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Abstract—For both embedded systems and biological cell
systems, design is a feature that defines their identity. The
assembly of different components in designs of both systems
can vary widely. Given the similarities between computers
and cellular systems, methods and models of computation
from the domain of computer systems engineering could be
applied to model cellular systems. Our aim is to construct a
framework that focuses on understanding the design options
and consequences within a cell, taking an in-silico (forward-)
engineering approach rather than the reverse-engineering
approach now used by default in this domain. We take
our ideas from the domain of embedded computer systems.
The most important features of our approach, as taken
from this domain, are a variable abstraction level of model
components that allows for inclusion of components of which
detailed information is lacking, and a separation of concerns
between function and performance by components in the
design. This allows for efficient and flexible modeling. Also,
there is a strict separation between computation within
and communication between components, thus reducing
complexity. As a proof-of-principle, we show that we can
make a statement regarding the design of the gene expression
machinery of a cell to produce a protein, using such a
method.

I. INTRODUCTION

Although engineered computer systems and naturally
evolved cell systems have different origins, many analo-
gies exist between the two. In a metaphysical context,
both are complex systems that must cope with different
trade-offs in energy, power, cost and flexibility. For coping
with trade-offs, separate components that function within
a system may have their own specific solution. As a result,
both systems have a huge design space, i.e. possible com-
ponents to choose from to make a system that performs a
given function. These possibilities are restricted by the
fact that all combinations of components should work
together as best as possible.
Computer engineers are more advanced in simulating
the complex behavior of the combined components of
their systems than biologists. This lead could be caused
by several factors. Firstly, the two systems are investigated
in opposite directions [1]: whereas computer systems are
assembled from scratch to create function, the cell is
already functional and is disassembled to discover where
function originates (Figure 1). Secondly, sophisticated
methods already exist for computer systems, specifically

for evaluating the best architecture for a system. In
biological systems these sorts of methods were probably
not developed in the past because systems take shape
‘automatically’ by natural selection. However, with the
recent quest for an integral understanding of the behavior
and drive of biological systems (collectively addressed
by the term ‘systems biology’ [2], [3]), there is a demand
for such methods. There certainly is a trend in applying
methods originally developed for other domains to the
benefit of biology. Examples are frame-synchronization
techniques [4], process calculi [5], model checking [6],
and pathway logic [7].
In biology, the engineering approach as such is emerg-
ing as a tool for research. One application is the actual
construction of simple regulatory networks to help find
design principles (i.e. feedback loops, switches, oscilla-
tors) of cellular networks [2], [9], [10]. One important
issue in understanding cellular design principles is to
learn why, in a particular cell, options for coping with
a problem or function have been adopted whilst there are
many seemingly equally appropriate alternatives. During
evolution, some core design issues have been highly
conserved in cells, e.g. the tools for performing basic
metabolism (the disassembly of nutrients to supply useful
compounds in the cell), and transcription/translation (the
processes that express information from genes to make
proteins). Nevertheless, somewhere in the evolution, cells
have also adopted different ways of performing similar
functions. For instance, if we compare different cells,
there are several design options for coping with particular
tasks, e.g. different networks to deliver a signal or produce
a metabolic compound [11] or different components to
handle osmotic stress actively. These different options
may have evolved by differential selective pressure, pos-
sibly restricted by previously adopted solutions for other
functions. It is difficult to backtrack exactly what the
case is. If we were able to understand the consequences
of adopted solutions, we could also ponder about their
origin. It would be helpful to know the theoretical conse-
quences of chosen alternatives in designing experiments
on such biological systems. This would also be of help
in the recent attempts to design cellular function [12]–
[14]. So far, these attempts have been successful only on
a small scale (i.e. simple networks) [15], which shows the
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Figure 1. Difference in the direction of research between Computer Science and Biology. Left part: For computer systems, the system is first
specified at abstract level. Going down in abstraction (meandering arrow), the design space of a specification (transparent dot) decreases in size
(area in dotted triangle). The ultimate end product at the lowest level of abstraction is one instance of a design (black dot). Right part: For biological
cell systems, the instance of the design (black dot) is the starting point and scientists try to derive the function of separate components by assessing
their influence on higher level system function, for instance by inactivation or manipulation (indicated by the cross). Figure adapted from [8].

difficulty in engineering the cell to be more efficient when
performing more elaborate tasks. This is where structured
frameworks such as used in methods for design space
exploration would come in useful. Whereas biological
problems are traditionally tackled with a reverse engineer-
ing approach, much can be said to, as an alternative, use
a forward engineering approach such as used in design
space exploration for computer systems engineering (Fig-
ure 1). These methods are capable of evaluating design
options quickly and formally on a larger (systems-) scale.
We anticipate that methods from the domain of computer
systems engineering may as such serve as an alterna-
tive framework to formally evaluate design of biological
systems [9], [16]. In this way, general principles that
govern the structure and behavior of cellular systems
may be discovered [9]. The application of methods for
design space exploration to biological systems has not
been attempted before. As proof-of-principle, we simulate
a biological process to exemplify the use and benefit of
such methods for biology. We take our ideas from the
domain of computer systems engineering, with a special
interest in embedded computer systems.

II. THE COMMON GROUND BETWEEN BIOLOGICAL
AND EMBEDDED SYSTEMS

An embedded system [17] is a computer-based system
that has in particular much in common with biological
cells. Embedded systems, unlike general purpose personal
computers, perform pre-defined tasks. They are ‘embed-
ded’ in airplanes, security systems, telephones, medical
instruments etc. Embedded systems have very particular
design requirements. They are more constrained in terms
of timing, power, area, memory and other resources than
general-purpose computers. As a result, they are subject

to strict trade-offs [18]–[20]. For instance, the market
position of an embedded system is hampered directly if it
is too expensive, but also if it requires too much (battery-)
power. The emphasis of this trade-off will depend on the
requirements of the system. Also, in designing embedded
systems the interactions of the heterogeneous components
in the system have to be taken into account, as well as the
fact that these systems usually have multiple simultaneous
sources of stimuli. Additional criteria, such as real-time
behavior and reactivity [21], robustness, and concurrency
are of importance in all computations that embedded
systems perform. These cause additional restrictions to
the architecture. Cellular systems have similar issues to
comply with. Functioning in a real world, cells must
exhibit real-time behavior. Because a cell’s environment is
rarely constant it also needs to take robustness issues and
resource usage into account. A design that is not optimal
will rapidly disappear by natural selection.

The embedded systems engineer has many components
at his disposal (e.g. number and type of micro- or
dedicated processors, hard- or software components, in-
put/output devices and memories), depending on whether
it is more important for the system to be cheap, versatile,
fast, low power, or a combination. This results in a
heterogeneous architecture where many different types
of components must interact to create a functioning
system. The multiplicity of components for computer
based systems and also their different wiring possibilities
create a myriad of possible designs. The heterogeneity in
components is comparable between cellular and computer
systems [22]. To model the consequences of each and
every possible design would take much time and effort.
Somehow the engineer must be able to scan a design
space quickly and distinguish the most probable designs
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with a minimum of effort. As this problem of design
space exploration is central to the embedded systems
engineering domain, sophisticated modeling tools have
been developed to facilitate it [19].

III. AN EXAMPLE COMPUTER WORKBENCH: THE
SESAME WORKBENCH

One of the first steps in designing embedded computer
systems is the exploration and reduction of the design
space, so as to come quickly to some promising design
options that can be further tested. A specific example of
a new and promising modeling framework is provided
by the Sesame workbench [8], [20] (Figure 2). This
workbench is intended for the evaluation of embedded
systems architecture on a high level of abstraction. This is
an especially efficient method to evaluate the best suitable
architecture regarding performance (system throughput),
but also cost and power consumption, i.e. the exploration
of design space. We will use this modeling framework
to exemplify the use of design exploration methods for
biology.
In models for the design of computer systems, parts of
the design process are quite often separated to reduce the
complexity, a feature called separation of concerns [23].
This enables the analysis of different domains inde-
pendently from each other. For instance, systems are
divided into processors (computation components) and
communication components (for communication between
processors) which effectively separates these function-
alities. Another method is to separate function (sys-
tem specifications) in an application from performance
(how are these performed) in an architecture. With the
separation of application and architecture, these can be
changed independently of each other. Earlier, engineers
modeled and simulated application and architecture in a
monolithic manner. When architecture was changed (for
instance, changing the hardware-software partitioning in
the system), the whole model needed rebuilding. It is now
widely recognized that for an efficient system-level explo-
ration of design space, such a ‘separation of concerns’ is
of paramount importance [20], [23]. The separation of
application and architecture allows for rapid assessment
of different application-to-architecture mappings as well
as various hardware-software partitionings. The Sesame
workbench deploys separate models for application and
architecture behavior (Figure 2). Application models hold
the specifications for function (‘what needs to be done’),
while architecture models only simulate performance (‘the
consequences of how something is done’). The application
model consists of processes that interact with each other
through channels. Architecture models are composed
of components that can ‘execute’ the processes in the
application model. In the architecture model, compo-
nents include processing elements (programmable cores,
dedicated hardware blocks and/or reconfigurable hard-
ware), interconnection components (such as buses, FIFO
channels or crossbars), and different types of memories.
Sesame also separates communication from computation
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Figure 2. The Sesame workbench with its application model layer, ar-
chitecture model layer and mapping layer that interfaces the application
and architecture model layers.

by using the Kahn process network model of computation.
In this model the work is separated into tasks, and
communication is made explicit by allowing only the
passing of data between tasks via FIFO channels.
An application model in Sesame is mapped onto an
architecture model by means of event traces. These event
traces are emitted from the processes in the application
and mapped as workloads on components in the archi-
tecture. The mapping is facilitated by an intermediate
mapping layer. The performance consequences of the
event traces (the modeled workload) are simulated by the
underlying architecture model. By changing the structure
of the architecture model or changing the performance
parameters of its components, the performance of dif-
ferent architectures can be compared and thus a suitable
architecture can be selected.
The second feature that makes the Sesame workbench
efficient is that each model layer has its own modeling
method, fitting the modeling task at hand. A (Kahn) pro-
cess network model is used for the application model, as
Sesame currently focuses on the modeling of multimedia
(streaming) applications. For the architecture, a discrete
event simulation is used. The intermediate mapping layer
is modelled with a dataflow model. All separate models
communicate with each other. As each modeling method
is chosen especially to represent the specific functionality
in the model, the simulations are efficient and simulation
time and effort is reduced.
Thirdly, abstraction of the system away from the details
and re-use of standardized components at all these levels
of abstraction is very important because it avoids the need
to redesign the same components each time. In Sesame,
components can be modeled at varying levels of detail,
from coarse grained to detailed. At the highest level,
architectural components are modeled as black boxes with
only a few parameters. These parameters can specify
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Figure 3. The process of gene expression. On the basis of a DNA template, ribonucleotides are linked in the process ‘Transcription’ to form an
mRNA. With mRNA as a template, Amino Acids are linked in the process ‘Translation’ to form a protein. DNA and mRNA templates are reused.

characteristics such as cost, energy usage and speed to
process the event traces that are emitted by the application
model. This high level of abstraction both reduces the
modeling effort and also enables simulation of the system
early in the design cycle without detailed specifications.
This will give coarse-grained predictions of the system
behavior. Within the Sesame workbench, architectural
components of interest that contribute significantly to the
performance of the system can be refined to determine the
performance more accurately. This allows for mixed-level
simulation, in which some components are refined while
others remain operating at the higher level of abstraction.
This refinement is facilitated by the intermediate mapping
layer that brings the application model abstraction level
in agreement with the (partly) refined abstraction level of
the architecture model. The above-mentioned elements,
namely separation of concerns, abstraction from details
and model integration, are also important in systems
biology [24]. Biological systems are so complex that a
model based on a complete understanding will not readily
be feasible. Top-down approaches, where problems are
modeled in an exploratory way first and later in more
detail, will give information that is coarse grained but
just. Separation of concerns will reduce complexity in the
systems to be modeled.
Lastly, integrating specific models in biology can be
inspired by the way this is done in workbenches such as
Sesame.

IV. CASE STUDY: GENE EXPRESSION IN SESAME

As proof-of-principle we now show how a simple
biological process can be modeled and simulated in the
Sesame workbench.We consider one of the core processes
in cellular functioning: the expression of genes [25], see
Figure 3. The expression of genes in cells is a highly
(semi-) parallel task. From one gene copy, many mRNA
copies can be made, although each copy is initiated with a
short time-lag. Consequently, from each separate mRNA
string many copies of proteins can be made (each copy
also with a short time-lag). In Figure 3 we suggest the
nodes for the application model. Within these nodes, C-
like code models the behavior. In the application node
‘Transcription’, the DNA of a single gene is read and
used as a template for the production of mRNA. In the
node ‘Translation’, the mRNA is used as a template for
the production of proteins. The architecture simulates
latencies for loading input, storing output and executing
events. The combination of all traces that are emitted

from the application model represents the workload for
the architecture. The latencies are given properties of the
architectural components, but can also be made dependent
on, for instance, the concentrations of products or building
blocks. Each action (i.e. trace event) is performed by
the architecture with a certain time cost (latency). The
application node ‘Transcription’ is mapped to component
‘RNA polymerase II (Pol II)’, which simulates a latency
for the trace events emitted by the transcription node. The
application node ‘Translation’ is mapped to component
‘Ribosome’. Because building blocks (see Figure 3) must
remain somewhere, we introduce a cell environment in
the architecture in which building blocks can be stored
and retrieved. This component works similar to a memory
in a computer-based system (Figure 2). All architecture
components are linked to the cell environment compo-
nent, as they store and retrieve building blocks from it.
The experiment carried out with these specifications is
described further on in this paper, but first we will discuss
the modifications to Sesame that were needed in order to
run it.

V. MODIFICATIONS TO SESAME

In our earlier conference paper [26] we modeled gene
expression with an extremely simple architecture. For the
current case study we wanted to model the executing
expression machinery (i.e. Pol II, Ribosomes) more realis-
tically as a network of parallel processors. The execution
of tasks in biological systems has often evolved as be-
ing handled by multiple identical, dedicated components.
For our biological case study we therefore needed to
parallelize the sequential application trace for parallel
execution at the architecture layer. Normally, on the high
level at which embedded systems are modeled in Sesame,
it suffices to abstract away from massive parallelism by
capturing it in a single component with parameters (i.e.
when a component represents ten processors instead of
one, execution is ten times faster) or to use a more detailed
level of modeling where a parallel component is modeled
as a network of components. In the latter case, the traces
are scheduled to the architecture by a more detailed virtual
processor at the mapping layer. This virtual processor
recognizes the fixed event pattern which can be executed
in parallel. Such a recognized sequence of events, in
Sesame, triggers the activation of a chain of mapping layer
components that essentially replays the sequence of events
thereby generating architecture workload for the parallel
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component. A chain of mapping layer components is
represented in Figure 4a by a box containing gray circles.
However, the approach to model parallelism in Sesame
as described above proved to be too inflexible to handle
the scheduling and synchronization that was required for
our biological case study. This was partly because of the
massive parallelism required and partly because of the
different requirements of the application model. We will
elaborate on these problems below.
Firstly, the patterns to be executed in parallel in our
biological case are not static, as they depend on the input
given in the application, i.e. the gene length. Therefore
we need a way to recognize these flexible patterns.
Secondly, the application requires the flexibility to read
the data of a specific type without having to be con-
cerned from which process that data came. For instance,
mRNA can come newly constructed from the transcription
process but is also re-used multiple times within the
translation process. This is similar to a non-deterministic
select operation in Kahn process networks, which is not
implemented natively in Sesame.
Thirdly, we needed to retain the ability to let the data
contents influence the performance (e.g. Ala is translated
faster than Met but both are of the same type: amino
acids). In Sesame the performance model only receives
the size of the tokens that are transferred, not the actual
data.
Finally, the synchronization between two communicat-
ing parallel virtual processors was difficult because the
data token produced by one parallel virtual processor
needed to be sent to the correct, chain of mapping layer
components of the other parallel virtual processor. The
parallel scheduling of the sequential application trace
into the parallel chains (done by the scheduler/pattern

recognizer ‘S/P’ in Figure 4a) of a virtual processor
dictates the distribution of the synchronization tokens.
Because there is no way to discern this schedule from
outside of the virtual processor it was impossible to
schedule/distribute these synchronization tokens in a way
that results in maximal parallelism.

To overcome these problems, we tailored the Sesame
workbench to fit our requirements. We needed to do some
extensive modifications to the original Sesame workbench
to model general biological cases to our satisfaction.
However, we did not need to sacrifice the main merits
of the approach, which are the separation of concerns,
the possibility to model at different levels of abstraction
and using different models of computation.

Firstly, we made a new component (Figure 4c) for
scheduling by modifying a custom scheduling compo-
nent developed for scheduling multiple tasks on a single
processor (Figure 4b). The original scheduler was used
to schedule multiple tasks onto a single processor by
merging their traces into a sequential trace that can be
executed on that processor. The policy for scheduling
could be changed by simply plugging in a different policy.
In contrast, the new scheduling component (Figure 4c)
takes a sequential application trace and schedules it to
multiple parallel processors on a pattern basis. In the
application task we explicitly annotate the code with
an ‘end of pattern’ notation. This normally is the last
annotation of the main loop of the expression task but
can in principle occur anywhere in the code. Because
the recognised trace patterns are not used to trigger a
fixed chain of mapping layer components that generate
architecture workload as was the case in the original
Sesame, we have the ability to recognize patterns of
variable length and contents dynamically.
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Figure 5. Example of the performance of components in the architecture functioning in parallel to perform the application tasks to construct four
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Secondly, to be able to use this new scheduling compo-
nent we moved the synchronization of data between tasks
from the synchronization layer to the architecture layer of
Sesame. By removing the synchronization via token chan-
nels at the mapping layer we solved the problem of the
distribution of synchronization tokens, discussed as the
last problem in the previous paragraph. In this solution the
memory component now needs to keep track of the data in
order to provide synchronization. The memory component
is split in multiple sub-components, each synchronizing
for a single data type. Moving the synchronization from
the dataflow model of computation to the more flexible
discrete event simulator of the architecture layer allowed
us to model massive parallelism easily.
The last modification to the Sesame workbench was
to change the model of computation of the applica-
tion from the dedicated Kahn process network simula-
tor ‘PNRunner’ into the same discrete event simulation
model as the architecture is modeled in. However, we
kept the semantics of Kahn process networks (blocking
reads, non-blocking writes). This change of the model of
computation allows use of the flexible ‘select’ semantics
that we need for our biological case study.

VI. GENE EXPRESSION EXPERIMENT

In the case study, the application model generates
the following communication events (Figure 5): ‘Read
DNA’, ‘Write DNA’, ‘Write mRNA’, ‘Read mRNA’, and
‘Write protein’, and the following computational events:
‘Execute1’ (occupy a stretch of respectively DNA or
mRNA to initiate transcription or translation) and ‘Ex-
ecute2’ (respectively transcribe the rest of the DNA into
mRNA or translate the rest of the mRNA into protein).
All trace events have specific latencies. The amount of
trace events (communication or computation) emitted by
the application in our proof-of-principle depend on the
DNA sequence code (input data) that must be expressed

and the function description, i.e. how many transcrip-
tions/translations and the functions inherent to them are
needed. Figure 5 shows how an architecture with three Pol
II and three Ribosomes divides the workload to produce
four mRNA’s and five proteins. As the processivity of
an individual Pol II is about seventy percent higher than
that of a Ribosome [25], the Pol II are ready for a next
transcription much faster than the Ribosomes are for a
next translation. While a Pol II occupies the initial part of
the DNA (‘Execute 1’ in lower part of Figure 5), no other
Pol II can initiate transcription. This forces Pol II to be
idle. Ribosomes are less affected by the initial occupancy
of mRNA (‘Execute 1’ in upper part Figure 5), since
they have multiple mRNA’s to share amongst themselves
(Figure 5). The Ribosomes can make use of the mRNA’s
stored from the transcription process as well as those
restored after initial occupancy in the translation process.

For a larger experiment we simulate the production
of twelve mRNA’s from a piece of DNA strand which,
in turn, serve as templates for the production of fifty
proteins. For this application, we investigate the efficiency
of architectural components (Pol II and Ribosomes) in
generating the proteins. Figure 6a shows the performance
of different combinations of Pol II and Ribosomes in the
execution of the application tasks. The combination of
three Pol II and thirty-five Ribosomes is the quickest
to make the proteins with the help of twelve mRNA’s.
The performance statistics of this assembly are depicted
in Figure 6b. This Figure shows that for the whole
application, Pol II and Ribosomes have similar statistics.
Pol II have idle time because they are restricted by
the fact that they have to share a single DNA, but the
main cause is that they have such a high processivity
that the task that was mapped to them, transcription,
is finished early on in the application. Ribosomes have
much slower processivity. In our case, the architectures
that perform well compensate for the slow processivity
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of Ribosomes by having more copies. In this way the
translation takes about half of the total busy time of the
whole application (Figure 6a). According to our model,
a cell would need far fewer Pol II than Ribosomes. In
real biological systems, it is probably useful to generate
many mRNA’s in a short amount of time with few Pol
II because the Pol II are quickly available to generate
mRNA’s for other proteins, if necessary. Of course, having
many copies of any component generates a cost in energy
and building blocks to make them. Many Ribosomes
are needed for an equal performance (in terms of time)
of the translation and transcription processes. From an
engineering perspective, it would be rewarding to re-
engineer the component ‘Ribosome’ (be it by evolution
or synthetically) towards more efficiency because this
would speed up the whole process of gene expression
while requiring less Ribosomes. This would be especially
useful when resources for the generation of Ribosomes
are low. The logical step in Sesame would be to refine
the component Ribosome to have a clearer knowledge of
where its low processivity stems from.
Another determinant of the process speed is the number
of mRNA’s generated by Pol II. If less mRNA’s are
made, for instance five, the time for the expression of
our experiment of fifty proteins would increase drastically
-about tenfold- from 4888 to 44878 time units. In this
case the optimal combination of Pol II and Ribosomes
is three and seventeen. Here, individual Ribosomes are
forced to make more proteins. More Ribosomes would not
speed up the process because the scarce mRNA’s must be
shared. Having low numbers of mRNA would logically
be a good way for the cell to control the speed of gene
expression while keeping the potential of Ribosomes for
the translation of other proteins. The optimal number of
Pol II largely depends on the length of the DNA that
needs transcription. A longer stretch will be able to hold
more Pol II at a time.

VII. DISCUSSION

The similarities between embedded systems and bio-
logical systems are a clue that methods from computer
systems engineering can be used for evaluation of bio-
logical systems. As a proof-of-principle we simulated a
biological process, the expression of genes, in the Sesame
workbench. The Sesame workbench is developed for
design space exploration. It is fast and flexible because it
simulates and evaluates design alternatives on a high level
of abstraction. It is a quick way to evaluate the design
space of systems that perform complex tasks. It adds to
the current modeling technology by using the principle
of separation of concerns and allowing co-simulation of
components with different levels of abstraction.
In general, a biological case study to simulate in the
Sesame workbench should comply with a few constraints.
Sesame can be used to evaluate designs for information
processing systems, which excludes static cases such as
protein shape or mechanics. Time should be involved
in processing the information. It is not suitable for

modeling systems that adjust their function according
to the performance of architecture components because
in Sesame, alternative architectures have consequences
for the performance of the system, without the choice
of component having any effect on the application. If
it were otherwise, different architectures could not be
compared under an equal application workload. Lastly, to
make the exploration useful, there should be alternative
architectural options for performing a certain task in the
system under study. This will provide the opportunity to
compare and find the best possible solution in terms of
architecture for a given (user- specified) task within a
cell; it’s one of Sesame’s merits. This however, limits the
application of Sesame to biological systems because in
cells, in contrast to embedded computer systems, there is
generally a tight mapping between application tasks and
the components that perform the tasks. This means that
many tasks in a cell are performed by ‘dedicated’ compo-
nents. For instance, in cells, only RNA polymerase II (Pol
II) is suitable for performing the translation of a gene to
mRNA. In this case, design options lie within the amount
of Pol II or its location (i.e. cell compartment). Possibly,
in the future, biological components that perform subop-
timally can be re-engineered in vivo, which would give
Sesame the added value of pointing out bottlenecks in
performance as candidates for re-engineering. For now,
in biological cell systems, the design options found will
generally concern the amount, location and assemblages
of components.

On the other hand, we do have tasks in biological
cells for which we know alternative components exist to
perform them. One much-studied example concerns the
different types of tRNA that can be used in translation.
Every of the twenty possible amino acids present in living
material is coded by a three nucleotide long codon. As
there are four types of nucleotides (A, T, C, and G)
there are 64 different codons. As a consequence, every
amino acid is coded for by one or several codons. These
codons have to be recognized by the anti-codons of
tRNA to supply the correct amino acid to the growing
chain of peptides. One possibility is that every codon is
recognized by one exclusive tRNA anti-codon, resulting
in 64 different tRNA types. Another possibility is that
each tRNA anti-codon can recognize several codons. To
avoid mistakes in the amino acid sequence, the codons
recognized by one tRNA type should logically code for
the same amino acid [25]. Theoretically this would result
in a lower bound of 20 different tRNA types. In different
organisms, there is variation in the amount and type of
tRNA used to perform translation. Sesame should also
be suitable for modeling different metabolic routes by
seeing them as standardized (architectural) components
with different traits. In cell systems there are often many
routes to come to a specific compound [11]. Another
application could be to evaluate the different versions
of cellular components (i.e. RNA Polymerases) through
evolutionary time to increase the understanding of why
these components were adapted.
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Figure 6. Architecture performance for a range of component assemblies for gene expression. (a) Depicted on the z-axis is the performance in units
of time of different combinations of Pol II (y-axis) and Ribosome (x-axis) components to generate fifty identical proteins, using twelve mRNA’s.
The best performing architecture (three Pol II and thirty-five Ribosomes) is marked with a line going from the plot to the x-y plane. One hundred
time units corresponds to one second. (b) Performance statistics of the best performing architecture instance in (a). For the biological equivalents
of store and load see Figure 5. The two ‘Execute’ tasks in Figure 5 constitute the computation part in the performance statistics.

Although there is a remarkable fit between simulation
in biological and embedded system tasks, the Sesame
workbench had to be adjusted for a meaningful simulation
of biological tasks. In its original form, different tasks
were executed within the application, different compo-
nents could process the tasks concurrently or a component
in Sesame could process them in parallel single-handedly
when refinement was carried out on that component.
For simulating a biologically realistic case, we had to
provide the opportunity for many components to work
simultaneously on the same, identical task because this
option has evolved quite often in biological cells [25].
For instance, to translate a gene to mRNA’s, many copies
of Pol II are available for performing this task in par-
allel. Likewise, many Ribosomes work concurrently per
mRNA in translating it to protein. For the simulation of
biological applications we were therefore forced to create
a new component that allows for massive parallelism.
This new component acts as a scheduler that regulates
the occupancy of the separate concurrent components.
This new component can of course also be used to model
the parallelism in massively parallel computer systems.
The mapping layer in its present status was unable to
handle the communication between many components
performing a single task in the way this is done in
cells where there are not the typical one-to-one producer-
consumer relations as found in embedded systems, so
we had to change it to fit our needs. Lastly, similar to
other types of biological simulation models, much time
is spent on the application model. However, in the future,
we will extend the available library of modules. Such a
library of application nodes and architectural components
will ease the modeling process as these can be reused
when performing design space exploration. This is much
like using IP (intellectual property) blocks such as used
in computer science. For the library we will investigate
and implement other relevant biological processes in the
modified Sesame workbench, such as energy conversion
processes and processes for transporting building blocks
or waste material, as they occur in biological cells. A

next step is to link several of these modules of different
biological processes from the library together to create a
more integral model of a biological cell, which can be
done at multiple levels of abstraction as this is supported
by the Sesame workbench. In this way we work towards
the integral model of cell systems that is needed in
Systems Biology.
We showed that the methods for design space explo-
ration from computer systems engineering can, in princi-
ple, be used for the simulation of specific biological pro-
cesses. Nevertheless, both systems have their differences
and there is a limitation to the kind of biological problems
that can be modeled. These problems can be addressed
by adjusting the methods for design space exploration. It
would certainly be worthwhile to asses useful modeling
practices from other methods for design space exploration
in the embedded systems domain.
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