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ABSTRACT

We present a novel benchmark suite for implementations of vector

fields in high-performance computing environments to aid develop-

ers in quantifying and ranking their performance. We decompose

the design space of such benchmarks into access patterns and storage
backends, the latter of which can be further decomposed into com-

ponents with different functional and non-functional properties.

Through compile-time meta-programming, we generate a large

number of benchmarks with minimal effort and ensure the exten-

sibility of our suite. Our empirical analysis, based on real-world

applications in high-energy physics, demonstrates the feasibility

of our approach on CPU and GPU platforms, and highlights that

our suite is able to evaluate performance-critical design choices.

Finally, we propose that our work towards composing vector fields

from elementary components is not only useful for the purposes of

benchmarking, but that it naturally gives rise to a novel library for

implementing such fields in domain applications.
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1 INTRODUCTION

Vector fields are ubiquitous in a variety of domains sciences such

as meteorology [34], oceanography [26], and high-energy physics

[22]. When developing applications which rely on vector fields,

finding efficient data structures for storing and methods for access-

ing such fields can be paramount to achieving high performance.

Unfortunately, there is no universal solution—let alone a perfor-

mant one—for representing vector fields in software: the design

space is far too large and the requirements are far too varied. In

terms of functional requirements [14], for example, some appli-

cations might require two-dimensional fields while others might

require three-dimensional data. Non-functionally, applications may

exhibit different access patterns which can significantly affect the

performance of a given implementation. Finally, the landscape of

hardware on which domain applications are executed has become

more complicated than ever: traditional homogeneous computing

systems now compete with heterogeneous systems equipped with

a variety of accelerators [5]. Thus, domain scientists must find

methods of storing and accessing vector fields in heterogeneous

environments which guarantee high performance in specific appli-

cations.

Currently, selecting representations of vector fields is an ad-hoc

process based on developer experience and trial-and-error, neither

of which provides any guarantees in finding the best-performing

solutions. As far as we are aware, there are no comprehensive

benchmark suites that can be used to systematically quantify and

rank the performance of different vector field representations for a

given application. In this paper, we introduce a systematic bench-

marking approach that aims to cover the design space of vector field

representations, to expose performance-relevant elements of this

space, and to be easily extendable. To do so, we explicitly decom-

pose the aforementioned design space into access patterns which
model a field’s usage, and storage backends which model the field’s

implementation. We then use compile-time meta-programming to

generate benchmarks across the entire design space with far less

effort than would be required by a conventional trial-and-error

approach. Finally, we enable developers to directly apply the results

of our benchmark suite through a novel library which exposes the

same domain decomposition used by our suite for use in domain

applications.
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Our current design space covers five families of access patterns—

each of which can be extensively configured—and nineteen compo-

nents for constructing storage backends, which can be composed

arbitrarily. We support benchmarks for both C++-compatible CPU

platforms as well as CUDA-based general-purpose GPU (GPGPU)

platforms, and we make it easy for users to add new access patterns

and storage backends—including for new platforms.

In short, this paper makes the following contributions:

• We decompose domain applications of vector fields into ac-

cess patterns and storage backends, thus constructing a vec-

tor field representation design space based on these two

dimensions (Sections 3, 4, and 5);

• We propose a framework for the automated generation of

a large number of benchmarks using the aforementioned

decomposition, thus facilitating the exploration of the design

space (Section 6);

• We enable users to leverage our benchmark suite in real-

world applications by presenting a novel library that corre-

sponds directly to the implementation of our benchmarks

(Section 7).

2 BACKGROUND

In a formal mathematical sense, a vector field is a vector-valued

mapping
®𝑓 that assigns to every element of some set 𝑆 a vector in

a vector space 𝐹 , such that
®𝑓 : 𝑆 → 𝐹 [13]. For the purposes of

this work, we have opted to restrict the codomains of our vector

fields to coordinate spaces, which consist of coordinates of arbitrary

dimensionality over a given algebraic field. This restriction imparts

additional structure upon our vector fields such that they map more

naturally onto the design of modern computer systems, and while

it excludes more exotic varieties of vector spaces such as function

spaces, it still allows us to model many of the vector fields that are

encountered in scientific computing.

2.1 Related Work

The representation of vector fields—and multi-dimensional data

in a more general sense—has been the subject of intense study for

many years. For example, Thiyagalingam et al. [39] investigate

the performance of different layout schemes for data, but their

work is limited to two-dimensional data and CPU-based platforms.

Nocentino and Rhodes [30] evaluate the performance of Morton

curve layouts on GPU platforms but they, too, consider only two-

dimensional data and study a single application. Chatterjee et al. [7]

study the performance of data layout schemes in depth, but their

analysis is restricted to the application of matrix multiplication.

Sarawagi and Stonebraker [36] evaluate different storage methods

for large amounts of scientific data, potentially including vector

fields, but their analysis is tailored specifically towards secondary

and tertiary storage devices, while our work focuses on in-memory

arrays. Edwards and Sunderland [10] introduce Kokkos, a library
which supports the storage of data in heterogeneous environments

using a variety of representations; while this is a very versatile and

useful method for storing multi-dimensional arrays, we are not

aware of any functionality in Kokkos that allows users to evaluate

the performance of different representations.

In this work, we do not propose new access patterns or storage

methods vector fields, instead, we focus on defining and system-

atically exploring a design space for the representation of vector

fields that is as large as it is precisely due to the amount of existing

research into the topic. We aim to provide developers of scientific

applications with a comprehensive way of comparing all these

choices and their effects on application performance.

2.2 Notation

Throughout this manuscript, we adhere to a common system of no-

tation. When describing the types of vector fields, we use the syntax

of dependent types [18]. For example, the statement

∏
𝑛:N R

𝑛 → R𝑛
is used to mean that such a vector field exists for all natural values
of 𝑛. We use double bracket notation to denote inclusive integer

intervals, such that J1, 3K is equivalent to {1, 2, 3}. The symbol𝔖𝑛

is used to denote the set of all permutations of J1, 𝑛K. We denote

vector values and vector-valued functions using overhead arrows,

such as
®𝑓 . In the context of types, we use 𝑎 +𝑏 to denote a sum type

(a term of type 𝑎 or a term of type 𝑏), and 𝑎 × 𝑏 to denote a product

type (both a term of type 𝑎 as well as a term of type 𝑏); we also use

𝑎𝑛 to denote an 𝑛-tuple of type 𝑎.

3 DESIGN SPACE EXPLORATION

Our goal is to select the most appropriate representation for a

given vector field. To this end, we need an approach which com-

bines comprehensive coverage of the design options (i.e., the design
space) with a systematic exploration of that space. In this section,

we describe and motivate our envisioned design space, as well as

our method for exploring it through the automated generation of

benchmarks.

3.1 Design Space Dimensions

The performance of software using vector fields is an inextricable

combination of the field’s application, which determines how it is

used (i.e., what the access pattern is) and its implementation, which
determines how it is built (i.e., what computation is required to

produce a result). Indeed, different implementations of vector fields—

even if they produce the same result—can provide wildly different

performance for the same application, and it is not necessarily

obvious which implementations will provide the best performance

in real-world scenarios. Thankfully, the fact that application and

implementation are so intertwined when it comes to performance

leads us naturally to a two-dimensional decomposition of the design

space for such programs into access patterns and storage backends.
In this framework of thinking, an access pattern is an abstract

model of a real-world application. Access patterns impose func-

tional requirements on storage backends, such as the dimensional-

ity of their vectors, and determine the locality of reference—both

spatial and temporal—of vectors retrieved from a given field. In

addition, access patterns are bound to specific programming plat-

forms and, as a result, require storage backends to be compatible

with a given platform. We detail the access patterns supported by

our benchmark suite in Section 4.

A storage backend, then, fulfils the functional requirements im-

posed by a given access pattern, and introduces additional non-

functional properties; in particular, storage backends model how
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much performance is lost by adding functionality—such as, for

example, the interpolation of vectors—to a program. In sampled

vector fields, storage backends also map indices in a high-level coor-

dinate space onto the memory of the system; a well-chosen storage

backend should be capable of translating locality of reference in

the high-level coordinate space (determined by the access pattern)

into locality of reference in the system’s memory, such that caches

can be most effective. We explore storage backends in more depth

in Section 5.

3.2 Exploration through Automated

Benchmarking

Once the design space of vector field representations is defined,

selecting the best performing solution for a specific application is

a matter of exploring this space. Thus, we propose design space

exploration through selective automated benchmarking: we define

a benchmarking suite, from which we select and benchmark all

representations feasible for the target application, and select the

best performing one. For our benchmarking suite to be useful, we

posit that it must meet three requirements. Firstly, it must be com-
prehensive: the suite must be able to approximate a large variety of

real-world applications and methods of storing vector fields. Sec-

ondly, the benchmarks in our suite must be specific: they must be

capable of identifying performance-relevant design choices and al-

low the user to evaluate their non-functional effects in depth and at

a fine level of granularity. Finally, the suite should be applicable: the
results of our benchmark suite should allow application developers

to easily apply the results of our benchmarks to the development

of their applications.

A naive solution to tackle comprehensiveness would be to write

such a large number of benchmarks that most real-world applica-

tions would be represented by sheer chance. However, this would

only shift the time-consuming exploration of the design space from

the application developers to the authors of the suite. Instead, we

rely on an automated exploration of the design space. In particular,

we compute—at compile-time—the Cartesian product of available

access patterns and storage backends, and generate a benchmark

for every viable pair. This approach requires far less code to be

written by hand. Additionally, our benchmarking suite is easily

extensible: developers who find a particular application missing

from the existing repository of access patterns can simply add it,

and our suite will automatically generate benchmarks that combine

the newly-added access pattern or application with all compatible

storage backends. Correspondingly, users implementing new stor-

age backends can easily benchmark their implementation against a

number of existing access patterns. Our suite is implemented in C++

and makes extensive use of the Boost Mp11 meta-programming

library [8] to perform type-level computation.

4 ACCESS PATTERNS

In this section, we describe the access patterns included in our

benchmark suite; we present five families of access patterns, en-

compassing a total of sixteen variants: ten for CPU-based platforms

and six for CUDA-based platforms. Most of these variants can be

further distinguished though the use of compile-time parameters,

which are shown in Table 1. For example, the Euler pattern can

Table 1: List of Supported Access Patterns

Name Variants Compile-time parameters
1

Scan 1 CPU / 1 CUDA

∏
𝑑,𝑑 ′

:N
∏

𝑆,𝑇 :V 𝑆𝑑+𝑑
′ → 𝑇

Random 1 CPU / 1 CUDA

∏
𝑑 :N

∏
𝑆,𝑇 :V 𝑆𝑑 → 𝑇

Euler
†

2 CPU / 1 CUDA

∏
𝑑 :N R

𝑑 → R𝑑

RK4
†

2 CPU / 1 CUDA

∏
𝑑 :N R

𝑑 → R𝑑

Lorentz
†

4 CPU / 2 CUDA R3 → R3

†
Access pattern is data-dependent.

1 V denotes the family of finite-dimensional coordinate

spaces.

be compiled to operate on vector fields of any dimensionality, and

it can be compiled with both single- and double-precision floating

point numbers. Expanding the additional compile-time parame-

ters of these access patterns for two- and three-dimensional cases

results in a total of 208 access patterns which are distinct at compile-

time. Finally, each access pattern can be configured with a series of

run-time parameters which may further impact performance.

4.1 Scan

The Scan pattern—given two parameters 𝑑 and 𝑑′—iterates over
a 𝑑′-dimensional slice of a (𝑑 + 𝑑′)-dimensional vector field along

each of the axes, visiting equidistant points in lexicographic order.

The remaining 𝑑 dimensions are static, and the indices in these

dimensions are given by a 𝑑-dimensional coordinate. It follows

that setting 𝑑 = 0 simply scans the entire vector field. The Scan

access pattern can operate on input vectors of finite dimensionality

over any totally ordered monoid, but in this work we restrict our-

selves to the real, natural, and integral numbers. The CPU-based

implementation of the Scan access pattern iterates over the axes in

order. The CUDA-based implementation is slightly more complex,

as it uses multi-dimensional blocks to iterate over the vector field

slice. Since CUDA supports only one, two, and three-dimensional

kernels [32], 𝑑′ is limited to J1, 3K when using this access pattern

on a GPU. The shape of the kernel execution blocks and grid are

performance-relevant parameters, as they affect the locality of vec-

tor field accesses.

4.2 Random

The Random access pattern generates random accesses in real- or

integer-valued vector fields. Given a number of points𝑚 and two

coordinates describing opposite corners of a hyper-box 𝑟 , we gen-

erate𝑚 uniformly random coordinates ®𝑝1, . . . , ®𝑝𝑚 ∈ 𝑟 and retrieve

the value of the vector field at those positions. The Random access

pattern is implemented both for CPU-based platforms as well as

for CUDA-based GPUs.

4.3 Euler

Unlike the other access patterns mentioned so far, the Euler family

of patterns introduces a dependency between the way a vector

field is accessed and the contents of that vector field. Parameterized
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by a number of agents𝑚 and a hyper-box 𝑟 , this access patterns

generates agents at uniformly random initial positions ®𝑝1, . . . , ®𝑝𝑚
in the volume 𝑟 in exactly the same fashion as the Random pattern.

Then, a total of 𝑠 steps of the Euler method [6] are used to find an

approximate solution to the system of initial value problems given

by the randomly generated initial positions, with the derivative

function given by the vector field.

We implement three variants of the Euler access pattern. The

first, Euler〈Deep〉, processes agents in parallel, completing all re-

quired steps for each agent sequentially. The Euler〈Wide〉 method

instead processes one step for each agent before repeating the pro-

cess until all agents have taken all required steps; we distinguish

between these access patterns because they exhibit meaningfully

different locality of reference. For GPGPU platforms, a variant of

the Euler〈Deep〉 is available.

4.4 RK4

The RK4 access pattern performs—in essence—the same function as

the Euler access pattern, except that it uses a fourth-order Runge–

Kutta method [35] rather than an Euler method (which is, in itself, a

first-order Runge–Kutta method). The difference between the Euler

method and the fourth-order Runge–Kutta method is that the latter

makes four sub-steps in close vicinity to each other at every step;

as such, these sub-steps naturally exhibit spatial locality. The RK4

access pattern has similar variants to the Euler access pattern.

4.5 Lorentz

Finally, the Lorentz access pattern is inspired by the application

of vector fields in high energy physics, where they are used to

model magnetic fields that alter the trajectory of charged particles

according to the Lorentz force [15], such that the force ®𝐹 applied to

a particle with charge 𝑞 and momentum ®𝑣 at position ®𝑝 under the

influence of two vector fields, the electric field ®𝐸 and the magnetic

field ®𝐵, is given as follows:

®𝐹
(
®𝑣, ®𝑝; ®𝐸, ®𝐵

)
= 𝑞

( ®𝐸 ( ®𝑝) + ®𝑣 × ®𝐵( ®𝑝)
)

(1)

In contrast to the Euler and RK4 patterns, the Lorentz pattern

does not initialise its agents at random positions, but at a given

origin ®𝑜 ; in order to ensure that agents diverge, each agent is as-

signed a velocity vector of a given length 𝑖 in a random direction. It

is worth noting that the movement of agents away from the origin

leads to shifts in access locality as the simulation progresses. The

setup of this access pattern gives rise to an initial value problem

where agents move through the vector field according to Equation

1, and we find approximate solutions to the final positions of the

agents using both an Euler method and a fourth-order Runge–Kutta

method. Since each of these methods has three distinct variants

(see Sections 4.3 and 4.4), the Lorentz pattern has a total of six

variants: four variants for CPU-based platforms and two variants

for GPU-based platforms. Note that this access pattern is not a

full-fledged physics simulation, but rather an approximation of

the access pattern such a simulation may exhibit; we simplify our

access pattern by assuming identical charge and unit mass for all

particles, by assuming the electric field to be zero, and by wrapping

particles around when they exit the boundaries of the vector field.

N→ R3Array lookup

N3 → N R3 → R33D layout

N3 → N3 + 1 R3 + 1→ R3Bounds check

R3 → (N3)23 × R3 (R3)23 × R3 → R3Linear interpolation

R3 → R3 R3 → R3Affine transform

R3 R3

Figure 1: The internal structure of a storage backend, incor-

porating an affine transformation, trilinear interpolation,

a boundary checking mechanism, and a three-dimensional

layout scheme.

5 STORAGE BACKENDS

Where the aforementioned access patterns describe how vector

fields are used, storage backends describe the inner workings of the

vector fields, which impact both their functional and non-functional

properties. In the context of vector fields, functional properties

include—but are not limited to—the types of the input and out-

put vectors and the way out-of-bounds accesses are sampled. Con-

versely, the non-functional properties of vector fields include access

latency, throughput, and energy usage, which are determined by

factors such as the layout of samples in memory and the use of

hardware acceleration.

Even if we decompose the design space of vector field bench-

marks as we have described in Section 3, the design space for storage

backends remains dauntingly large. We posit that in order to cap-

ture this space, we need to continue our decomposition further

such that we do not only describe benchmarks in terms of access

patterns and storage backends, but that we additional break the

latter down into their constituent components.

5.1 Backend Composition

Within our benchmark suite, complex vector field implementations

are constructed through the composition of simple components,

of which we define two distinct classes: primitive backends and
transformers. Primitive backends provide behaviour that cannot be

meaningfully deconstructed into smaller components; examples

of such backends include the array backend which simply looks

up a vector in the one-dimensional memory of the machine, and

the constant vector backend which always outputs the same vector.

Primitive backends are in principle usable as stand-alone vector

field backends, but they lack—by design—much of the functionality

that is desired in real-world applications. This functionality is corre-

spondingly provided by backend transformers. Transformers are not

fully-fledged storage backends by themselves, but can be applied
to existing backends to imbue them with additional functional and

non-functional properties.
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To define the structure of backend transformers, we identify

three distinct requirements of such transformers, the first of which

is that transformers must be able to manipulate input coordinates
before passing them to an underlying storage backend. We might

consider, as an example, a backend transformer that imparts a

two-dimensional layout onto an existing one-dimensional array of

vectors in R2. The function of such a transformer is to convert a

coordinate of type N2 into a coordinate of type N1. In other words,

the transformer is equipped with a function of type N2 → N1

which is applied to a coordinate before it is passed to the underly-

ing vector field of type N1 → R2, such that the entire composite

backend has type N2 → R2. We refer to this as the contravariant
component of the backend transformer, in accordance with the

idea that the profunctorial function arrow → is a contravariant

functor in its first argument [28]. Secondly, a backend transformer

must be able to modify the output of its underlying backend. For
instance, a transformer which discards the second component of

a two-dimensional real-valued vector applies a function of type

R2 → R1 after querying the underlying storage backend. If we

consider the same N1 → R2 backend as before, this results in a

new backend of type N1 → R1. We refer to this as the covariant
component of the transformer.

Finally, a backend transformer must be able to communicate

information between its contravariant and covariant components,

and it must be able to apply simple underlying storage backends to

complex structures. A prime example of these requirements is given

by bilinear interpolation which, in its contravariant component,

computes four integer-valued coordinates from a single real-valued

coordinate as well as two weights which are used to linearly inter-

polate the output vector. Because the computation of the weights

happens in the contravariant component of the transformer while

the weighting happens in the covariant component, the transformer

must somehow communicate these weights. In addition, the trans-

former must request four vectors from the underlying vector field,

rather than one. Within the design we have proposed so far, both of

these tasks are impossible. However, we can resolve both problems

elegantly by applying a functor to the output of the contravariant

component and the input of the covariant component of the trans-

former; in the case of bilinear interpolation, we might consider

the functor 𝐹 (𝑎) = 𝑎4 × R2. This allows us to transparently lift

the underlying storage backend such that communication becomes

possible by embellishing our types with additional data, and we

can use existing backends without the need to adapt them to more

complex data types.

Definition 1. Given a functor 𝐹 and types 𝑎1, 𝑎2, 𝑏1, 𝑏2, a backend

transformer is a term of type (𝑎2 → 𝐹 (𝑎1)) × (𝐹 (𝑏1) → 𝑏2), such
that 𝑎1 and 𝑎2 describe the contravariant component of the trans-

former, and the remaining types 𝑏1 and 𝑏2 describe the covariant

component.

Definition 2. Composition of backend transformers is an opera-

tion

◦𝑇 : (𝑎3 → 𝐹 (𝑎2)) × (𝐹 (𝑏2) → 𝑏3) →
(𝑎2 → 𝐺 (𝑎1)) × (𝐺 (𝑏1) → 𝑏2) →
(𝑎3 → (𝐹 ◦𝐺) (𝑎1)) × ((𝐹 ◦𝐺) (𝑏1) → 𝑏3)

(2)

such that

Table 2: List of Supported Primitive Storage Backends

Name Platform Field type

Array CPU

∏
𝑇 :V N→ 𝑇

CudaArray CUDA

∏
𝑇 :V N→ 𝑇

CudaPitch CUDA

∏
𝑑 :J1,3K

∏
𝑇 :V N

𝑑 → 𝑇

CudaTex CUDA

∏
𝑑 :J1,3K

∏
𝑑 ′
:J1,4K R

𝑑 → R𝑑 ′

Analytic CPU

∏
𝑆,𝑇 :V 𝑆 → 𝑇

Constant Any

∏
𝑆,𝑇 :V 𝑆 → 𝑇

(𝑓1, 𝑔1) ◦𝑇 (𝑓2, 𝑔2) = (𝐹 (𝑓2) ◦ 𝑓1, 𝑔1 ◦ 𝐹 (𝑔2)) (3)

Definition 3. Application of a backend transformer to a storage

backend is an operation

$𝑇 : (𝑎2 → 𝐹 (𝑎1)) × (𝐹 (𝑏1) → 𝑏2) →
(𝑎1 → 𝑏1) → (𝑎2 → 𝑏2)

(4)

such that

(𝑓 , 𝑔) $𝑇 ℎ = 𝑔 ◦ 𝐹 (ℎ) ◦ 𝑓 (5)

Storage backend transformers can be applied in any order as

long as their types match, and arbitrarily many transformers can

be composed. In Figure 1, we show an example of what the internal

structure of a storage backend may look like in practice.

5.2 Primitive Backends

Table 2 presents a summary of the primitive backends currently

supported by our suite. We describe them briefly in the following

paragraphs.

5.2.1 Array. The Array backend represents perhaps the most

trivial in-memory vector field: a one-dimensional array of vectors.

While such one-dimensional vector fields are of little use in practice,

they serve as the basis for virtually all sampled vector field backends

that we can construct in CPU-accessible memory.

5.2.2 CudaArray. The CudaArray backend functions similarly

to the Array backend, except that its contents inhabit the host-

inaccessible memory of a CUDA device. Note that this backend

does not use the opaque arrays which NVIDIA refers to as “CUDA

arrays” [32]; for a backend based on these opaque structures, we

provide the CudaTex backend (Section 5.2.4).

5.2.3 CudaPitch. As an alternative to ordinary CUDA device

memory, we provide a primitive backend based on pitched memory

allocated using the cudaMalloc3D API
1
[32]. The advantage of us-

ing this method is that the CUDA runtime may pad the allocation

size to ensure performance-favourable data alignment. Because

pitched CUDA memory opaquely handles multi-dimensional ac-

cesses, this backend primitively supports multi-dimensional coor-

dinates.

1
This function is capable of allocating both one- and two-dimensional arrays in addition

to three-dimensional ones.
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Table 3: List of Supported Backend Transformers

Name Type

Pitched
†

∏
𝑛:N

∏
𝑇 Type

(N𝑛 → N) × (𝑇 → 𝑇 )
Morton

†
∏

𝑛:N
∏

𝑇 Type
(N𝑛 → N) × (𝑇 → 𝑇 )

Hilbert

∏
𝑇 Type

(N2 → N) × (𝑇 → 𝑇 )
Shuffle

∏
𝑛:N

∏
𝑝 :𝔖𝑛

∏
𝑆,𝑇 Type

(𝑆𝑛 → 𝑆𝑛) × (𝑇 → 𝑇 )
Default

∏
𝑆,𝑇 Type

(𝑆 → 𝑆 + 1) × (𝑇 + 1→ 𝑇 )
Wrap

†
∏

𝑆,𝑇 Type
(𝑆 → 𝑆) × (𝑇 → 𝑇 )

Nearest

∏
𝑛:N

∏
𝑇 Type

(R𝑛 → N𝑛) × (𝑇 → 𝑇 )
Linear

∏
𝑛:N (R𝑛 → (N𝑛)2𝑛 × R𝑛) × ((R𝑛)2𝑛 × R3 → R𝑛)

Affine

∏
𝑛:N

∏
𝑇 Type

(R𝑛 → R𝑛) × (𝑇 → 𝑇 )
†
Backend transformer with additional variants.

5.2.4 CudaTex. CUDA textures are useful for representing vector

fields [33] because they are nominally used to store texels which can

be represented using one, two, three, or four-dimensional vectors

of floating point numbers analogously to how pixels can be repre-

sented by greyscale values or by red, green, blue, and optionally

alpha values. The advantage of using textures to represent vector

fields in a broader sense is that they feature hardware-accelerated

interpolation (both nearest-neighbour and linear, up to nine bits

of precision [32]), various boundary checking methods, and cache-

friendly storage layouts [40]. CUDA textures support real-valued

inputs up to three dimensions and real-valued outputs up to four

dimensions.

5.2.5 Analytic. In some applications, vector fields can be described

entirely analytically, removing the need to store the field in mem-

ory. Our benchmark suite provides a general analytic vector field,

wrapping an arbitrary user-provided vector-valued function.

5.2.6 Constant. A constant-valued vector field returns the same

vector regardless of its input, performing only the bare minimum

computation necessary in order to model a vector field. Such fields

provide performance that is both very high and very predictable,

making them useful for establishing upper bounds for the perfor-

mance that can be achieved under a given access patterns.

5.3 Backend Transformers

The primitive backends described in Section 5.2 are, by design, too

simple for most real-world use cases; rather, they are designed to

be used in conjunction with backend transformers which imbue

them with additional functional properties. Of course, most of these

properties do not come for free, and virtually any behaviour we

can add to a storage backend comes at the cost of performance.

The advantage of our approach, even if it may seem unnecessarily

granular, is that it is specific: it allows us to pick—and pay for—only

the functionality we need. In addition, it makes it trivial to exchange

transformers in order to compare their performance. In this section,

we describe the different transformers that we provide as part of

our benchmark in addition to a brief summary in Table 3.

(a) 𝑥-major (b) 𝑦-major (c) Morton (d) Hilbert

Figure 2: Examples of storage orders for two-dimensional

arrays (of size 4 × 4), with arrows indicating the sequence of

indices in the underlying one-dimensional memory.

5.3.1 Pitched. In most modern computer systems, memory is pre-

sented in a one-dimensional fashion; a request is made for the 𝑛-th

byte in the address space, and the corresponding byte (or, more

commonly, set of bytes) is returned. In order to represent multi-

dimensional arrays in a fundamentally one-dimensional address

space, bijective indexing functions translate multi-dimensional co-

ordinates into one-dimensional ones. Perhaps the most ubiquitous

method for laying out multi-dimensional data is in a pitched (or lex-

icographic) fashion. Examples of two-dimensional pitched layouts

in which the 𝑥 and 𝑦 axes are major are shown in Figures 2a and

2b, respectively.

5.3.2 Morton. Pitched storage orders provide, informally, maxi-

mal spatial locality in one dimension at the expense of locality in all

other dimensions [20]. While this can be a desirable property, many

real-world applications (modelled, for example, by the Euler and

Lorentz access patterns from Sections 4.3 and 4.5) exhibit locality

in more than a single dimension. Such applications may benefit

from laying data out according to a space-filling curve [24], which

provides a compromise between locality in multiple dimensions

[27]. A common example of a space-filling curve is the Morton

curve, shown in Figure 2c. Using such a curve, a multi-dimensional

index is converted to a one-dimensional index by interleaving the

digits of the binary representations of the input coordinates as in

the following example:

𝑓 (5, 3, 4) = 𝑓 (1012, 0112, 1002) = 1010101102 = 34210

The downside of Morton curve layouts is that the calculation of

indices requires a significant amount of bit-manipulation, which

may negate the benefits of the improved locality: 𝑑-dimensional

coordinates with scalar types of width 𝑛 bits require at least 3𝑑𝑛 bit-

wise operations: one bit-wise disjunction, one conjunction, and one

barrel shift for each bit in each dimension. It must be noted, how-

ever, that the calculation of Morton curve indices can be accelerated

greatly on x86 architectures equipped with the BMI2 instruction

set extension [23], which introduces the PDEP instruction
2
. Assum-

ing that the necessary deposition masks are computed at compile

time, index calculations can be performed with as few as 2𝑑 oper-

ations: one bit-wise disjunction and one bit-deposition per scalar

in the coordinate. Thus, indices based on Morton curves can be

computed with latency and throughput similar to more traditional

2
On most recent architectures, this instruction executes with the same latency as other

bit-wise instructions, but it is emulated in microcode in pre-Zen 3 AMD processors,

which may degrade performance significantly [11].
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1 imul 0x8(%rsi),%rdx
2 add %rcx ,%rdx
3 imul 0x10(%rsi),%rdx
4 add %rdx ,%r8
5 mov 0x18(%rsi),%rdx
6 lea (%r8 ,%r8 ,2) ,%rax
7 lea (%rdx ,%rax ,8) ,%rax
8 vmovdqu (%rax),%xmm0
9 mov 0x10(%rax),%rax
10 vmovdqu %xmm0 ,(%rdi)
11 mov %rax ,0x10(%rdi)
12 mov %rdi ,%rax
13 ret

(a) Without coordinate shuffling.

1 imul 0x8(%rsi),%rcx
2 add %r8 ,%rcx
3 imul 0x10(%rsi),%rcx
4 lea (%rcx ,%rdx ,1) ,%rax
5 mov 0x18(%rsi),%rdx
6 lea (%rax ,%rax ,2) ,%rax
7 lea (%rdx ,%rax ,8) ,%rax
8 vmovdqu (%rax),%xmm0
9 mov 0x10(%rax),%rax
10 vmovdqu %xmm0 ,(%rdi)
11 mov %rax ,0x10(%rdi)
12 mov %rdi ,%rax
13 ret

(b) With (2, 3, 1)-shuffling.

Listing 1: Comparison of x86-64 assembly generated by gcc
11.2 with the -O3 flag for a backend consisting of an array

lookup and a three-dimensional pitched layout, with and

without shuffling; although Listing (b) is generated using

an additional transformer, the volume of assembly does not

increase.

pitched layouts. It is worth noting that Morton curve layouts with-

out intermediate lookup tables require the size of the array in each

dimension to be a power of two. In order to represent arrays with

other sizes, the array must be padded and space must therefore be

wasted. Representing a 𝑑-dimensional array in such a way requires

at most 2
𝑑 − 1 times more memory than an optimal layout.

5.3.3 Hilbert. Another space filling curve is due to Hilbert [17].

Because this curve provides good locality (see Figure 2d for an

example), its application to the storage of multi-dimensional data

has been intensively studied [12, 25, 29]. The Hilbert curve is well-

understood in two dimensions, but can also be generalised to three

dimensions in a large number of ways [16]. Currently, we support

layouts based on Hilbert curves only in two-dimensions.

5.3.4 Shuffle. All multi-dimensional layouts in our suite treat the

first coordinate as the major coordinate, followed by the second,

and so forth. In the two-dimensional pitched case, this is often

referred to as a row-major layout; in order to extend this concept

to an arbitrary number of dimensions, we will instead refer to it

somewhat more systematically as a (1, 2)-permuted layout. In a

more general𝑛-dimensional sense, all of our layouts are (1, 2, . . . , 𝑛−
1, 𝑛)-permuted. Of course, such layouts may not always be optimal:

in cases where multi-dimensional array accesses are anisotropically

distributed along the axes, alternate permutations may provide

higher performance due to caching [21].

The number of possible permutations grows factorially with

the number of dimensions; the one-dimensional case has a single

permutation, the two-dimensional case has two (namely, row-major

and column-major), the three-dimensional case has as many as

six possible permutations, and so forth. Due to this rapid rate of

growth, implementing separate storage layouts for every possible

permutation is not feasible. Rather, we implement a simple family

of transformers which re-order coordinates before passing them to

an underlying backend. As an example, a (2, 1)-permuted shuffling

transformer swaps the values of a two-dimensional coordinate,

causing an underlying row-major layout to behave externally like

a column-major layout. Such coordinate shuffling transformers

receive their permutations as compile-time parameters, allowing

𝑝1
𝑝2

𝑝3

𝑝4

. . .

Figure 3: An example of how a storage backend takes a coor-

dinate 𝑝1 in a geometrically meaningful coordinate space to

a coordinate space that maps onto a two-dimensional array

(𝑝2 and 𝑝3), and finally onto an address 𝑝4 in memory.

them to be optimised away; a simple example of a compiler’s ability

to do so is demonstrated in Listing 1.

5.3.5 Default. None of the backend transformers provided by our

work incorporate boundary checking, as doing so would violate

the separation of concerns between backends, and could affect

performance. Of course, this means that invalid accesses invariably

lead to undefined behaviour or segmentation violations. In order to

alleviate this problem, boundary checking behaviour is provided by

backend transformers, including the Default transformer which—

if the requested coordinate lies outside a given set of bounds—

returns a user-provided default value.

5.3.6 Wrap. An alternative to theDefault transformer is given by

extending a vector field to infinite size, which we refer to as wrap-

ping. We currently support clamping (extending the edges of the

vector field to infinity), tiling (repeating the vector field throughout

the entire space), and mirrored tiling as wrapping methods.

5.3.7 Nearest. Most of the transformations hitherto described

deal with integer-valued domains. While such vector fields are use-

ful in domains such as image processing, many real-world use cases

demand real-valued coordinates. In order to transform a vector

field with integral-valued domain into one with a real-valued do-

main, we support nearest-neighbour interpolation, where the value

of a real-valued coordinate is equal to the closest (by rectilinear

distance) integer-valued coordinate in the underlying field [4].

5.3.8 Linear. By providing a weighted linear combination of mul-

tiple neighbouring points, linear interpolation can provide more

accurate results than a nearest-neighbour method at the cost of

additional computation [4]. Notably, linear interpolation in 𝑑 di-

mensions requires 2
𝑑
accesses into the underlying vector field, all of

which are guaranteed to be corners of a unit-sided hyper-cube. As

a result, there exists a strong and unbiased spatial locality between

the points necessary to perform such interpolation.

5.3.9 Affine. Interpolation methods provide a way to convert

index spaces addressed by positive integers to spaces that can be ac-

cessed by real numbers, but they fail to impart geometric meaning

upon their input. For most real-world applications, such coordi-

nates need to be transformed such that they map onto a more

meaningful coordinate space, as shown in Figure 3. Currently, our

benchmark suite supports arbitrary affine transformations such as

translation, scaling, rotation, and shearing through a user-supplied

transformation matrix. The impact of such a transformation on the

performance of a vector field is potentially significant, as it requires

a (𝑑 + 1)-dimensional matrix-vector multiplication.



ICPE ’23, April 15–19, 2023, Coimbra, Portugal Stephen Nicholas Swatman, Ana-Lucia Varbanescu, Andy Pimentel, Andreas Salzburger, and Attila Krasznahorkay

5.4 Performance Considerations

Although the compositional design of storage backends in our suite

helps to define and explore the design space, we must ensure that

this approach is not detrimental to performance; if it were, the re-

sults of our benchmarks would not be applicable to non-composite

real-world vector field representations. Our approach of compos-

ing benchmarks at compile time guards us against performance

degradation as a result of (1) dynamic function dispatching due

to run-time polymorphism; and (2) reductions in the optimisation

space afforded to the compiler.

Indeed, our approach entirely avoids the overhead of dispatch

table look-ups which are necessary when employing run-time poly-

morphism [9]; because the entire code path is known at compile-

time, there is no need to dynamically dispatch function calls. While

such look-ups are often not performance-critical in larger applica-

tions, we envision vector fields as very-high throughput structures

where such overhead would be undesirable.

Secondly, a compositional approach risks reducing the optimi-

sation space of the compiler by enabling—or, depending on the

design, requiring—the compiler to emit separate symbols for all pos-

sible transformers. During the subsequent composition phase, the

compiler may be unable to optimise the code across different com-

ponents of the storage backend, thereby degrading performance.

Through the use of compile-time composition, we afford the com-

piler a complete view of all the components of a storage backend,

allowing it to optimise across function boundaries. An example

of this was shown previously in Listing 1, where a compiler was

able to completely eliminate an additional backend transformation,

incorporating additional behaviour into the vector field without

incurring overhead.

6 CASE STUDY

In this section, we demonstrate the use of our benchmark suite in a

real-world scenario: the propagation of charged particles through

magnetic fields, a common problem in the field of high-energy

physics.

6.1 Experimental Setup

To test our benchmarks on data that is representative of real-world

scenarios, we use a solenoidal magnetic field generated by the ACTS

software package [2]; this vector field is representative of real-world

high-energy physics applications and uniformly samples a three-

dimensional magnetic field in a range of −10 000mm to 10 000mm

in the 𝑥- and 𝑦-axes, and a range of −15 000mm to 15 000mm in

the 𝑧-axis. The data is sampled at a resolution of 100mm, resulting

in a total of 201× 201× 301 samples. We store this data using single-

precision IEEE 754 floating-point numbers, resulting in a total data

size of 145.9MB.

We execute our benchmarks on six distinct devices. Five of these

devices, namely an AMD EPYC 7402P CPU of the Zen 2 microar-

chitecture [1, 37] as well as NVIDIA A2, A4000, A6000, and A100
3

GPUs [31] of the Ampere architecture, are part of the DAS-6 cluster
[3]. The final device, an Intel Xeon E5-2630 v3 CPU [19] of the

Haswell microarchitecture, is part of the DAS-5 cluster [3].

3
The PCI-e model with 40GB of HBM2e memory.

1 benchmark :: register_product_bm <
2 boost::mp11::mp_list <
3 Lorentz <Euler >,
4 Lorentz <RungeKutta4 >,
5 RungeKutta4Pattern ,
6 EulerPattern ,
7 Random ,
8 Scan >,
9 boost::mp11::mp_list <
10 FieldConstant ,
11 FieldTex <TexInterpolateLin >,
12 FieldTex <TexInterpolateNN >,
13 Field <InterpolateNN , LayoutStride >,
14 Field <InterpolateNN , LayoutMortonNaive >,
15 Field <InterpolateLin , LayoutStride >,
16 Field <InterpolateLin , LayoutMortonNaive >>>();

Listing 2: An example of C++ code used to generate our CUDA

benchmarks. Given a compile-time list of six access patterns

and a list of seven storage backends, we generate forty-two

benchmarks.

The code for our CPU-based platforms was compiled with gcc

11.2, and code for the NVIDIA GPU was compiled using nvcc 11.5

(targeting PTX versions 8.0 and 8.6).

6.2 Benchmarking Method

The first step in applying our benchmarking-based design space

exploration approach is to select an access pattern that approxi-

mates the targeted application. In this case, we use the Lorentz

access pattern, designed to closely represent the domain-specific

application we are investigating (see Section 4.5). For the sake of

brevity, we test the variants of this access pattern using only the

Euler method—in a depth-first fashion—although our compositional

approach to generating benchmarks makes it trivial to repeat this

analysis for other access patterns: Listing 2 shows an example of

how a much broader range of benchmarks can be generated us-

ing the compile-time meta-programming techniques described in

Section 3.2.

Next, we construct a variety of storage backends with the neces-

sary functional properties, namely (1) three-dimensional indexing;

(2) real-valued indexing; and (3) appropriate transformations from

the field’s real-world geometry. This leads us to the composition

of fourteen storage backends; of these, seven are suited for CPU-

based experiments and seven are suited for GPU-based experiments.

These backends include constant-valued vector fields and various

combinations of primitive backends, multi-dimensional layouts,

and interpolation schemes. In our experiments, the constant-valued

vector fields serve as an upper bound for the performance of a

certain access pattern on a given device, capturing the maximum

throughput of the computation inherent to the application rather

than the access to the vector field. It is worth noting that we only

investigate a subset of storage backends that could be constructed

for the application under investigation; indeed, additional func-

tional behaviour such as boundary checking could be incorporated,

but we chose to omit this due to the combinatorial growth of the

number of resulting experiments.

The selection of our six devices with seven storage backends

each yields a collection of forty-two benchmarks. Each of these

benchmarks has a number of run-time parameters, which can addi-

tionally be varied. For this case study, we set the number of steps to
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(b) Intel Xeon E5-2630 v3 (2 sockets, 32 threads)

Figure 4: Vector field access throughput for the Lorentz ac-

cess pattern with a depth-first Euler method for two different

CPUs.

8192, the step size to 10
−3

time units, and the number of agents to

65 536. This leaves us with a final parameter, the magnitude of the

initial velocity vector, which we vary between 2
8
and 2

18
millime-

ters per time unit. As we grow the initial velocity of the agents in

our simulation, particles take larger steps through the vector field

resulting in reduced locality, and understanding the magnitude of

this effect is the goal of our analysis.

With our collections of benchmarks now selected and parame-

terised, we obtain a total of 882 distinct experiments. For each of

these experiments, we measure the throughput—in accesses per

second—from the vector field by dividing the total number of ac-

cesses by the total wall-clock runtime of the benchmark. Each exper-

iment is repeated fifty times, and we report the mean throughput of

these runs. Our benchmark suite automatically gathers additional

descriptive statistics such as the minimal and maximal throughput

as well as the variance between runs, but we have omitted these

metrics from this section because the variance of our results is very

small.

6.3 Results

The results of our experiments are shown in Figure 4 for the CPU

platforms and in Figure 5 for the GPU platforms. From the per-

spective of a developer, inspection of these data provides valuable
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(d) NVIDIA A2

Figure 5: Vector field access throughput for the Lorentz

access pattern using 128 threads per block for four different

NVIDIA GPUs.
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insights that motivate application development. We analyse a few

such insights in the following paragraphs.

Firstly, the representation of vector fields in these modelled appli-

cations is an important design decision: the difference in throughput

between different storage backends can be an order of magnitude

or larger. Furthermore, our benchmark provides a clear ranking

between different backends at each point in the chosen parameter

space: given a specific device and parameterisation of the access

pattern, the storage backend with the highest throughput can be

easily selected. The inclusion of constant-valued vector fields pro-

vides additional insights into the upper bounds of storage backends,

thus allowing us to compare other backends against this bound

and calculate the fraction of maximally achievable performance

obtained with each backend.

Secondly, our results show that the performance of vector fields

is also strongly dependent on the properties of the access pattern.

Even though all of our results are based on the Lorentz access

pattern, performance behaviour varies significantly with the initial

velocity of the simulation agents, which correlates with the locality

of reference in the logical three-dimensional space. Unsurprisingly,

all storage backends across all devices perform worse as the initial

velocity increases and locality decreases, but the degree at which

performance is lost varies significantly between storage backends.

This is apparent, for example, in Figure 5a: the storage backend

incorporating linear interpolation and Morton curve indexing per-

forms relatively poorly for lower initial velocities, but outperforms

the more traditional pitched layout at higher initial velocities due to

the increased preservation of locality afforded by the Morton layout.

In Figure 5c, we observe three distinct regimes: at low and high

initial velocities, the storage backend based on texture memory

outperform other backends with nearest neighbours, but at inter-

mediate velocities the pitched layout and Morton layouts provide

the best performance.

Finally, our results indicate strong sensitivity of our benchmarks

to the properties and features of the hardware on which it is exe-

cuted. Figure 5 shows the results of our benchmark when executed

on four NVIDIAGPGPUs of the same architecture; beyond constant-

factor performance differences due to differences in memory band-

width and arithmetic performance, the devices under investigation

exhibit different behaviour across the range of parameters tested.

For example, Figure 5b shows that Morton curve layouts for lin-

early interpreted fields outperform pitched layouts only in a specific

regime of initial velocities—between approximately 1024 and 4096

millimeters per unit of time—whereas this regime extends indefi-

nitely in Figure 5c. Although we do not fully understand the source

of this discrepancy, these results indicate that our benchmark can

also be used to motivate the choice of processor or accelerator for

an application.

Although a complete analysis of the data presented in this chap-

ter is beyond the scope of this paper, we find the results presented

in this section to be strong indicators of the comprehensiveness of
our benchmarking methodology: we were able to gather results

using a variety of storage backends through little more effort than

selecting the benchmarks at run-time. Furthermore, our results

are specific as they show clear differences in performance between

different storage backends: even relatively similar backend which

differ by only a single component exhibit significantly performance

patterns, indicating that our suite is capable of comparing different

representations at fine levels of granularity.

7 APPLICABILITY, GENERALISATION, AND

LIMITATIONS

The primary purpose of our benchmark-based design space explo-

ration is to guide developers in the selection of appropriate vector

fields representations for their target applications. Once the selec-

tion is made, developers are free to implement their own vector

fields from scratch. However, our benchmark implementation—by

design—allows direct code re-use in the target application. In fact,

our implementation that works primarily as a benchmark suite can

be re-used as a C++ library which allows users to compose vector

field implementations from the same components that we use in

the benchmark. In essence, our benchmark suite and library are

co-designed such that the library allows for the construction of

benchmarks and real-world applications, while the benchmark al-

lows insight into the performance of the different vector fields that

can be constructed using the library. Our library provides features

such as loading and storing vector fields to disk, and converting

vector fields between different storage backends (including between

CPU- and GPU-based backends, which automatically moves mem-

ory between devices wherever necessary). The source code for both

our benchmark suite and our library are available as free software

under the MPL 2.0 license [38].

We are confident that both the idea of composing applications
and implementations of data structures at compile time can be gen-

eralised to other classes problems using similar techniques with the

ones proposed in this work. Vector fields are excellent candidates

for such an approach due to the wide range of access patterns and

storage backends. Applications and data structures for which the

design space is smaller might benefit less from the generation of

benchmarks (as these benchmarks would be fewer), but the ben-

efits of systematic exploration and automation remain relevant.

Similarly, the decomposition of storage backends is transferable

to other data structures, and it would be especially interesting for

other kinds of multi-dimensional data. However, the dimensions

of the design space could be less broad, because functionality such

as interpolation and spatial transformations do not apply to all

multi-dimensional structures. In a nutshell, the generalisation of

the approach to other applications is easy to achieve, but its urgency

is determined by the complexity of the application domain.

Finally, it is worth noting that our benchmark suite has limita-

tions of which users should be aware. Chiefly, our suite models

applications at an abstract level that omits non-functional effects

that might be present in real-world scenarios. For example, the

access patterns in our suite assume that the vector field is the only

data structure being used by the application at a given time. In real-

world applications, multiple regions of memory may be accessed at

the same time by one or more threads. This may significantly alter

the cache behaviour and thereby the performance of an application

when compared to our benchmarking suite. Furthermore, our suite

does not currently support accessing data stored on persistent me-

dia (such as through mmap) which may be relevant for applications

using vector fields too large to fit entirely in the main memory

of a given machine. Finally, we do not currently support fields of
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heterogeneous vectors such as fields that combine vectors of both

single and double precision floating point numbers, or vectors of

different dimensionalities.

8 CONCLUSION

Vector fields are performance-critical components of scientific appli-

cations, but we lack the tools to quantify and rank their performance.

In this work, we introduce a comprehensive benchmarking suite

that enables developers of applications using vector fields to select

appropriate, high-performance vector field representations through

systematic design-space exploration. To create a comprehensive,

specific, and applicable benchmark suite, we decompose vector

field representations into access patterns and storage backends.

These can be combined at compile-time to construct hundreds of

unique benchmarks, each with additional run-time parameters. We

further decompose storage backends into primitive backends and

backend transformers, which can be used to add functional and

non-functional properties to vector fields, both in a benchmarking

setting as well as in domain-scientific use cases. We show that the

use of template meta-programming allows us to automatically gen-

erate a large number of high-performance benchmarks, providing

software that compromises neither performance nor usability.

In order to evaluate the efficacy of our benchmarking suite, we

have applied it to analyse the performance of a range of vector

field storage backends in a real-world problem in the domain of

high-energy physics. Thereby, we have shown that the implemen-

tation of vector fields can play an important role in achieving high

performance in real-world applications, and we have demonstrated

that our benchmarking suite is capable of capturing the design

space for such implementations.

In the future, we aim to expand our benchmarking suite and

library to support a broader variety of functional and non-functional

behaviour. For example, we aim to add support for generalisedmulti-

dimensional Hilbert curves to lay out multi-dimensional data, as

well as cubic interpolation.
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