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Abstract

For embedded systems as well as for biological cell sys-

tems, design is a feature that defines their identity. The as-

sembly of different components in designs of both systems

can vary widely. Given the similarities between computers

and cellular systems, methods and models of computation

from the domain of computer systems engineering might be

applied to modeling cellular systems. Our aim is to con-

struct a framework that focuses on understanding the design

options and consequences within a cell, taking an in sil-

ico (forward-) engineering approach rather than a reverse

engineering approach that is used in this domain as a de-

fault now. We take our ideas from the domain of embedded

computer systems. The most important features of our ap-

proach, as taken from this domain, are a variable abstrac-

tion level of components that allows for addition of compo-

nents when detailed information is lacking, and a separa-

tion of concerns between function and performance by com-

ponents in the design. This allows for efficient and flexible

modeling. Also, there is a strict separation between com-

putation within- and communication between components,

reducing complexity. As a proof of principle, we show that

we can make a statement regarding the design of the gene

expression machinery of the cell to produce a protein, using

such a method.

1. Introduction

Although engineered computer systems and naturally

evolved cell systems have different origins, many analo-

gies exist between the two. In a metaphysical context, both

are complex systems that have to cope with different trade-

offs in energy, power, cost and flexibility. For coping with

trade-offs, separate components that function within a sys-

tem can have their own specific solution. As a result, both

systems have a huge design space, i.e. possible components

to choose from to make a system that performs a given func-

tion. These possibilities are restricted by the fact that all

combinations of components should work together as best

as possible.

Computer engineers are more advanced in simulating the

complex behavior of the combined components of their sys-

tems than biologists. This could be caused by several fac-

tors. Firstly, both systems are investigated in opposite direc-

tion [12]: whereas computer systems are assembled from

scratch to create function, the cell is already functional and

is disassembled to find where function originates (Figure 1).

Secondly, for computer systems, sophisticated methods ex-

ist especially to evaluate the best architecture for a system.

In biological systems these sorts of methods were proba-

bly not developed in the past because systems take shape

‘automatically’ by natural selection. However, with the re-

cent quest for an integral understanding of the behavior and

drive of biological systems (collectively addressed by the

term ‘systems biology’ [11, 1]), there is a demand for such

methods.

One important issue in understanding the cellular design

is to know why, in a particular cell, options to cope with

a problem or function have been adopted whilst there are

many seemingly evenly appropriate alternatives. Some core

design issues have been highly conserved in cells during

evolution, such as the tools to perform basic metabolism

(the disassembly of nutrients to supply useful compounds

in the cell), and transcription/translation (the processes that

express information from genes to make proteins). Never-

theless, somewhere in the evolution, cells also have adopted

different ways to perform similar functions. For instance, if

we compare different cells, there are several design options

to cope with particular tasks; such as different networks

to deliver a signal or produce a metabolic compound [13]

or different components to actively handle osmotic stress.

These different options could have evolved by differential

selective pressure, possibly restricted by previously adopted

solutions for other functions. What is the case exactly is

difficult to backtrack. If we could understand the conse-

quences of adopted solutions, we can also ponder about

their origin. To know the theoretical consequences of cho-

sen alternatives will be helpful in designing experiments on
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Figure 1. Difference in the direction of research between Computer Science and Biology. Left part:

For computer systems, the system is first specified at abstract level. Going down in abstraction
(meandering arrow), the design space of a specification (transparent dot) decreases in size (area

in dotted triangle). The ultimate end product at the lowest level of abstraction is one instance of a

design (black dot). Right part: For biological cell systems, the instance of the design (black dot) is
the starting point and scientists try to derive the function of separate components by assessing their

influence on higher level system function, for instance by inactivation or manipulation (indicated by

the cross). Figure adapted from [15].

such biological systems. Also, it will be of help in the re-

cent attempts to design cellular function [16, 7, 9]. These at-

tempts, until now, are successful only on a small scale [17],

which shows the difficulty in engineering the cell to effi-

ciency in performing more elaborate tasks.

We think that the methods from the domain of computer

systems engineering may serve as an alternative framework

to formally evaluate design of biological systems [6, 3]. In

this way, general principles that govern the structure and be-

havior of cellular systems may be discovered [6]. Our aim

is to propose a framework that focuses on understanding the

design options and consequences within a cell. As proof of

principle, we simulate a biological process to exemplify the

use and benefit of such methods for biology. We take our

ideas from the domain of computer systems engineering,

with a special interest in embedded computer systems.

2. The common ground between Biological and

Embedded systems

A computer based system that has particularly much in

common with biological cells is an embedded system [19].

Embedded systems, unlike general purpose personal com-

puters, perform pre-defined tasks. They are ”embedded”

in airplanes, security systems, telephones, medical instru-

ments etc.

Embedded systems have very particular design require-

ments. They are more constrained in terms of timing,

power, area, memory and other resources than general-

purpose computers. As a result they are subjected to strict

trade-offs [18, 5, 14]. For instance, the market position of

an embedded system is hampered directly if it is too expen-

sive, but it is hampered also if it requires too much (battery-

) power. The emphasis of this trade-off will depend on the

requirements of the system. Also, the interactions of the

heterogeneous components in the system have to be taken

into account in designing embedded systems, as well as the

fact that these systems usually have multiple simultaneous

sources of stimuli. The same goes for cellular systems.

Additional criteria, such as real-time behavior and reactiv-

ity [8], robustness, and concurrency are of importance in all

the computations that embedded systems perform. These

cause additional restrictions to its architecture. Cellular sys-

tems have similar issues to comply with. Functioning in a

real world, cells must exhibit real time behaviour. Because

a cell’s environment is rarely constant it also needs to take

into account robustness issues and resource usage. A design

that is not optimal will rapidly be out selected by natural se-



lection.

The embedded systems engineer has many components

at his disposal (e.g. number and type of micro- or dedicated

processors, hard- or software components, input/output de-

vices and memories), depending on whether it is more im-

portant for the system to be cheap, versatile, fast, low power,

or a combination of all. This results in a heterogeneous ar-

chitecture where many different types of components must

interact to create a functioning system. The multiplicity of

components for computer based systems and also their dif-

ferent wiring possibilities cause a myriad of possible de-

signs. The heterogeneity in components is comparable be-

tween cellular and computer systems. To model the conse-

quences of each and every possible design would take much

time and effort. Somehow, the engineer must be able to

quickly scan a design space and distinguish the most prob-

able designs with a minimum of effort. As this problem

of design space exploration is central to the embedded sys-

tems engineering domain, sophisticated modeling tools that

facilitate this have been developed [5].

3. An example computer workbench: The

Sesame workbench

One of the first steps in designing embedded computer

systems is the exploration and reduction of the design space,

to quickly come to some promising design options that can

be further tested. A specific example of a new and promis-

ing modeling framework is provided by the Sesame work-

bench [15, 14] (Figure 2). This workbench is intended for

the evaluation of embedded systems architecture on a high

level of abstraction. This is an especially efficient method

to evaluate the best suitable architecture regarding perfor-

mance (system throughput), but also cost and power con-

sumption, i.e. the exploration of design space. We will use

this modeling framework to exemplify the use of design ex-

ploration methods for biology.

Firstly, in models for embedded systems, parts of the de-

sign process are quite often separated to reduce the com-

plexity, a feature called separation of concerns [10]. It is

the ability to analyze different domains independently from

each other. For instance, systems are divided into proces-

sors (computation components) and communication com-

ponents (for communication between processors) which ef-

fectively separates these functionalities. Another method

is to separate function (system specifications) from perfor-

mance (how are these performed). With the separation of

application and architecture, architecture and application

can be changed independently of each other. Earlier, en-

gineers modeled and simulated application and architecture

in a monolithic manner. When architecture was changed

(for instance, changing the hardware-software partitioning

in the system), the whole model needed rebuilding. It is
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Figure 2. The Sesame workbench with its

application model layer, architecture model

layer and mapping layer that interfaces the
application and architecture model layers.

now widely recognized that for an efficient system-level ex-

ploration of design space, such a ‘separation of concerns’ is

of paramount importance [10, 14]. The separation of appli-

cation and architecture allows for rapidly assessing differ-

ent application-to-architecture mappings as well as various

hardware-software partitionings.

The Sesame workbench deploys separate models for ap-

plication and architecture behavior (Figure 2). Application

models holds the specifications for function (‘what needs

to be done’), while architecture models only simulate per-

formance (‘the consequences of how something is done’).

The application model consists of processes that interact

with each other through channels. Architecture models are

composed of components that can ‘execute’ the processes

in the application model. Components in the architecture

model are processing elements (programmable cores, dedi-

cated hardware blocks and/or reconfigurable hardware), in-

terconnection components (such as buses, FIFO channels or

crossbars), and different types of memories.

Sesame also separates the communication from the com-

putation by using the Kahn process network model of com-

putation. In this model the work is separated into tasks,

and the communication is made explict by only allowing

the passing of data between tasks via FIFO channels.

An application model in Sesame is mapped onto an ar-

chitecture model by means of event traces. These event

traces are emitted from the processes in the application

and mapped as workloads on components in the architec-

ture. The mapping is facilitated by an intermediate mapping
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Figure 3. The process of gene expression. On the basis of a DNA template, ribonucleotides are
linked in the ‘Transcription’ to form an mRNA. With mRNA as a template, Amino Acids are linked in

‘Translation’ to form a protein.

layer. The performance consequences of the event traces

(the modeled workload) are simulated by the underlying ar-

chitecture model. By changing the structure of the archi-

tecture model or changing the performance parameters of

its components, the performance of different architectures

can be compared and thus a suitable architecture can be se-

lected.

The second feature that makes the Sesame workbench

efficient is that each model layer has its own modeling

method, fitting the modeling task at hand. For the appli-

cation model, a (Kahn) process network model is used as

Sesame currently focuses on the modeling on multimedia

(streaming) applications. For the architecture, a discrete

event simulation is used. The intermediate mapping layer is

modeled with a dataflow model. All separate models com-

municate with each other. As each modeling method is cho-

sen especially to represent the specific functionality in the

model, the simulations are efficient and simulation time and

effort is reduced.

Thirdly, abstraction of the system away from the details

and re-use of standardized components at all these levels

of abstraction is very important because it avoids the need

to design the same components each time over. In Sesame,

components can be modeled at varying levels of detail, from

coarse grained to detailed. At the highest level, architec-

tural components are modeled as black boxes with only a

few parameters. These parameters can specify character-

istics such as cost, energy usage and speed to process the

event traces that are emitted by the application model. This

high level of abstraction reduces both the modeling effort,

and also enables simulation of the system early in the de-

sign cycle without detailed specifications. This will give

coarse-grained predictions on the system behavior. Within

the Sesame workbench, architectural components of inter-

est that contribute significantly to the performance of the

system can be refined to more accurately determine the per-

formance. This allows for mixed level simulation, in which

some components are refined while others remain operat-

ing at the higher level of abstraction. This refinement is

facilitated by the intermediate mapping layer that brings the

application model abstraction level in agreement with the

(partly) refined abstraction level of the architecture model.

The above mentioned elements, namely separation of

concerns, abstraction from details and model integration,

are also important in systems biology [4]. Biological sys-

tems are so complex that a model based on a complete

understanding will not readily be feasible. Top down ap-

proaches, where problems are modeled in an exploratory

way first and later in more detail, will give information that

is coarse grained but just. Separation of concerns will re-

duce complexity in the systems to model. Because certain

problems are tackled with specific models in biology, these

need to be integrated consequently for an integral under-

standing of a complete system.

4. Case study: Gene expression in Sesame

As proof of principle we now show how a biological pro-

cess could be modeled and simulated in the Sesame work-

bench. We consider one of the core processes in cellular

functioning: the expression of genes [2], see Figure 3. The

expression of genes in cells is a highly parallel task. From

one gene copy, many mRNA copies can be made in parallel

and, consequently, from each separate mRNA string many

copies of proteins can be made in parallel.

We model a simpler version of this problem in Sesame.

In Figure 4 we suggest some nodes for the application

model. Within these nodes, C++ code models the behav-

ior. In the application node ‘Transcription’, DNA is read

and it is used as a template for the production of mRNA. In

the node ‘Translation’, the mRNA is used as a template for

the production of proteins. In the node ‘get Amino Acid’

the appropriate Amino acids are actively delivered to shape

the protein. All traces combined that are emitted from the

application model represent the workload for the architec-

ture. The traces need to be scheduled to the architecture.

This is done in the intermediate mapping model (Figure 4).

The mapping model, in principle, is capable of scheduling

the many concurrent traces that have to be executed by the

architecture. The architecture (Figure 4) simulates latencies

for loading input, storing output and executing events. The

latencies are given properties of the architectural compo-
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nents, but can also be made dependent on, for instance, the

concentrations of products or building blocks. Each action

(i.e. trace event) is performed by the architecture with a cer-

tain time cost (latency). Figure 4 shows how the application

node ‘Transcription’ is mapped to component ‘RNA poly-

merase II’, which simulates a latency for the trace events

emitted by the transcription node. The application node

‘Translation’ is mapped to ‘Ribosome’. The application

node ‘Get Amino Acid’ is mapped to ‘tRNA’ as this de-

livers the Amino Acids to the Ribosome in real biological

cells. Because the building blocks (e.g. ribonucleotides,

amino acids, see Figure 3) have to come from somewhere,

we introduce a cell environment in the architecture in which

building blocks can be stored and retrieved (Figure 4). This

component works similar to a memory in a computer-based

system. In a more elaborate version of the model, the pres-

ence of building blocks can be represented by a variable.

All three architecture components are linked to the cell en-

vironment component, as they store and retrieve building

blocks from it.

In the case study the application model can generate

the following communication events: load/store ‘DNA’,

load ‘ribonucleotide’, store ‘mRNA’ for the ‘Transcription’

node; load/store ‘mRNA’, load ‘amino acid’ and store ‘pro-

tein’ for the ‘Translation’ node; load ‘codon information’

(coding for amino acid) and store ‘amino acid’ for the ‘Get

Amino Acid’ node and the following computational events:

‘move along DNA’ for the ‘Transcription’ node; and ‘Bind

Amino Acid’ for the ‘Translation’ node. All trace events

have specific latencies. The amount and kind (communica-

tion or computation) of traces emitted by the application in

our proof of principle depend on the DNA sequence code

(input data) that has to be put to expression and the function

description, i.e. how many transcriptions/translations and

the functions inherent to them are needed. These are given

parameters.

We simulate the production of a protein from a piece of

DNA strand. We investigate how the efficiency of architec-

ture components is in the execution of all the actions in the

application. Suppose that the protein consists of four parts

of identical sequences.

We could ponder about whether it is better to have pro-

grams (a) or (b) (see Figure 5):

(a) Have a long gene consisting of four identical parts, tran-

scribe it once, and translate it once to the protein.

(b) Have a short gene consisting of one of the identical

parts, transcribe it once, translate it four times and

merge the pieces later.

At the end of the simulation of program (a) and (b) a pro-

tein is made that consists of four identical subparts of three

amino acids. Intuitively, to get to this result, program (a)

seems simplest. However, for program (a) the process takes

714 time steps, whereas the production of the protein in pro-

gram (b) was done in 423 time steps, as shown in Figure 6.

We come to the conclusion that, given the architecture, the

task with program (b) can be processed most efficiently ac-

cording to our simple model. Mainly because in program

(a) many ribonucleotides have to be loaded in the transcrip-

tion in comparison with program (b).

From another perspective, we derive from this proof of

principle that it is more rewarding to re-engineer the com-

ponent ‘Ribosome’ (be it by evolution or synthetically) to-

wards more efficiency in program (b), for it is the limiting

factor: it is busy in about 61% of the total busy time of

the process and would benefit most from a decrease in load,

store, or execute time (Figure 6). In program (a) it would be

best to re-engineer RNA polymerase II.

5. Discussion

The similarities in embedded systems and biological sys-

tems are a clue that methods from Computer Science could

be used for evaluation of biological systems.

As a proof of principle we simulated a biological pro-

cess in the Sesame workbench. The Sesame workbench is

suitable for design space exploration. It is fast and flexible

because it simulates and evaluates design alternatives on a

high level. It is a quick way to evaluate the design space
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Figure 5. Two simulated applications in the Sesame workbench to produce a protein that consists of

four identical stretches of Amino Acids. In program (a), the DNA is transcribed once to mRNA, which
is translated once to produce the protein. In program (b), DNA is transcribed once to mRNA and this

is translated four times to produce the protein.

of systems that perform complex tasks. It adds to the cur-

rent modeling technology by the principle of separation of

concerns and co-simulation of components with different

levels of abstraction. Also, it uses the most suitable model

of computation for each of the separated concerns.

A biological case study to simulate in the Sesame work-

bench should comply with a few constraints. Sesame can

be used to evaluate designs for information processing sys-

tems, which excludes static cases like protein shape, or me-

chanics. Time should be involved in processing the infor-

mation. It is not suitable to model systems that adjust their

function according to the performance of architecture com-

ponents. This is because in Sesame alternative architectures

have consequences for the performance of the system, with-

out the choice of component having any effect on the ap-

plication. If it would be otherwise, different architectures

could not be compared. Lastly, to make the exploration use-

ful, there should be alternative architectural options in the

system under study to perform a certain task. This will pro-

vide the opportunity to compare and find the best possible

solution in terms of architecture for a given (user specified)

task within a cell; its one of Sesames merits. This however,

limits the application of Sesame to biological systems be-

cause, in contrast to embedded computer systems, in cells

there is mostly a tight mapping between application tasks

and the components that have to perform the tasks. Thus,

many tasks in a cell are performed by ‘dedicated’ compo-

nents. For instance, in cells, only RNA polymerase II is

suitable to perform the translation of a gene to mRNA. De-

sign options, in this case, lie within the amount of RNA

polymerase II or its location (i.e. cell compartment). Pos-

sibly, in the future, biological components that perform sub

optimally can be re-engineered in vivo and this would give

Sesame the added value of pointing out bottle necks in the

performance as candidates for re-engineering. For now,

generally in biological cell systems, the design options that

can be found will lie in the amount, location and assem-

blages of components.

On the other hand, we do have tasks in biological cells

for which we know alternative components exist to per-

form them. One much studied example is the different

types of tRNA that can be used in translation. Every of the

twenty possible amino acids that are present in living ma-

terial is coded by a three nucleotide long codon. As there

are four types of nucleotides (A,T,C,G) there are 64 differ-

ent codons. As a consequence, every amino acid is coded

for by one or several codons. These codons have to be rec-

ognized by the anti-codons of tRNA to supply the correct

amino acid to the growing chain of peptides. One possibil-

ity is that every codon is recognized by one exclusive tRNA

anti-codon, resulting in 64 different tRNA types. Another

possibility is that each tRNA anti-codon can recognize sev-

eral codons. To avoid mistakes in the amino acid sequence,

logically the codons recognized by one tRNA type should

code for the same amino acid. Theoretically this would re-

sult in a lower bound of 20 different tRNA types. In dif-

ferent organisms, there is variation in the amount and type

of tRNA used to perform translation. Sesame should also

be suitable to model different metabolic routes by seeing

them as standardized (architectural) components with dif-

ferent traits. In cell systems sometimes there are up to 77

routes to come to a specific compound.

Although there is a remarkable fit between the simula-

tion in biological and embedded system tasks, the Sesame

workbench has to be adjusted further for simulation of bi-

ological tasks. For instance, in its present form Sesame

abstracts away from massive parallelism by capturing this

within a single architectural component by its parameters.

When different tasks are executed within the application,

different components can process the tasks concurrently or

a component in Sesame can process them in parallel single-

handedly when refinement is done on that component. For

simulating a biological realistic case, there must be many

components that work simultaneously on the same, identi-

cal task because this option has evolved quite often in bio-

logical cells [2]. For instance, to translate a gene to mRNA’s

there are thousands of RNA polymerases that perform this

task in parallel. Therefore we are forced to create a new



Figure 6. Performance of program (a) and
program (b), see Figure 5, as simulated in

Sesame (see Figure 4). In Sesame, statistics

are user defined, thus other statistics can be
calculated and visualized if needed.

component that allows for massive parallelism to use for

simulation of biological applications. This new compo-

nent will act as a global scheduler in the synchronisation

layer that regulates the occupancy of the separate concur-

rent components. This new component can then also be

used to model the parallelism in massively parallel com-

puter systems. Also, the mapping layer is at its present

status not suitable to handle communication scheduling be-

tween many components performing a single task in the

way this is done in cells: these are not the typical one-

to-one producer-consumer relations as found in embedded

systems. For simulation of biological systems this has to be

adjusted so the many tasks executed by the many parallel

components can be scheduled in parallel in a more straight-

forward manner. This could mean that the SDF model of

computation currently used in the synchronisation layer has

to be replaced with a model that allows for a more flexible

way of scheduling and handling the synchronisation. An-

other drawback of Sesame for the simulation of biological

systems is that much time is spent on the application model.

However, in the future, a library of components of func-

tions and performing architectural components will ease the

modeling process.

We showed that the methods for design space exploration

from Computer Science can, in principle, be used for the

simulation of specific biological processes. Nevertheless,

both systems have their differences and there is a limita-

tion to the kind of biological problems that can be modeled.

These problems will have to be addressed by adjusting the

methods for design space exploration to allow for more flex-

ibly simulating processes that occur in biological systems,

such as massive parallelism.
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