EcoSta2018, City University of Hong Kong, 19 June 2018

What is asymptotically testable and what is not?

Bas Kleijn

KdV Institute for Mathematics

×X×

UNIVERSITEIT VAN AMSTERDAM

Asymptotic symmetric testing

Observe *i.i.d.* data $X^n \sim P^n$, model $P \in \mathscr{P}$; for disjoint $B, V \subset \mathscr{P}$,

 H_0 : $P \in B$, or H_1 : $P \in V$.

Look for test functions $\phi_n : \mathscr{X}^n \to [0, 1]$ s.t.

 $P^n \phi_n(X^n) \to 0$, and $Q^n(1 - \phi_n(X^n)) \to 0$

for all $P \in B$ and all $Q \in V$.

Equivalently, we want,

A testing procedure that chooses for B or V based on $X^n \sim P^n$ for every $n \ge 1$, has property (D) if it is wrong only a finite number of times with P^{∞} -probability one.

Property (D) is sometimes referred to as "discernibility".

Some examples and unexpected answers (I)

Consider non-parametric regression with $f : X \to \mathbb{R}$ and test for smoothness,

$$H_0: f \in C^1(X \to \mathbb{R}), \quad H_1: f \in C^2(X \to \mathbb{R}),$$

Consider a non-parametric density estimation with $p : \mathbb{R} \to [0, \infty)$ and test for square-integrability,

$$H_0$$
: $\int x^2 p(x) dx < \infty$, H_1 : $\int x^2 p(x) dx = \infty$.

Practical problem we cannot use the data to determine with asymptotic certainty, if CLT applies with our data.

Some examples and unexpected answers (II)

Coin-flip $X^n \sim \text{Bernoulli}(p)^n$ with $p \in [0, 1]$.

Consider Cover's rational mean problem (1973):

 H_0 : $p \in [0, 1] \cap \mathbb{Q}$, H_1 : $p \in [0, 1] \setminus \mathbb{Q}$.

Consider also Dembo and Peres's irrational alternative (1995):

 $H_0: p \in [0,1] \cap \mathbb{Q}, \quad H_1: p \in [0,1] \cap \sqrt{2} + \mathbb{Q},$

Consider ultimately fractal hypotheses, e.g. with Cantor set C,

 H_0 : $p \in C$, H_1 : $p \in [0, 1] \setminus C$.

Three forms of testability

Definition 5.1 (ϕ_n) is a uniform test sequence for B vs V, if,

$$\sup_{P \in B} P^n \phi_n \to 0, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \to 0.$$
(1)

Definition 5.2 (ϕ_n) is a pointwise test sequence for B vs V, if,

$$\phi_n(X^n) \xrightarrow{P} 0, \quad \phi_n(X^n) \xrightarrow{Q} 1,$$
 (2)

for all $P \in B$ and $Q \in V$.

Definition 5.3 (ϕ_n) is a Bayesian test sequence for B vs V, if,

$$\phi_n(X^n) \xrightarrow{P} 0, \quad \phi_n(X^n) \xrightarrow{Q} 1,$$
 (3)

for Π -almost-all $P \in B$ and $Q \in V$.

Posterior odds model selection for frequentists

Johnson & Rossell (JRSSB, 2010), Taylor & Tibshirani (PNAS, 2016)

Theorem 6.1 Given measurable $B, V \subset \Theta$ ($\Pi(B), \Pi(V) > 0$) and,

i. there are Bayesian tests for B vs V of power $a_n \downarrow 0$,

ii.

$$\int_{B} P^{n} \phi_{n} d\Pi(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi(Q) = o(a_{n}),$$

and, for all $P \in B$, $P^{n} \triangleleft a_{n}^{-1} P_{n}^{\Pi|B}$; for all $Q \in V$, $Q^{n} \triangleleft a_{n}^{-1} P_{n}^{\Pi|V}$,

then posterior odds give rise to a pointwise test for B vs V.

See BK, "The frequentist validity of Bayesian limits", arXiv:1611.08444 [math.ST]

Example: KL-neighbourhoods

Definition 7.1 Given (P_n) , (Q_n) and a $a_n \downarrow 0$, Q_n is a_n -remotely contiguous w.r.t. P_n $(Q_n \triangleleft a_n^{-1}P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0, 1]$

 $P_n\psi_n = o(a_n) \quad \Rightarrow \quad Q_n\psi_n = o(1)$

Example 7.2 Let \mathscr{P} be a model for i.i.d. data X^n . Let P_0, P and $\epsilon > 0$ be such that $-P_0 \log(dP/dP_0) < \epsilon^2$. Then, for large enough n,

$$\frac{dP^n}{dP_0^n}(X^n) \ge e^{-\frac{n}{2}\epsilon^2},\tag{4}$$

with P_0^n -probability one. So for any tests ψ_n ,

$$P^n \psi_n \ge e^{-\frac{1}{2}n\epsilon^2} P_0^n \psi_n. \tag{5}$$

So if $P^n \phi_n = o(\exp(-\frac{1}{2}n\epsilon^2))$ then $P_0^n \phi_n = o(1)$: $P_0^n \triangleleft a_n^{-1}P^n$ with $a_n = \exp(-\frac{1}{2}n\epsilon^2)$.

7

Example: select the DAG (I)

Observe an *i.i.d.* X^n of vectors of discrete random variables $X_i = (X_{1,i}, \ldots, X_{k,i}) \in \mathbb{Z}^k$, $1 \le i \le n$.

Define a family \mathscr{F} of kernels $p_{\theta}(\cdot|\cdot) : \mathbb{Z} \times \mathbb{Z}^{l} \to [0, 1]$, for $\theta \in \Theta$, $1 \leq l \leq k$. Assume that Θ is compact and,

$$heta\mapsto \sum_{x\in\mathbb{Z}}f(x)P_{ heta}(x|z_1,\ldots,z_l)$$

is continuous, for every bounded $f : \mathbb{Z} \to \mathbb{R}$ and all $z_1, \ldots, z_l \in \mathbb{Z}$.

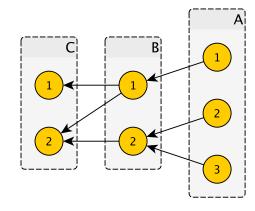
 $X \sim P$ follows a graphical model,

$$P_{\mathscr{A},\theta}(X_1 \in B_1, \ldots, X_k \in B_k) = \prod_{i=1}^k P_{\theta_i}(X_i \in B_i | \mathscr{A}_i)$$

where $\mathscr{A}_i \subset \{1, \ldots, k\}$ denotes the *parents* of X_i (and $\mathscr{A}_{ij} = \mathscr{A}_i \cup \mathscr{A}_j$). Together, the \mathscr{A}_i describe a directed, a-cyclical graph (DAG).

Example: select the DAG (II)

The DAG $\mathscr{A} = (\mathscr{A}_i : 1 \leq i \leq k)$ represents a number of conditional independence statements concerning the components X_1, \ldots, X_k .



$$P_{\mathscr{A},\theta}(C_{1} \in \cdot, \dots, A_{3} \in \cdot)$$

= $P_{\theta_{C,1}}(\cdot|B_{1}) \times P_{\theta_{C,2}}(\cdot|B_{1}, B_{2})$
 $\times P_{\theta_{B,1}}(\cdot|A_{1}) \times P_{\theta_{B_{2}}}(\cdot|A_{2}, A_{3})$
 $\times P_{\theta_{A,1}}(\cdot) \times P_{\theta_{A,2}}(\cdot) \times P_{\theta_{A,3}}(\cdot)$

Fig 1. An small example DAG: No arrow means $X_i \perp X_j | \mathscr{A}_{ij}$. $\mathscr{A}_{C_1} = \{B_1\}, \mathscr{A}_{B_2} = \{A_2, A_3\}$, so given B_1, A_2 and A_3, C_1 is independent of B_2 .

Example: select the DAG (III)

Define the submodels $\mathscr{P}_{\mathscr{A}} = \{P_{\mathscr{A},\theta} : \theta \in \Theta^k\}$, for all \mathscr{A} . Given any $\mathscr{A}' \neq \mathscr{A}$, there is a pair $X_i \perp X_j | \mathscr{A}_{ij}$ but $X_i \not\perp X_j | \mathscr{A}'_{ij}$.

Require that, for all θ , all $A, B \subset \mathbb{Z}$,

 $\left|P_{\mathscr{A}',\theta}(X_i \in A, X_j \in B|\mathscr{A}_{ij}) - P_{\mathscr{A}',\theta}(X_i \in A|\mathscr{A}_{ij}) P_{\mathscr{A}',\theta}(X_j \in B|\mathscr{A}_{ij})\right| > \epsilon,$ for some $\epsilon > 0$ that depends only on \mathscr{A} and \mathscr{A}' .

With a KL-prior posterior odds for $\mathscr{P}_{\mathscr{A}}$ select the correct DAG \mathscr{A} .

Uniform testability: equivalent formulations

Proposition 11.1 Let \mathscr{P} be a model for *i.i.d.* data with disjoint B and V. The following are equivalent:

i. there exists a uniform test sequence (ϕ_n) ,

$$\sup_{P\in B}P^n\phi_n
ightarrow 0,\quad \sup_{Q\in V}Q^n(1-\phi_n)
ightarrow 0,$$

ii. there is a exponentially powerful uniform test sequence (ψ_n) ,

$$\sup_{P \in B} P^n \psi_n \leq e^{-nD}, \quad \sup_{Q \in V} Q^n (1 - \psi_n) \leq e^{-nD}$$

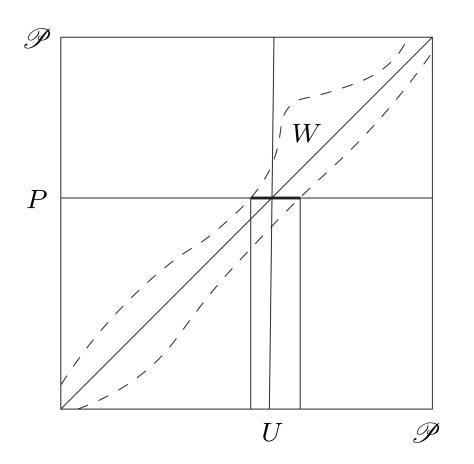


Fig 2. Let $P \in \mathscr{P}$ and entourage $W \in \mathscr{U}_{\infty}$ be given. Define neighbourhood $U \in \mathscr{T}_{\infty}$ as $U = \{Q \in \mathscr{P} : (Q, P) \in W\}$

Uniform separation (II)

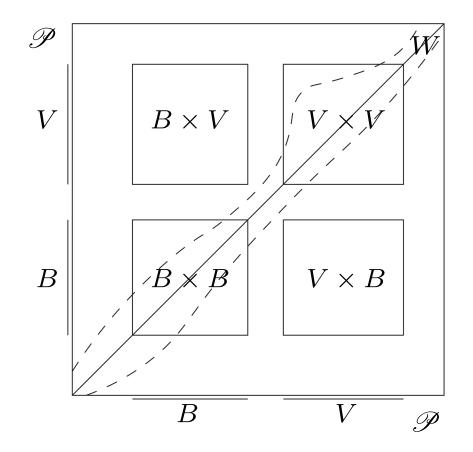


Fig 3. *B* and *V* are uniformly separated by \mathscr{U}_{∞} if there is a $W \in \mathscr{U}_{\infty}$ that does not meet $B \times V$ and $V \times B$.

Characterisation of uniform testability

Theorem 14.1 Let \mathscr{P} be a model for *i.i.d.* data with disjoint B and V. The following are equivalent:

(i.) there are uniform tests ϕ_n for B versus V,

(ii.) B and V are uniformly separated by \mathscr{U}_{∞} .

Corollary 14.2 (Parametrised models) Suppose $\mathscr{P} = \{p_{\theta} : \theta \in \Theta\}$, with (Θ, d) compact, metric space and $\theta \to P_{\theta}$ identifiable and \mathscr{T}_{∞} continuous, (that is, for every $f \in \mathscr{F}_n$, $\theta \mapsto \int f dP_{\theta}^n$ is continuous). If $B_0, V_0 \subset \Theta$ with $d(B_0, V_0) > 0$, then the images $B = \{P_{\theta} : \theta \in B_0\}$, $V = \{P_{\theta} : \theta \in V_0\}$ are uniformly testable.

Pointwise testability: equivalent formulations

Proposition 15.1 Let \mathscr{P} be a model for i.i.d. data and let B, V be disjoint model subsets. The following are equivalent:

i. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,

 $P^n\phi_n
ightarrow 0, \quad Q^n(1-\phi_n)
ightarrow 0,$

ii. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,

$$\phi_n(X^n) \xrightarrow{P} 0, \quad (1 - \phi_n(X^n)) \xrightarrow{Q} 0,$$

iii. there are tests (ϕ_n) such that, for all $P \in B$ and $Q \in V$,

$$\phi_n(X^n) \xrightarrow{P-a.s.} 0, \quad (1 - \phi_n(X^n)) \xrightarrow{Q-a.s.} 0$$

Pointwise testability in dominated models

Definition 16.1 The testing problem has a (uniform) representation on X, if there exists a \mathscr{T}_{∞} -(uniformly-)continuous, surjective map $f: B \cup V \to X$ such that $f(B) \cap f(V) = \emptyset$.

Definition 16.2 The model is parametrised by Θ , if there exists a \mathscr{T}_{∞} -continuous bijection $P : \Theta \to \mathscr{P}$ (i.e. for every $m \ge 1$ and measurable $f : \mathscr{X}^m \to [0, 1]$, the map $\theta \mapsto \int f \, dP^m_{\theta}$ is continuous).

Characterisation of pointwise testability

Theorem 17.1 Let \mathscr{P} be a dominated model for *i.i.d.* data with disjoint B, V. The following are equivalent,

- i. there exists a pointwise test for B vs V,
- ii. the problem has a representation $f : B \cup V \to X$ on a normal space X and there exist disjoint F_{σ} -sets $B', V' \subset X$ such that $f(B) \subset B', f(V) \subset V'$,
- iii. the problem has a uniform representation $\psi : B \cup V \to X$ on a separable, metrizable space X with $\psi(B), \psi(V)$ both F_{σ} and G_{δ} -sets.

Finite entropy and uniform integrability

Corollary 18.1 Suppose that \mathscr{P} is dominated and TV -totally-bounded. Then disjoint $B, V \subset \mathscr{P}$ are pointwise testable, if and only if, B, V are both F_{σ} - and G_{δ} -sets in $B \cup V$ (for \mathscr{T}_{TV}).

Corollary 18.2 Suppose that \mathscr{P} is dominated by a probability measure, with a uniformly integrable family of densities. Then disjoint $B, V \subset \mathscr{P}$ are pointwise testable, if and only if, B, V are both F_{σ} - and G_{δ} -sets in $B \cup V$ (for \mathscr{T}_{C}).

Bayesian testability: equivalent formulations

Theorem 19.1 Let a model $(\mathscr{P}, \mathscr{G}, \Pi)$ with $B, V \in \mathscr{G}$ be given, with $\Pi(B) > 0, \Pi(V) > 0$. The following are equivalent,

- i. there exist Bayesian tests for B vs V,
- ii. there are tests ϕ_n such that for Π -almost-all $P \in B, Q \in V$,

$$P^n \phi_n \to 0, \quad Q^n (1 - \phi_n) \to 0,$$

iii. there are tests $\phi_n : \mathscr{X}^n \to [0, 1]$ such that,

$$\int_{B} P^{n} \phi_{n} d\Pi(P) + \int_{V} Q^{n} (1 - \phi_{n}) d\Pi(Q) \to 0,$$

iv. for Π -almost-all $P \in B$, $Q \in V$,

$$\Pi(V|X^n) \xrightarrow{P} 0, \quad \Pi(B|X^n) \xrightarrow{Q} 0.$$

Characterisation of Bayesian testability

Theorem 20.1 Let $(\mathscr{P}, \mathscr{G})$ be a measurable model with a prior Π that is a Radon measure and hypotheses B, V. There is a Bayesian test sequence for B vs V, if and only if, B, V are \mathscr{G} -measurable.

Consistent model selection

Let \mathscr{P} be a model for *i.i.d.* data $X^n \sim P^n$, $(n \ge 1)$, and suppose that $(\mathscr{P}, \mathscr{G}, \Pi)$ has finite, measurable partition,

 $P \in \mathscr{P} = \mathscr{P}_1 \cup \ldots \cup \mathscr{P}_M.$

Model-selection Which $1 \leq i \leq M$? (such that $P \in \mathscr{P}_i$)

Theorem 21.1 Assume that for all $1 \le i < j \le M$,

 \mathscr{P}_i and \mathscr{P}_i are \mathscr{U}_{∞} -uniformly separated.

Let $1 \leq i \leq M$ be such that $P \in \mathscr{P}_i$. If Π is a KL-prior, then indicators for posterior odds,

$$\phi_n(X^n) = \mathbb{1}\Big\{X^n : \Pi(\mathscr{P}_i | X^n) \ge \sum_{j \neq i} \Pi(\mathscr{P}_j | X^n)\Big\},\$$

are a pointwise test for \mathscr{P}_i vs $\cup_{j\neq i} \mathscr{P}_j$.

Thank you for your attention

BK, "The frequentist validity of Bayesian limits" arXiv:1611.08444 [math.ST]

Remote contiguity

Definition 23.1 Given (P_n) , (Q_n) and a $a_n \downarrow 0$, Q_n is a_n -remotely contiguous w.r.t. P_n $(Q_n \triangleleft a_n^{-1}P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0, 1]$

$$P_n\psi_n = o(a_n) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Lemma 23.2 $Q_n \triangleleft a_n^{-1}P_n$ if any of the following holds:

(i) For any bnd msb $T_n : \mathscr{X}^n \to \mathbb{R}, a_n^{-1}T_n \xrightarrow{P_n} 0$, implies $T_n \xrightarrow{Q_n} 0$

(ii) Given $\epsilon > 0$, there is a $\delta > 0$ s.t. $Q_n(dP_n/dQ_n < \delta a_n) < \epsilon$ f.l.e.n.

(iii) There is a b > 0 s.t. $\liminf_{n \to \infty} b a_n^{-1} P_n(dQ_n/dP_n > b a_n^{-1}) = 1$

(iv) Given $\epsilon > 0$, there is a c > 0 such that $\|Q_n - Q_n \wedge c a_n^{-1} P_n\| < \epsilon$

(v) Under Q_n , every subsequence of $(a_n(dP_n/dQ_n)^{-1})$ has a further subsequence that converges in \mathcal{T}_C .

The model as a uniform space

Take \mathscr{X} a separable metrizable space, with Borel σ -algebra \mathscr{B} .

The class \mathscr{F}_n contains all bounded, \mathscr{B}^n -measurable $f : \mathscr{X}^n \to \mathbb{R}$.

For every $n \ge 1$ and $f \in \mathscr{F}_n$, define the entourage,

$$W_{n,f} = \{ (P,Q) \in \mathscr{P} \times \mathscr{P} : |P^n f - Q^n f| < 1 \}.$$

Defines uniformity \mathscr{U}_n (with topology \mathscr{T}_n). Take $\mathscr{U}_{\infty} = \bigcup_{n>1} \mathscr{U}_n$.

$$P \to Q \text{ in } \mathscr{T}_{\infty} \quad \Leftrightarrow \quad \int f \, dP^n \to \int f \, dQ^n,$$

for all $n \ge 1$ and all $f \in \mathscr{F}_n$. Note also,

$$\mathscr{U}_C \subset \mathscr{U}_1 \subset \cdots \subset \mathscr{U}_\infty \subset \mathscr{U}_{TV}.$$

The Dunford-Pettis theorem

Theorem 25.1 (Dunford-Pettis) Assume \mathscr{P} is dominated by a probability measure Q with densities in $\mathscr{P}_Q \subset L^1(Q)$; \mathscr{P}_Q is relatively weakly compact, if and only if, for every $\epsilon > 0$ there is an M > 0 such that,

$$\sup_{P\in\mathscr{P}}\int_{\{dP/dQ>M\}}\frac{dP}{dQ}\,dQ<\epsilon,$$

that is, \mathscr{P}_Q is uniformly Q-integrable.

Uniform separation

Definition 26.1 Subsets $B, V \subset \mathscr{P}$ are uniformly separated by \mathscr{U}_{∞} , if there exists an entourage $W \in \mathscr{U}_{\infty}$ such that,

 $(B \times V \cup V \times B) \cap W = \emptyset.$

In other words, there are $J, m \ge 1$, $\epsilon > 0$ and bounded, measurable functions $f_1, \ldots, f_J : \mathscr{X}^m \to [0, 1]$ such that, for any $P, Q \in B \cup V$, if,

$$\max_{1 \le j \le J} \left| P^m f_j - Q^m f_j \right| < \epsilon,$$

then either $P, Q \in B$, or $P, Q \in V$. (If the model is \mathcal{T}_{∞} -compact, m = 1 suffices).

The Le Cam-Schwartz theorem

Theorem 27.1 (Le Cam-Schwartz, 1960) Let \mathscr{P} be a model for *i.i.d.* data X^n with disjoint subsets B, V. The following are equivalent:

- i. there exist (uniformly) consistent tests for B vs V,
- ii. there is a sequence of \mathscr{U}_{∞} -uniformly continuous $\psi_n : \mathscr{P} \to [0,1]$,

$$\psi_n(P) \to \mathbf{1}_V(P),$$
 (6)

(uniformly) for all $P \in B \cup V$.

Example: how many clusters? (I)

Observe *i.i.d.* $X^n \sim P^n$, where P dominated with density p.

Clusters Family \mathscr{F} of kernels $\varphi_{\theta} : \mathbb{R} \to [0, \infty)$, with parameter $\theta \in \Theta$. Assume Θ compact and,

 $\theta \mapsto \int f(x)\varphi_{\theta}(x) \, dx,$

is continuous, for every bounded, measurable $f:\mathbb{R}\to\mathbb{R}.$ Define $\Theta_M'=\Theta^M/\sim.$

Model Assume that there is an M > 0 such that p can be written as,

$$p_{\lambda,\theta}(x) = \sum_{m=1}^{M} \lambda_m p_{\theta_m}(x),$$

for some $M \ge 1$, with $\lambda \in S_M = \{\lambda \in [0,1]^M : \sum_m \lambda_m = 1\}$, $\theta \in \Theta'_M$.

Example: how many clusters? (II)

Assume *M* less than some known *M'*. Choose prior $\Pi_{\lambda,M}$ for $\lambda \in S_M$ such that, for some $\epsilon > 0$,

$$\Pi_{\lambda,M} (\lambda \in S_M : \epsilon < \min\{\lambda_m\}, \max\{\lambda_m\} < 1 - \epsilon) = 1$$

For $\theta \in \Theta'_M$ also choose a prior $\Pi_{\theta,M}$ that 'stays away from the edges'. Define,

$$\Pi = \sum_{M=1}^{M'} \mu_M \Pi_{\lambda,M} \times \Pi_{\theta,M}.$$

(for $\sum_M \mu_M = 1$).

If Π is a KL-prior, posterior odds select the correct number of clusters M. If there are no M' and ϵ known, there are sequences $M'_n \to \infty$ and $\epsilon_n \downarrow 0$ with priors Π_n that finds the correct number of clusters.