
Korteweg-de Vries Institute, Amsterdam, 21 Feb 2024

Random histogram limits and quantum field theory

arXiv:2403.XXXXX [math.PR]

Bas Kleijn

KdV Institute for Mathematics, Amsterdam



Part I
The Bourbaki-Prokhorov-Schwartz theorem



Daniell-Kolmogorov existence theorem (I)

Setting

Let X be a Polish space. To define a random function f : X →
R, consider all finite subsets S = {s1, . . . , sn} of X , and probability

distributions ΠS such that,

fS =
(
f(s1), f(s2), . . . , f(sn)

)
∼ ΠS.

Consistency

for any S′ ⊂ S, ΠS′ is marginal to ΠS;

for any permutation π of S, Ππ(S) = ΠS ◦ π−1.

Theorem 3.1 (Daniell, 1922; Kolmogorov, 1933)

For any consistent collection (ΠS : S ⊂ X ), there exists a probability

space (Ω,F ,Π) that permits (f(x) : x ∈ X ) as a stochastic process.
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Daniell-Kolmogorov existence theorem (II)

Advantages

THE tool to prove existence of stochastic processes

ΠS are easy to work with

Properties of ΠS induce properties of Π

Example (Kolmogorov’s continuity theorem)

If there exist α, β > 0 such that, for any S and any s, t ∈ S,

EΠS

∣∣∣Xs −Xt
∣∣∣α ≤ K|s− t|1+β,

then f is γ-Hölder continuous for any 0 < γ < β/α.

Disadvantage

Ω = RX and F is Borel σ-algebra for pointwise convergence
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Random histograms
Specify

Let X be a Hausdorff space with Borel σ-algebra B. To define

a random measure µ : B → R, consider finite partitions α =

{A1, . . . , An} of X , (A ∈ B, A ̸= ∅), and probability distributions

Πα such that,

µα =
(
µ(A1), µ(A2), . . . , µ(An)

)
∼ Πα.

Coherence
For any β ≥ α, with µβ ∼ Πβ,( ∑

B⊂A1

µβ(B), . . . ,
∑

B⊂An
µβ(B)

)
∼ Πα.

Goal
Under which conditions does a coherent system of random his-

tograms define a probability distribution Π on the space M(X )

where the µ live?
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The Bourbaki-Prokhorov-Schwartz theorem (I)

Theorem 6.1 (Bourbaki (1969), Integration II, Ch. 9)

Let (Yα, ψαβ) be an inverse system of Hausdorff spaces, T a

Hausdorff space and ψα : T → Yα a coherent and separating

family of continuous mappings.

Let (µα, ψαβ) be a coherent inverse system of positive mea-

sures on (Yα, ψαβ). There exists a bounded positive Radon

measure µ on T projecting to µα for all α, if and only if,

for every ϵ > 0, there is a compact H ⊂ T s.t. for all α,

µα
(
Yα \ ψα(H)

)
≤ ϵ.
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The Bourbaki-Prokhorov-Schwartz theorem (II)

Setting

Let X be Hausdorff with Borel σ-algebra B. Choose T =M1(X ),

with a Hausdorff topology that we focus on later.

Projections

For all α = {A1, . . . , An}, define histogram projections,

φ∗α :M1(X ) →M1(Xα) : P 7→ Pα =
(
P (A1), P (A2), . . . , P (An)

)
,

and maps to coarsen histograms, for β ≥ α,

φ∗αβ :M1(Xβ) →M1(Xα) : Pβ 7→
( ∑
B⊂A1

Pβ(B), . . . ,
∑

B⊂An
Pβ(B)

)
.

(φ∗α = φ∗αβ ◦φ∗β, (α ≤ β), and φ∗αγ = φ∗αβ ◦φ∗βγ, (α ≤ β ≤ γ).)
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The Bourbaki-Prokhorov-Schwartz theorem (III)

Coherence and random histograms

For any α, choose a probability distribution Πα ∈M1(Xα) s.t., for

all β ≥ α,

Πβ ◦ φ−1
∗αβ = Πα.

Bourbaki-Prokhorov-Schwartz

Assume that the histogram projections φ∗,α are separating and

continuous. Choose Πα that form a coherent system of probability

measures. There exists a Radon probability measure Π onM1(X ),

projecting to Πα for all α, if and only if:

for any ϵ > 0, there is a compact H ⊂M1(X ) s.t. for all α,

Πα
(
M1(Xα) \ φ∗α(H)

)
< ϵ. (P)
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Part II
Phases of random histogram limits



Histogram limits with the weak-star topology (I)

Weak-star topology

Consider M1(X ) with the coarsest topology TW s.t.,

M1(X ) → R : P 7→
∫
f dP ,

is continuous for every bounded, measurable f : X → R.

Dunford-Pettis-Grothendieck

H ⊂ M1(X ) is weak-star compact, if and only if, there exists a

Q ∈M1(X ) s.t.,

lim
L→∞

sup
P∈H

∥∥∥P − P ∧ LQ
∥∥∥ = 0.
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Histogram limits with the weak-star topology (II)

Support of a TW -Radon probability measure Π

With G =
∫
P dΠ ∈M1(X ), (the mean measure of Π),

suppW (Π) ⊂
{
P ∈M1(X ) : P ≪ G

}
.

Such Π describe random Radon-Nikodym densities dP/dG ∈ L1(G).

Theorem 11.1 (Existence of weak-star histogram limits)

Let Πα be coherent probability measures. There is a TW -Radon prob-

ability measure Π on M1(X ) projecting to Πα ∈ M1(Xα) for all α, if

and only if:

there is a Q ∈M1(X ) s.t., for every ϵ, δ > 0 there is a L > 0 s.t.,

Πα
(
{Pα ∈M1(Xα) : ∥Pα − Pα ∧ LQα∥1,Xα

> δ}
)
< ϵ, (PW)

for all α ∈ A .
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Random histogram limits with the TV topology

Total variational topology

Consider M1(X ) with the total-variational metric,

dTV (P,Q) = sup
B∈B

|P (B)−Q(B)|,

and call the metric topology TTV .

Borel σ-algebras are the same!

If X is separable and P is dominated, BW = BTV .

Theorem 12.1 (Existence of total-variational histogram limits)

Let Πα be coherent probability measures. There is a TTV -Radon

probability measure Π on M1(X ) projecting to Πα ∈ M1(Xα) for all

α, if and only if, condition (PW) holds.
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Random histogram limits with the tight topology (I)

Tight topology

Consider M1(X ) with the coarsest topology TT s.t.,

M1(X ) → R : P 7→
∫
f dP ,

is continuous for every bounded, continuous f : X → R.

Prokhorov

Let X be Polish. H ⊂ M1(X ) is tightly compact, if and only if,

for all ϵ > 0, there is a compact K ⊂ X s.t.,

sup
P∈H

P (X \K) < ϵ,

On H inner regularity holds uniformly.

Continuity of projections

The mappings P 7→ P (A) are not continuous! So the histogram

projections φ∗α are not continuous...
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Random histogram limits with the tight topology (I)

Continuity of projections

To make P 7→ P (A) continuous for all A in all α, we consider a

zero-dimensional refinement Y of X .

Tight topology

Consider M1(Y ) with the coarsest topology TT s.t.,

M1(Y ) → R : P 7→
∫
f dP ,

is continuous for every bounded, continuous f : Y → R.

Prokhorov

Let Y be Polish. H ⊂ M1(Y ) is tightly compact, if and only if,

for all ϵ > 0, there is a compact K̂ ⊂ Y s.t.,

sup
P∈H

P (Y \ K̂) < ϵ,

On H inner regularity holds uniformly.
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Random histogram limits with the tight topology (II)

Support of a TT -Radon probability measure Π

With G again the mean measure of Π,

suppT (Π) ⊂
{
P ∈M1(X ) : supp(P ) ⊂ supp(G)

}
.

Such Π are not limited to Radon-Nikodym densities in L1(G).

Theorem 15.1 (Existence of tight histogram limits)

Let Πα be coherent probability measures. There is a TT -Radon prob-

ability measure Π on M1(X ) projecting to Πα ∈ M1(Xα) for all α, if

and only if:

for all ϵ, δ > 0 there is a compact K̂ in Y s.t.,

Πα
(
{Pα ∈M1(Xα) : Pα(Xα \ K̂α) > δ

)
< ϵ, (PT)

for all α ∈ A .
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Kingman’s completely random measures

Completely random histograms

If Ai ∩Aj = ∅, then ν(Ai), ν(Aj) are independent

Cumulants

The positive measures λt : B → [0,∞] defined by,

λt(B) = log
∫
etν(B) dΠ(ν).

Theorem 16.1 (Kingman, 1967)

If all histograms are completely random and cumulants σ-finite,

ν = νn+ νf + νr, (1)

where,
νn is non-random, non-atomic

νf is random purely atomic on a fixed X ′ ⊂ X

νr is random purely atomic, independent of νr
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Phases of random histogram limits (I)

Theorem 17.1 (Phases of random histogram limits)

Let Πα be a system of histogram distributions with a limit Π.

(i.) (absolutely-continuous)

Under condition (PW), the random P lies in L1(G):

Π
(
{P ∈M1(X ) : P ≪ G}

)
= 1.

(ii.) (fixed-atomic)

if, in addition, the Πα are (normalized) completely random,

P (A) = Z−1(νn(A) + νf(A)), Z = νn(X ) + νf(X ).

with νn ≪ G non-random, non-atomic and νf random atomic,

supported on a fixed set.
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Phases of random histogram limits (II)

Theorem 17.1 (continued)

If X is Polish,

(iii.) (continuous-singular)

Under condition (PT), random P has support in support of G,

Π
(
{P ∈M1(X ) : supp(P ) ⊂ supp(G)}

)
= 1.

(iv.) (random-atomic)

if, in addition, histograms are (normalized) completely random,

P (A) = Z−1(νn(A) + νf(A) + νr(A)).

with νr atomic, supported on a random set.
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Part III

Quantum field theory

and the Gaussian free field



Particle collider experiments

Interior of ATLAS detector (image from CERN, wikipedia)
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Particle collider experiments

Tunnel with LHC ring (image from CERN, wikipedia)
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Particle collider experiments

Schematic of ATLAS detector (image from CERN, wikipedia)
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Particle collider experiments

Schematic of ATLAS detector (image from CERN, wikipedia)
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Quantum field theory (I)

Hilbert space representation

In-state

|in⟩ = |⃗k1, k⃗2, k⃗3, . . . ⟩

Out-state

⟨out| = ⟨k⃗1, k⃗2, k⃗3, . . . |

Amplitude

P (in → out) = |⟨out|in⟩|2

Fock space

H∞ =
∞⊕
n=0

SnH
⊗n
1 , H1 =

⊕
{ψ

k⃗
= eik⃗·x⃗ : k⃗ ∈ R3}
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Quantum field theory (II)

Wightman functions and path integrals

Sources and sinks

⟨out|in⟩ =
〈∫

· · ·
∫
j1(x1)ϕ(x1) . . . jm(xm)ϕ(xm) dx1 . . . dxm

〉
W

Wightman functions (satisfying Wightman axioms)

Wm(x1, x2, . . . , xm) =
〈
ϕ(x1) . . . ϕ(xm)

〉
W

Feynman’s path integral〈
f(ϕ)

〉
W

= Z−1
∫
H∞

f(ϕ) eiS(ϕ) Dϕ,

Action

S(ϕ) =
∫
Rd

(
ϕ∆ϕ+m2ϕ2(x) + λϕ4(x) + j(x)ϕ(x)

)
ddx
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Part IV

The Gaussian Free Field

and emergence of the particle



Gaussian random histogram limits (I)

Signed, non-normalized random histograms

· X is a Polish space

· µ is a bounded, signed Borel measure on X

· Σ is a bounded, signed Borel measure on X × X

· Σ(A×B) = Σ(B ×A),

· for every α, the matrix Σα,

Σα,ij = Σ(Ai ×Aj)

is positive definite.

Gaussian random histograms

Φα =
(
Φ(A1), . . . ,Φ(An)

)
∼ Nα = N(µα,Σα).

Gaussian free field in d dimensions

X = K ⊂ Rd, µ = 0 and Σ∆,d(A×B) =
∫
A×BGd(x− y) dx dy
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Phases of Gaussian histogram limits

Theorem 28.1 (Tight Gaussian histogram limits)

By σ-additivity of λ and Σ, any Gaussian histogram system is coherent

and has a tight limit Π on M1(X ).

Theorem 28.2 (Weak-star Gaussian histogram limits)

If,

lim sup
α

∑
i

√
Σα,ii <∞,

then the histogram system has a weak-star limit Π.
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The Gaussian Free field in d dimensions

d = 1 GFF is random function (Brownian motion)

Theorem 28.2 works

The GFF is in the absolutely-continuous phase and we can write,

Φ(A) =
∫
A
B(t) dt.

The random RN density functions are Brownian paths

d ≥ 2 GFF is a random generalized function

Theorem 28.1 works (and theorem 28.2 does not).

The GFF is in the continuous-singular phase and we can write,

Φ(A) =
∫
A
ϕ(t) ddx

where ϕ is a random rank-0 generalized function
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Diagonalization of Gaussian histogram limits

Diagonalized covariance

For every α, write Σα = OTα ◦ Dα ◦ Oα and consider the coherent

histogram system,

Ψα =
(
Ψ(A1), . . . ,Ψ(An)

)
∼ Nα = N(0, Dα),

with ψ∗αβ = Oα ◦ φ∗αβ ◦OTβ , (β ≥ α), and ψ∗α = Oα ◦ φ∗α.

Theorem 28.1 works but theorem 28.2 doesn’t.

... And such random histograms are completely random,

Ψ(A) = Ψn(A) +Ψf(A) +Ψr(A).

with,

· νn ≪ EΠ|Ψ| non-random, non-atomic,

· νf random atomic, supported on a fixed set,

· νr atomic, supported on a random set.
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Particles emerge in Gaussian histogram limits

Diagonalization has Fourier transformation as limit

In the limit,

EΠΨ(A)Ψ(B) =
∫
A×B

1

p2
δd(p− q) ddp ddq

Decomposition By completely randomness,

Ψ(A) = Ψn(A) +Ψf(A) +Ψr(A).

with (in momentum space)

· Ψn non-random,

classical sources, non-zero µ, boundary conditions, solitons

· Ψf random atomic, on a fixed set

on-shell particles, on mass spectrum, “physical particles”

· Ψr random atomic, on a random set

off-shell particles, quantum-only “virtual particles”
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Wightman functions of the Gaussian free field?

Schwinger functions

For all α and any A1, . . . , Am ∈ α, define ⟨ϕα(x1) . . . ϕα(xm)⟩S by∫
A1×···×Am

⟨ϕα(x1) . . . ϕα(xm)⟩S dx1 · · · dxm = EΠα(Φα(A1) · · ·Φα(Am))

Wick rotation (Osterwalder-Schrader, 1973, 1975)

If the Schwinger functions satisfy

(E0) Temperedness + linear growth

(E1) Euclidean covariance

(E2) Positivity

(E3) Symmetry

(E4) Cluster property

then they can be continued analytically to Wightman functions.
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Part V

Interactions, exact renormalization

and effective field theories



Interacting scalar fields in d dimensions

Theorem 34.1 (Martingale convergence (Doob, 1948))

For any functions Mα(Φα) ≥ 0 such that

Eβ[Mβ(Φβ)|Fα] =Mα(Φα)

there exists a Borel-measurable martingale limit M(Φ) such that,

EΠ[M(Φ)|Fα] =Mα(Φα)

Call M(Φ) the bare interaction Lagrangian, and define ΠM ,

pM(Φ) = Z−1
M e−M(Φ), ΠM(C) =

∫
C
pM(Φ) dΠ(Φ)

Corollary 34.2 Since ΠM ≪ Π,

ΠM
(
Ψ(A) = Ψn(A) +Ψf(A) +Ψr(A)

)
= 1
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Effective field theory

Define effective interaction Lagrangians,

Lα(Φα) = − logE[ pM(Φ)|Fα]

Theorem 35.1 For any α,

EΠM(Φα(A1) · · ·Φα(Am))

= EΠ

(
pM(Φ)(Φα(A1) · · ·Φα(Am)

)
= EΠα

(
e−Lα(Φα)(Φα(A1) · · ·Φα(Am)

)
= EL,α

(
Φα(A1) · · ·Φα(Am)),
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Feynman diagrams

Suppose Lα is polynomial in (Φα(A) : A ∈ α),

Lα(Φα) =
∑
i∈I

λα,iΦα(A1)
ni,1 . . .Φα(An)

ni,n

for some finite set I of monomials, and, for the set J of all monomials,

EΠα

(
e−Lα(Φα)Φα(A1) · · ·Φα(Al)

)
= EΠα

( ∞∑
m=0

(−1)m

m!
L(Φα)

mΦα(A1) · · ·Φα(Al)
)

=
∑
j∈J

µjEΠα

(
Φα(A1)

mj,1 . . .Φα(Aj)
mj,n

)

Theorem 36.1 (Isserlis theorem)

For multivariate-normally distributed (X1, . . . , Xn),

E(Xm1
1 . . . Xmn

n ) =
∑
p

∏
(ij)∈p

E(XiXj)
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