ?\left(\right.$ such that $\left.P \in \mathscr{P}_{i}\right)$
Theorem 21.1 Assume that for all $1 \leq i<j \leq M$,

$$
\mathscr{P}_{i} \text { and } \mathscr{P}_{j} \text { are } \mathscr{U}_{\infty} \text {-uniformly separated. }
$$

Let $1 \leq i \leq M$ be such that $P \in \mathscr{P}_{i}$. If Π is a KL-prior, then indicators for posterior odds,

$$
\phi_{n}\left(X^{n}\right)=1\left\{X^{n}: \Pi\left(\mathscr{P}_{i} \mid X^{n}\right) \geq \sum_{j \neq i} \Pi\left(\mathscr{P}_{j} \mid X^{n}\right)\right\}
$$

are a pointwise test for \mathscr{P}_{i} vs $\cup_{j \neq i} \mathscr{P}_{j}$.

Thank you for your attention

BK, "The frequentist validity of Bayesian limits" arXiv:1611.08444 [math.ST]

Remote contiguity

Definition 23.1 Given $\left(P_{n}\right),\left(Q_{n}\right)$ and $a a_{n} \downarrow 0, Q_{n}$ is a_{n}-remotely contiguous w.r.t. $P_{n}\left(Q_{n} \triangleleft a_{n}^{-1} P_{n}\right)$, if for any $m s b \psi_{n}: \mathscr{X}^{n} \rightarrow[0,1]$

$$
P_{n} \psi_{n}=o\left(a_{n}\right) \quad \Rightarrow \quad Q_{n} \psi_{n}=o(1)
$$

Lemma 23.2 $Q_{n} \triangleleft a_{n}^{-1} P_{n}$ if any of the following holds:
(i) For any bnd msb $T_{n}: \mathscr{X}^{n} \rightarrow \mathbb{R}, a_{n}^{-1} T_{n} \xrightarrow{P_{n}} 0$, implies $T_{n} \xrightarrow{Q_{n}} 0$
(ii) Given $\epsilon>0$, there is a $\delta>0$ s.t. $Q_{n}\left(d P_{n} / d Q_{n}<\delta a_{n}\right)<\epsilon$ f.l.e.n.
(iii) There is $a b>0$ s.t. $\liminf _{n \rightarrow \infty} b a_{n}^{-1} P_{n}\left(d Q_{n} / d P_{n}>b a_{n}^{-1}\right)=1$
(iv) Given $\epsilon>0$, there is a $c>0$ such that $\left\|Q_{n}-Q_{n} \wedge c a_{n}^{-1} P_{n}\right\|<\epsilon$
(v) Under Q_{n}, every subsequence of $\left(a_{n}\left(d P_{n} / d Q_{n}\right)^{-1}\right)$ has a further subsequence that converges in \mathscr{T}_{C}.

The model as a uniform space

Take \mathscr{X} a separable metrizable space, with Borel σ-algebra \mathscr{B}.

The class \mathscr{F}_{n} contains all bounded, \mathscr{B}^{n}-measurable $f: \mathscr{X}^{n} \rightarrow \mathbb{R}$.

For every $n \geq 1$ and $f \in \mathscr{F}_{n}$, define the entourage,

$$
W_{n, f}=\left\{(P, Q) \in \mathscr{P} \times \mathscr{P}:\left|P^{n} f-Q^{n} f\right|<1\right\} .
$$

Defines uniformity \mathscr{U}_{n} (with topology \mathscr{T}_{n}). Take $\mathscr{U}_{\infty}=\cup_{n \geq 1} \mathscr{U}_{n}$.

$$
P \rightarrow Q \text { in } \mathscr{T}_{\infty} \quad \Leftrightarrow \quad \int f d P^{n} \rightarrow \int f d Q^{n}
$$

for all $n \geq 1$ and all $f \in \mathscr{F}_{n}$. Note also,

$$
\mathscr{U}_{C} \subset \mathscr{U}_{1} \subset \cdots \subset \mathscr{U}_{\infty} \subset \mathscr{U}_{T V} .
$$

The Dunford-Pettis theorem

Theorem 25.1 (Dunford-Pettis) Assume \mathscr{P} is dominated by a probability measure Q with densities in $\mathscr{P}_{Q} \subset L^{1}(Q) ; \mathscr{P}_{Q}$ is relatively weakly compact, if and only if, for every $\epsilon>0$ there is an $M>0$ such that,

$$
\sup _{P \in \mathscr{P}} \int_{\{d P / d Q>M\}} \frac{d P}{d Q} d Q<\epsilon
$$

that is, \mathscr{P}_{Q} is uniformly Q-integrable.

Uniform separation

Definition 26.1 Subsets $B, V \subset \mathscr{P}$ are uniformly separated by \mathscr{U}_{∞}, if there exists an entourage $W \in \mathscr{U}_{\infty}$ such that,

$$
(B \times V \cup V \times B) \cap W=\varnothing
$$

In other words, there are $J, m \geq 1, \epsilon>0$ and bounded, measurable functions $f_{1}, \ldots, f_{J}: \mathscr{X}^{m} \rightarrow[0,1]$ such that, for any $P, Q \in B \cup V$, if,

$$
\max _{1 \leq j \leq J}\left|P^{m} f_{j}-Q^{m} f_{j}\right|<\epsilon
$$

then either $P, Q \in B$, or $P, Q \in V$. (If the model is \mathscr{T}_{∞}-compact, $m=1$ suffices).

The Le Cam-Schwartz theorem

Theorem 27.1 (Le Cam-Schwartz, 1960) Let \mathscr{P} be a model for i.i.d. data X^{n} with disjoint subsets B, V. The folllowing are equivalent:
i. there exist (uniformly) consistent tests for B vs V,
ii. there is a sequence of \mathscr{U}_{∞}-uniformly continuous $\psi_{n}: \mathscr{P} \rightarrow[0,1]$,

$$
\begin{equation*}
\psi_{n}(P) \rightarrow 1_{V}(P) \tag{6}
\end{equation*}
$$

(uniformly) for all $P \in B \cup V$.

Example: how many clusters?

Observe i.i.d. $X^{n} \sim P^{n}$, where P dominated with density p.

Clusters Family \mathscr{F} of kernels $\varphi_{\theta}: \mathbb{R} \rightarrow[0, \infty)$, with parameter $\theta \in \Theta$. Assume Θ compact and,

$$
\theta \mapsto \int f(x) \varphi_{\theta}(x) d x
$$

is continuous, for every bounded, measurable $f: \mathbb{R} \rightarrow \mathbb{R}$. Define $\Theta_{M}^{\prime}=\Theta^{M} / \sim$.

Model Assume that there is an $M>0$ such that p can be written as,

$$
p_{\lambda, \theta}(x)=\sum_{m=1}^{M} \lambda_{m} p_{\theta_{m}}(x),
$$

for some $M \geq 1$, with $\lambda \in S_{M}=\left\{\lambda \in[0,1]^{M}: \sum_{m} \lambda_{m}=1\right\}, \theta \in \Theta_{M}^{\prime}$.

Example: how many clusters? (II)

Assume M less than some known M^{\prime}. Choose prior $\Pi_{\lambda, M}$ for $\lambda \in S_{M}$ such that, for some $\epsilon>0$,

$$
\Pi_{\lambda, M}\left(\lambda \in S_{M}: \epsilon<\min \left\{\lambda_{m}\right\}, \max \left\{\lambda_{m}\right\}<1-\epsilon\right)=1
$$

For $\theta \in \Theta_{M}^{\prime}$ also choose a prior $\Pi_{\theta, M}$ that 'stays away from the edges'. Define,

$$
\Pi=\sum_{M=1}^{M^{\prime}} \mu_{M} \Pi_{\lambda, M} \times \Pi_{\theta, M}
$$

(for $\sum_{M} \mu_{M}=1$).

If Π is a KL-prior, posterior odds select the correct number of clusters M. If there are no M^{\prime} and ϵ known, there are sequences $M_{n}^{\prime} \rightarrow \infty$ and $\epsilon_{n} \downarrow 0$ with priors Π_{n} that finds the correct number of clusters.

