Statistical Foundations Workshop, Cambridge, 22 June 2017

On the frequentist validity of Bayesian limits

arXiv:1611.08444 [math.ST]

Bas Kleijn, KdV Institute for Mathematics

Part I

Introduction

Bayesian and Frequentist statistics

sample spaces $(\mathscr{X}_n, \mathscr{B}_n)$ prob msr's $M^1(\mathscr{X}_n)$

data $X^n = (X_1, \dots, X_n) \in \mathcal{X}_n$ sequential experiment

parameter space (Θ, \mathcal{G}) if *i.i.d.*: $(\mathcal{P}, \mathcal{G})$

parameter $\theta \in \Theta$ if *i.i.d.*: $P \in \mathscr{P}$

model $\Theta \to M^1(\mathscr{X}_n) : \theta \mapsto P_{\theta,n}$ not always *i.i.d.*

priors $\Pi_n: \mathscr{G} \to [0,1]$ probability measure

posterior $\Pi(\cdot|X^n): \mathscr{G} \to [0,1]$ Bayes's rule, inference

Frequentist assume there is P_0 $X^n \sim P_0^n$

Bayes assume $P \sim \Pi$ $X^n \mid P \sim P^n$

Definition of the posterior

Definition 4.1 Assume that all $\theta \mapsto P_{\theta,n}(A)$ are \mathscr{G} -measurable. Fix $n \geq 1$. Given prior Π_n , a posterior is any $\Pi(\cdot | X^n = \cdot) : \mathscr{G} \times \mathscr{X}_n \to [0,1]$

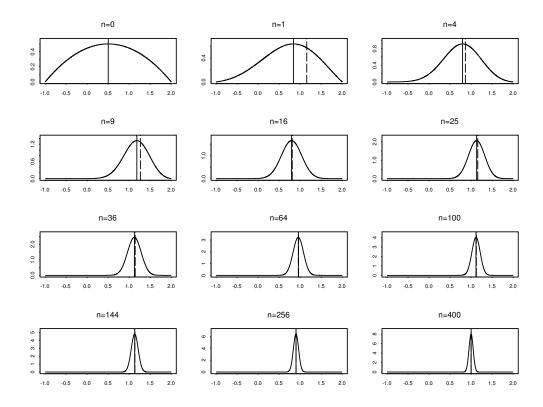
- (i) For any $G \in \mathcal{G}$, $x^n \mapsto \Pi(G|X^n = x^n)$ is \mathcal{B}_n -measurable
- (ii) (Disintegration) For all $A \in \mathcal{B}_n$ and $G \in \mathcal{G}$

$$\int_{A} \Pi(G|X^{n}) dP_{n}^{\Pi} = \int_{G} P_{\theta,n}(A) d\Pi_{n}(\theta)$$

where $P_n^{\Pi} = \int P_{\theta,n} d\Pi_n(\theta)$ is the prior predictive distribution

Remark 4.2 For frequentists $X^n \sim P_{0,n}$, so assume $P_{0,n} \ll P_n^{\sqcap}$

Asymptotic consistency of the posterior



Definition 5.1 Given Θ (Hausdorff completely regular) and a Borel prior Π , the posterior is consistent at $\theta \in \Theta$ if for every nbd U of θ

$$\Pi(U|X^n) \xrightarrow{P} 1$$

The i.i.d. consistency theorems (I)

Theorem 6.1 (Bayesian, Doob (1948))

Let \mathscr{P} and \mathscr{X} be Polish spaces and let Π be a Borel prior. Assume that $P\mapsto P^n(A)$ is Borel measurable for all n,A. Then the posterior is consistent at P, for Π -almost-all $P\in\mathscr{P}$

Example 6.2 For some $Q \in \mathscr{P}$, take $\Pi = \delta_Q$. Then $\Pi(\cdot|X^n) = \delta_Q$ as well, P_n^{Π} -almost-surely. If $X_1, \ldots, X_n \sim P_0^n$ (require $P_0^n \ll P_n^{\Pi} = Q^n$), the posterior is not frequentist consistent.

Non-trivial counterexamples are due to Schwartz (1961) and Freedman (1963,1965,...)

The i.i.d. consistency theorems (II)

Theorem 7.1 (Frequentist, Schwartz (1965)) Let $X_1, X_2, ...$ be i.i.d.- P_0 for some $P_0 \in \mathscr{P}$. If,

(i) For every nbd U of P_0 , there are $\phi_n: \mathscr{X}_n \to [0,1]$, s.t.

$$P_0^n \phi_n = o(1), \quad \sup_{Q \in U^c} Q^n (1 - \phi_n) = o(1),$$
 (1)

(ii) and Π is a Kullback-Leibler prior, i.e. for all $\delta > 0$,

$$\Pi\left(P \in \mathscr{P} : -P_0 \log \frac{dP}{dP_0} < \delta\right) > 0, \tag{2}$$

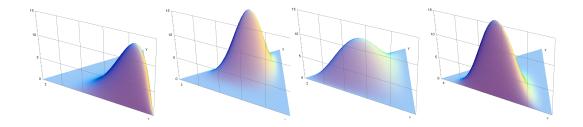
then $\Pi(U|X^n) \xrightarrow{P_0-a.s.} 1$.

The Dirichlet process

Definition 8.1 (Dirichlet distribution)

A $p = (p_1, ..., p_k)$ $p_l \ge 0$ and $\sum_l p_l = 1$ is Dirichlet distributed with parameter $\alpha = (\alpha_1, ..., \alpha_k)$, $p \sim D_{\alpha}$, if it has density

$$f_{\alpha}(p) = C(\alpha) \prod_{l=1}^{k} p_l^{\alpha_l - 1}$$



Definition 8.2 (Dirichlet process, Ferguson 1973,1974)

Let $\mathscr X$ be Polish and let α be a finite Borel msr on $(\mathscr X,\mathscr B)$. The Dirichlet process $P \sim D_{\alpha}$ is defined by,

$$(P(A_1),\ldots,P(A_k)) \sim D_{(\alpha(A_1),\ldots,\alpha(A_k))}$$

The i.i.d. consistency theorems (III)

Theorem 9.1 (Frequentist, Dirichlet consistency)

Let $X_1, X_2, ...$ be an i.i.d.-sample from P_0 If Π is a Dirichlet prior D_α with finite α such that $supp(P_0) \subset supp(\alpha)$, the posterior is consistent at P_0 in the weak model topology

Remark 9.2 (*Freedman* (1963))

Dirichlet priors are tailfree: if A' refines A and $A'_{i1} \cup \ldots \cup A'_{il_i} = A_i$, then $(P(A'_{i1}|A_i), \ldots, P(A'_{il_i}|A_i) : 1 \le i \le k)$ is independent of $(P(A_1), \ldots, P(A_k))$.

Remark 9.3 $X^n \mapsto \Pi(P(A)|X^n)$ is $\sigma_n(A)$ -measurable where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Part II Bayesian test sequences

Bayesian and Frequentist testability

For B, V be two (disjoint) model subsets

Definition 11.1 *Uniform (or minimax) testability*

$$\sup_{\theta \in B} P_{\theta,n} \phi_n \to 0, \quad \sup_{\theta \in V} P_{\theta,n} (1 - \phi_n) \to 0$$

Definition 11.2 Pointwise testability for all $\theta \in B$, $\eta \in V$

$$\phi_n \xrightarrow{P_{\theta,n}} 0, \quad \phi_n \xrightarrow{P_{\eta,n}} 1$$

Definition 11.3 Bayesian testability for Π -almost-all $\theta \in B$, $\eta \in V$

$$\phi_n \xrightarrow{P_{\theta,n}} 0, \quad \phi_n \xrightarrow{P_{\eta,n}} 1$$

Examples of uniform test sequences

Lemma 12.1 (Uniform Hellinger tests) Let $B, V \subset \mathscr{P}$ be convex with H(B, V) > 0. There exist a D > 0 and uniform test sequence (ϕ_n) s.t.

$$\sup_{P \in B} P^n \phi_n \le e^{-nD}, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \le e^{-nD}$$

Lemma 12.2 (Uniform weak tests) Let $n \ge 1$, $\epsilon > 0$, $P_0 \in \mathscr{P}$ and a msb $f: \mathscr{X}^n \to [0,1]$ be given. Define

$$B = \left\{ P \in \mathscr{P} : \left| (P^n - P_0^n)f \right| < \epsilon \right\}, \quad V = \left\{ P \in \mathscr{P} : \left| (P^n - P_0^n)f \right| \ge 2\epsilon \right\}$$

There exist a D > 0 and uniform test sequence (ϕ_n) s.t.

$$\sup_{P \in B} P^n \phi_n \le e^{-nD}, \quad \sup_{Q \in V} Q^n (1 - \phi_n) \le e^{-nD}$$

A posterior concentration inequality

Lemma 13.1 Let $(\mathscr{P},\mathscr{G})$ be given. For any prior Π , any test function ϕ and any $B, V \in \mathscr{G}$,

$$\int_{B} P\Pi(V|X) d\Pi(P) \le \int_{B} P\phi d\Pi(P) + \int_{V} Q(1-\phi) d\Pi(Q)$$

Corollary 13.2 Consequently, for any sequences (Π_n) , (B_n) , (V_n) such that $B_n \cap V_n = \emptyset$ and $\Pi_n(B_n) > 0$, we have,

$$P_n^{\Pi|B_n}\Pi(V_n|X^n) := \int P_{\theta,n}\Pi(V_n|X^n) d\Pi_n(\theta|B_n)$$

$$\leq \frac{1}{\Pi_n(B_n)} \left(\int_{B_n} P_{\theta,n} \phi_n d\Pi_n(\theta) + \int_{V_n} P_{\theta,n} (1 - \phi_n) d\Pi_n(\theta) \right)$$

Martingale convergence

Proposition 14.1 Let $(\Theta, \mathcal{G}, \Pi)$ be given. For any $B, V \in \mathcal{G}$, the following are equivalent,

- (i) There exist Bayesian tests (ϕ_n) for B versus V;
- (ii) There exist tests (ϕ_n) such that,

$$\int_{B} P_{\theta,n} \phi_n d\Pi(\theta) + \int_{V} P_{\theta,n} (1 - \phi_n) d\Pi(\theta) \to 0,$$

(iii) For Π -almost-all $\theta \in B$, $\eta \in V$,

$$\Pi(V|X^n) \xrightarrow{P_{\theta,n}} 0, \quad \Pi(B|X^n) \xrightarrow{P_{\eta,n}Q} 0$$

Remark 14.2 Interpretation distinctions between model subsets are Bayesian testable, iff they are picked up by the posterior asymptotically, iff, the Bayes factor for B versus V is consistent

Prior-almost-sure consistency

Corollary 15.1 Let Hausdorff completely regular Θ with Borel prior Π be given. Then the following are equivalent,

- (i) for Π -almost-all $\theta \in \Theta$ and any nbd U of θ there exist a msb $B \subset U$ with $\Pi(B) > 0$ and Bayesian tests (ϕ_n) for B vs $V = \Theta \setminus U$,
- (ii) the posterior is consistent at Π -almost-all $\theta \in \Theta$.

Remark 15.2 Let \mathscr{P} be a Polish space and assume that all $P \mapsto P^n(A)$ are Borel measurable. Then, for any prior Π , any Borel set $V \subset \mathscr{P}$ is Bayesian testable versus $\mathscr{P} \setminus V$.

Corollary 15.3 (More than) Doob's 1948 theorem

Part III

Remote contiguity

Le Cam's inequality

Definition 17.1 For $B \in \mathscr{G}$ such that $\Pi_n(B) > 0$, the local prior predictive distribution is $P_n^{\prod |B|} = \int P_{\theta,n} d\Pi_n(\theta|B)$.

Remark 17.2 (Le Cam, unpublished (197?) and (1986))
Rewrite the posterior concentration inequality

$$P_0^n \Pi(V_n | X^n) \le \left\| P_0^n - P_n^{\Pi | B_n} \right\|$$

$$+ \int P^n \phi_n \, d\Pi(P | B_n) + \frac{\Pi(V_n)}{\Pi(B_n)} \int Q^n (1 - \phi_n) \, d\Pi(Q | V_n)$$

Remark 17.3 Useful in parametric models (e.g. BvM) but "a considerable nuisance" [sic] (Le Cam (1986)) in non-parametric context

Schwartz's theorem revisited

Remark 18.1 Suppose that for all $\delta > 0$, there is a B s.t. $\Pi(B) > 0$ and for Π -almost-all $\theta \in B$ and large enough n

$$P_0^n \Pi(V|X^n) \le e^{n\delta} P_{\theta,n} \Pi(V|X^n)$$

then (by Fatou) for large enough m

$$\limsup_{n\to\infty} \left[(P_0^n - e^{n\delta} P_n^{\Pi|B}) \Pi(V|X^n) \right] \le 0$$

Theorem 18.2 Let \mathscr{P} be a model with KL-prior Π ; $P_0 \in \mathscr{P}$. Let $B, V \in \mathscr{G}$ be given and assume that B contains a KL-neighbourhood of P_0 . If there exist Bayesian tests for B versus V of exponential power then

$$\prod (V|X^n) \xrightarrow{P_0 - a.s.} 0$$

Corollary 18.3 (Schwartz's theorem)

Remote contiguity

Definition 19.1 Given (P_n) , (Q_n) of prob msr's, Q_n is contiguous w.r.t. P_n $(Q_n \triangleleft P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0,1]$

$$P_n\psi_n = o(1) \quad \Rightarrow \quad Q_n\psi_n = o(1)$$

Definition 19.2 Given (P_n) , (Q_n) of prob msr's and a $a_n \downarrow 0$, Q_n is a_n -remotely contiguous w.r.t. P_n $(Q_n \triangleleft a_n^{-1}P_n)$, if for any msb $\psi_n : \mathscr{X}^n \to [0,1]$

$$P_n \psi_n = o(a_n) \quad \Rightarrow \quad Q_n \psi_n = o(1)$$

Remark 19.3 Contiguity is stronger than remote contiguity note that $Q_n \triangleleft P_n$ iff $Q_n \triangleleft a_n^{-1}P_n$ for all $a_n \downarrow 0$.

Definition 19.4 Hellinger transform $\psi(P,Q;\alpha) = \int p^{\alpha}q^{1-\alpha} d\mu$

Le Cam's first lemma

Lemma 20.1 Given (P_n) , (Q_n) like above, $Q_n \triangleleft P_n$ iff:

- (i) If $T_n \xrightarrow{P_n} 0$, then $T_n \xrightarrow{Q_n} 0$
- (ii) Given $\epsilon > 0$, there is a b > 0 such that $Q_n(dQ_n/dP_n > b) < \epsilon$
- (iii) Given $\epsilon > 0$, there is a c > 0 such that $\|Q_n Q_n \wedge c P_n\| < \epsilon$
- (iv) If $dP_n/dQ_n \xrightarrow{Q_n-w} f$ along a subsequence, then P(f>0)=1
- (v) If $dQ_n/dP_n \xrightarrow{P_n-W} g$ along a subsequence, then Eg = 1
- (vi) $\liminf_n \psi(P_n, Q_n; \alpha) \to 1$ as $\alpha \uparrow 1$

Criteria for remote contiguity

Lemma 21.1 Given (P_n) , (Q_n) , $a_n \downarrow 0$, $Q_n \triangleleft a_n^{-1}P_n$ if any of the following holds:

- (i) For any bnd msb $T_n: \mathscr{X}^n \to \mathbb{R}$, $a_n^{-1}T_n \xrightarrow{P_n} 0$, implies $T_n \xrightarrow{Q_n} 0$
- (ii) Given $\epsilon > 0$, there is a $\delta > 0$ s.t. $Q_n(dP_n/dQ_n < \delta a_n) < \epsilon$ f.l.e.n.
- (iii) There is a b > 0 s.t. $\liminf_{n \to \infty} b \, a_n^{-1} \, P_n(dQ_n/dP_n > b \, a_n^{-1}) = 1$
- (iv) Given $\epsilon > 0$, there is a c > 0 such that $\|Q_n Q_n \wedge c a_n^{-1} P_n\| < \epsilon$
- (v) Under Q_n , $(a_n dQ_n/dP_n)$ are r.v.'s and every subseq has a weakly convergent subseq
- (vi) $\lim_{\alpha \uparrow 1} \liminf_{n \to \infty} a_n^{-\alpha} \psi(P_n, Q_n; \alpha) > 0$

Part IV

Frequentist consistency

Beyond Schwartz

Theorem 23.1 Let $(\Theta, \mathcal{G}, \Pi)$ and $(X_1, \dots, X_n) \sim P_{0,n}$ be given. Assume there are $B, V \in \mathcal{G}$ with $\Pi(B) > 0$ and $a_n \downarrow 0$ s.t.

(i) There exist Bayesian tests for B versus V of power a_n ,

$$\int_{B} P_{\theta,n} \phi_n \, d\Pi(\theta) + \int_{V} P_{\theta,n} (1 - \phi_n) \, d\Pi(\theta) = o(a_n)$$

(ii) The sequence $(P_{0,n})$ satisfies $P_{0,n} \triangleleft a_n^{-1} P_n^{\prod |B|}$

Then
$$\Pi(V_n|X^n) \xrightarrow{P_0} 0$$

Application to i.i.d. consistency (I)

Remark 24.1 (Schwartz (1965))

Take $P_0 \in \mathscr{P}$, and define

$$V_n = \{ P \in \mathscr{P} : H(P, P_0) \ge \epsilon \}$$

$$B_n = \{ P : -P_0 \log dP/dP_0 < \frac{1}{2}\epsilon^2 \}$$

With $N(\epsilon, \mathcal{P}, H) < \infty$, and a_n of form $\exp(-nD)$ the theorem proves Hellinger consistency with KL-priors.

Application to i.i.d. consistency (II)

Remark 25.1 Dirichlet posteriors $X^n \mapsto \Pi(P(A)|X^n)$ are msb $\sigma_n(A)$ where $\sigma_n(A)$ is generated by products of the form $\prod_{i=1}^n B_i$ with $B_i = \{X_i \in A\}$ or $B_i = \{X_i \notin A\}$.

Remark 25.2 (Freedman (1965), Ferguson (1973), ...) Take $P_0 \in \mathcal{P}$, and define

$$V_n = V := \{ P \in \mathscr{P} : |P_0(A) - P(A)| \ge 2\epsilon \}$$

 $B_n = B := \{ P : |P_0(A) - P(A)| < \epsilon \}$

for some measurable A. Impose remote contiguity only for ψ_n that are $\sigma_n(A)$ -measurable! Take a_n of form $\exp(-nD)$. The theorem then proves weak consistency with a Dirichlet prior D_{α} , if $\operatorname{supp}(P_0) \subset \operatorname{supp}(\alpha)$.

Consistency with n-dependence

Theorem 26.1 Let $(\mathscr{P},\mathscr{G})$ with priors (Π_n) and $(X_1,\ldots,X_n)\sim P_{0,n}$ be given. Assume there are $B_n,V_n\in\mathscr{G}$ and $a_n,b_n\geq 0$, $a_n=o(b_n)$ s.t.

(i) There exist Bayesian tests for B_n versus V_n of power a_n ,

$$\int_{B_n} P_{\theta,n} \phi_n \, d\Pi_n(\theta) + \int_{V_n} P_{\theta,n} (1 - \phi_n) \, d\Pi_n(\theta) = o(a_n)$$

- (ii) The prior mass of B_n is lower-bounded by b_n , $\Pi_n(B_n) \geq b_n$
- (iii) The sequence $(P_{0,n})$ satisfies $P_0^n \triangleleft b_n a_n^{-1} P_n^{\prod_n \mid B_n}$

Then
$$\Pi_n(V_n|X^n) \xrightarrow{P_0} 0$$

Application to i.i.d. consistency (III)

Remark 27.1 (Barron-Schervish-Wasserman (1999), Ghosal-Ghosh-vdVaart (2000), Shen-Wasserman (2001))

Take $P_0 \in \mathscr{P}$, and define

$$V_n = \{ P \in \mathscr{P} : H(P, P_0) \ge \epsilon_n \}$$

$$B_n = \{P : -P_0 \log dP/dP_0 < \frac{1}{2}\epsilon_n^2, P_0 \log^2 dP/dP_0 < \frac{1}{2}\epsilon_n^2\}$$

With $\log N(\epsilon_n, \mathcal{P}, H) \leq n\epsilon_n^2$, and a_n and b_n of form $\exp(-Kn\epsilon_n^2)$ the theorem proves Hellinger consistency at rate ϵ_n

Remark 27.2 Larger B_n are possible, under conditions on the model (see Kleijn and Zhao (201x))

Consistent Bayes factors

Theorem 28.1 Let the model $(\mathcal{P},\mathcal{G})$ with priors (Π_n) be given. Given $B, V \in \mathcal{G}$ with $\Pi(B), \Pi(V) > 0$ s.t.

(i) There are Bayesian tests for B versus V of power $a_n \downarrow 0$,

$$\int_{B} P_{\theta,n} \phi_n d\Pi_n(\theta) + \int_{V} P_{\theta,n} (1 - \phi_n) d\Pi_n(\theta) = o(a_n)$$

- (ii) For every $\theta \in B$, $P_{\theta,n} \triangleleft a_n^{-1} P_n^{\prod_n \mid B}$
- (iii) For every $\eta \in V$, $P_{\eta,n} \lhd a_n^{-1} P_n^{\prod_n \mid V}$

Then or Bayes factors (or posterior odds),

$$B_n = \frac{\Pi(B|X^n)}{\Pi(V|X^n)} \frac{\Pi(V)}{\Pi(B)}$$

for B versus V are consistent.

Random-walk goodness-of-fit testing (I)

Given (S, \mathscr{S}) state space for a discrete-time, stationary Markov process with transition kernel $P(\cdot|\cdot): \mathscr{S} \times S \to [0,1]$, the data consists of random walks X^n .

Choose a finite partition $\alpha = \{A_1, \dots, A_N\}$ of S and 'bin the data': Z^n in finite state space S_{α} . Z^n is stationary Markov chain on S_{α} with transition probabilities

$$p_{\alpha}(k|l) = P(X_i \in A_k | X_{i-1} \in A_l),$$

We assume that p_{α} is ergodic with equilibrium distribution π_{α} .

We are interested in Bayes factors for goodness-of-fit testing of transition probabilities.

Random-walk goodness-of-fit testing (II)

Fix $P_0, \epsilon > 0$ and hypothesize on 'bin probabilities' $p_{\alpha}(k, l) = p_{\alpha}(k|l)\pi_{\alpha}(l)$,

$$H_0: \max_{k,l} \left| p_{\alpha}(k,l) - p_0(k,l) \right| < \epsilon, \quad H_1: \max_{k,l} \left| p_{\alpha}(k,l) - p_0(k,l) \right| \ge \epsilon,$$

Define, for $\delta_n \downarrow 0$,

$$B_{n} = \{ p_{\alpha} \in \Theta : \max_{k,l} | p_{\alpha}(k,l) - p_{0}(k,l) | < \epsilon - \delta_{n} \}$$

$$V_{k,l} = \{ p_{\alpha} \in \Theta : | p_{\alpha}(k,l) - p_{0}(k,l) | \ge \epsilon \},$$

$$V_{+,k,l,n} = \{ p_{\alpha} \in \Theta : | p_{\alpha}(k,l) - p_{0}(k,l) | \ge \epsilon + \delta_{n} \},$$

$$V_{-,k,l,n} = \{ p_{\alpha} \in \Theta : | p_{\alpha}(k,l) - p_{0}(k,l) | \le -\epsilon - \delta_{n} \}.$$

Random-walk goodness-of-fit testing (III)

Choquet $p_{\alpha}(k|l) = \sum_{E \in \mathscr{E}} \lambda_E E(k|l)$ where the N^N transition kernels E are deterministic. Define,

$$S_n = \left\{ \lambda_{\mathscr{E}} \in S^{N^N} : \lambda_E \ge \lambda_n / N^{N-1}, \text{ for all } E \in \mathscr{E} \right\},$$

for $\lambda_n \downarrow 0$.

Theorem 31.1 Choose a prior $\Pi \ll \mu$ on S^{N^N} with continuous density that is everywhere strictly positive. Assume that,

- (i) $n\lambda_n^2\delta_n^2/\log(n)\to\infty$,
- (ii) $\Pi(B \setminus B_n), \Pi(\Theta \setminus S_n) = o(n^{-(N^N/2)}),$

(iii)
$$\Pi(V_{k,l} \setminus (V_{+,k,l,n} \cup V_{-,k,l,n})) = o(n^{-(N^N/2)})$$
, for all $1 \le k, l \le N$.

Then the Bayes factors F_n for H_0 versus H_1 are consistent.

Part V Uncertainty quantification

Credible sets and confidence sets

Let Δ denote a collection of measurable subsets of Θ

Definition 33.1 Let (Θ, \mathscr{G}) with prior Π be given, denote the posterior by $\Pi(\cdot|\cdot): \mathscr{G} \times \mathscr{X} \to [0,1]$. For $0 \le \alpha \le 1$, a credible set D of credible level $1-\alpha$ is a set-valued map $D: \mathscr{X} \to \Delta$ such that:

$$\Pi(\Theta \setminus D_n(X^n) \mid X^n) = o(a_n)$$

 P^{Π} -almost-surely.

Definition 33.2 A sequence of maps $x \mapsto C_n(x) \subset \Theta$ forms an asymptotically consistent sequence of confidence sets, if,

$$P_{\theta_0,n}(\theta_0 \in C_n(X^n)) \to 1$$

for all $\theta_0 \in \Theta$.

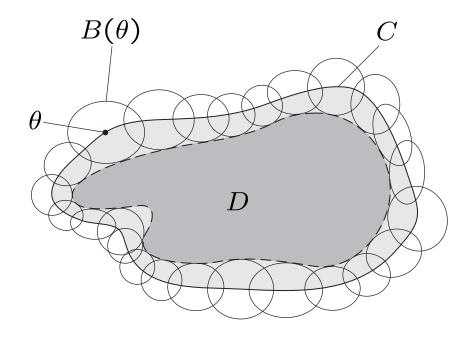
Enlargement of credible sets (I)

Definition 34.1 Let D be a credible set in Θ and let B denote a set function $\theta \mapsto B(\theta) \subset \Theta$. A model subsets C is said to be a confidence set associated with D under B, if for all $\theta \in \Theta \setminus C$,

$$B(\theta) \cap D = \emptyset$$

Definition 34.2 The intersection C_0 of all C like above is a confidence set associated with D under B, called the minimal confidence set associated with D under B.

Enlargement of credible sets (II)



A credible set D and its associated confidence set C under B in terms of Venn diagrams: additional points $\theta \in C \setminus D$ are characterized by non-empty intersection $B(\theta) \cap D \neq \emptyset$.

Enlarged credible sets are confidence sets

Theorem 36.1 Let $0 \le a_n \le 1$, $a_n \downarrow 0$ and $b_n > 0$ such that $a_n = o(b_n)$ be given and let D_n denote level- $(1 - a_n)$ credible sets. Furthermore, for all $\theta \in \Theta$, let B_n be set functions such that,

(i)
$$\Pi_n(B_n(\theta_0)) \geq b_n$$
,

(ii)
$$P_{\theta_0,n} \lhd b_n a_n^{-1} P_n^{\prod_n |B_n(\theta_0)|}$$
.

Then any confidence sets C_n associated with the credible sets D_n under B_n are asymptotically consistent, that is,

$$P_{\theta_0,n}(\theta_0 \in C_n(X^n)) \to 1.$$

Methodology: confidence sets from posteriors (I)

Corollary 37.1 Given (Θ, \mathcal{G}) , (Π_n) and (B_n) with $\Pi_n(B_n) \geq b_n$ and $P_{\theta,n} \triangleleft P_n^{\Pi_n|B_n}$, any credible sets D_n of level $1-a_n$ with $a_n = o(b_n)$ have associated confidence sets under B_n that are asymptotically consistent.

Next, assume that $(X_1, X_2, \dots, X_n) \in \mathcal{X}^n \sim P_0^n$ for some $P_0 \in \mathcal{P}$.

Corollary 37.2 Let Π_n denote Borel priors on \mathscr{P} , with constant C > 0 and rate sequence $\epsilon_n \downarrow 0$ such that:

$$\Pi_n\bigg(P\in\mathscr{P}\ :\ -P_0\log\frac{dP}{dP_0}<\epsilon_n^2,\ P_0\bigg(\log\frac{dP}{dP_0}\bigg)^2<\epsilon_n^2\bigg)\geq e^{-Cn\epsilon_n^2}.$$

Given credible sets D_n of level $1 - \exp(-C'n\epsilon_n^2)$, for some C' > C. Then radius- ϵ_n Hellinger-enlargements C_n are asymptotically consistent confidence sets.

Methodology: confidence sets from posteriors (II)

Note the relation between diameters,

$$diam_H(C_n(X^n)) = diam_H(D_n(X^n)) + 2\epsilon_n.$$

If, in addition, tests satisfying

$$\int_{B_n} P_{\theta,n} \phi_n(X^n) d\Pi_n(\theta) + \int_{V_n} P_{\theta,n} (1 - \phi_n(X^n)) d\Pi_n(\theta) = o(a_n),$$

with $a_n = \exp(-C'n\epsilon_n^2)$ exist, the posterior is Hellinger consistent at rate ϵ_n and credible sets $D_n(X^n)$ have diameters $\leq \epsilon_n$.

If ϵ_n is the minimax rate of convergence for the problem, the confidence sets $C_n(X^n)$ are rate-optimal.

Remark 38.1 Rate-adaptivity is not possible like this because a definite choice for the sets in B_n is required.

Conclusions

- (i) There is a systematic way of taking Bayesian limits into frequentist limits based on generalization of Schwartz's prior condition
- (ii) Bayesian tests are natural: place low prior weight where testing is difficult, and high weight where testing is easy, ideally.
- (iii) Development of new Bayesian methods benefits from a simple, insightful, fully general perspective to guide the search for suitable priors
- (iv) Methodology: use priors that induce remote contiguity to enable conversion of credible sets to confidence sets

Thank you for your attention

arXiv:1611.08444 [math.ST]