
Daedalus: Toward Composable Multimedia MP-SoC Design

H. Nikolov†, M. Thompson‡, T. Stefanov†, A. Pimentel‡,
S. Polstra‡, R. Bose�, C. Zissulescu�, E. Deprettere†

†Leiden Embedded Research Center ‡Department of Computer Science �Chess B.V.
Leiden University University of Amsterdam Image Processing Solutions
The Netherlands The Netherlands The Netherlands

{nikolov,stefanov}@liacs.nl {mthompsn,andy}@science.uva.nl {raj.bose,czi}@chess.nl

ABSTRACT
Daedalus is a system-level design flow for the design of multipro-
cessor system-on-chip (MP-SoC) based embedded multimedia sys-
tems. It offers a fully integrated tool-flow in which design space ex-
ploration (DSE), system-level synthesis, application mapping, and
system prototyping of MP-SoCs are highly automated. In this pa-
per, we describe our first industrial deployment experiences with
the Daedalus framework. Daedalus is currently being deployed in
the early stages of the design of an image compression system for
very high resolution cameras targeting medical appliances. In this
context, we performed a DSE study with a JPEG encoder applica-
tion, which exploits both task and data parallelism. This application
was mapped onto a range of different MP-SoC architectures. We
achieved a performance speed-up of up to 20x compared to a single
processor system. In addition, the results show that the Daedalus
high-level MP-SoC models accurately predict the overall system
performance, i.e., the performance error is around 5%.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-time
and embedded systems; C.4 [Performance of Systems]: Modeling
techniques; J.6 [Computer-aided Engineering]: Computer-aided
design (CAD)

General Terms
Design, Performance

Keywords
System-level design and synthesis, Design space exploration

1. INTRODUCTION
The complexity of modern embedded systems, which are in-

creasingly based on MultiProcessor-SoC (MP-SoC) architectures,
has led to the emergence of system-level design. To cope with this
design complexity, system-level design aims at raising the abstrac-
tion level of the design process. Key enablers to this end are, for
example, the use of architectural platforms to facilitate re-use of
IP components and the notion of high-level system modeling and
simulation [6]. System-level design for MP-SoC-based embedded
systems however still involves a substantial number of challenging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

design tasks. For example, applications need to be decomposed
into parallel specifications so that they can be mapped onto an MP-
SoC architecture [9]. Subsequently, applications need to be parti-
tioned into HW and SW parts since MP-SoC architectures often are
heterogeneous in nature. To this end, MP-SoC platform architec-
tures need to be modeled and simulated to study system behavior
and to evaluate a variety of different design options. Once a good
candidate architecture has been found, it needs to be synthesized,
which involves the synthesis of its architectural components as well
as the mapping of applications onto the architecture. To accomplish
all of these tasks, a range of different tools and tool-flows is often
needed, potentially leaving designers with all kinds of interoper-
ability problems. Moreover, there typically remains a large gap
between the deployed system-level specifications (or models) and
actual implementations of the system under study, known as the
implementation gap [10]. Currently, there exist no mature method-
ologies, techniques, and tools to effectively and efficiently convert
system-level MP-SoC specifications to RTL specifications.

Recently, we presented our Daedalus system-level design frame-
work which addresses the above design challenges [17, 1]. The en-
tire Daedalus framework has been developed as high-quality soft-
ware distributed under Open Source licenses and can be down-
loaded from [1]. Daedalus main objective is to bridge the afore-
mentioned implementation gap for the design of multimedia MP-
SoCs. It does so by providing an integrated and highly-automated
environment for system-level architectural exploration, system-level
synthesis, programming, and prototyping. The Daedalus design
flow, which leads the designer from a sequential application to an
MP-SoC system implementation on an FPGA with a parallelized
application mapped onto it, can be traversed in only a matter of
hours. Evidently, this offers great potentials for quickly experi-
menting with different MP-SoCs and exploring design options dur-
ing the early stages of design. In this paper, we report on our first
deployment experiences with the Daedalus framework. Daedalus
is currently being deployed in a project together with the Dutch
SME Chess B.V., which involves the design of an image compres-
sion system for very high resolution (in the order of Gigapixels)
cameras targeting medical appliances. In this project, the Daedalus
framework is used for design space exploration (DSE), both at the
level of simulations and prototypes, in order to rapidly gain detailed
insight on the system performance. To this end, we present initial
results from a DSE study we performed with a JPEG encoder ap-
plication, which exploits both task and data parallelism and which
is mapped onto a range of different MP-SoC architectures.

1.1 Related Work
Systematic and automated application-to-architecture mapping

has been widely studied in the research community. The closest to

Pµ

Pµ Pµ FPGA
specification

specification

specification
System−level

MemMem

MP−SoC

Gate−level

RTL

Xbar

HW IP

V
al

id
at

io
n

/ C
al

ib
ra

tio
n netlist

Platform
in VHDL
IP cores Auxiliary

filesprocessors
C code for

in XML
Platform spec.

in XML Network in XML
Kahn Process

Automated system−level synthesis:

RTL synthesis: commercial tool, e.g.

Mapping spec.

System−level architectural exploration: Sesame

ESPAM

Xilinx Platform Studio

Parallelization
KPNgen

Sequential
program in C

Models
RTL

Models
High−level

IP Library

Figure 1: The Daedalus system-level design framework.

our work is the Koski MP-SoC design flow [15] and the SystemC-
based design methodology presented in [5]. Koski provides a sin-
gle infrastructure for modeling of applications, automatic archi-
tectural design space exploration, and automatic system-level syn-
thesis, programming, and prototyping of selected MP-SoCs. The
methodology in [5] supports automated design space exploration,
performance evaluation, and automatic platform based system gen-
eration. But unlike Daedalus, [15] and [5] do not allow for auto-
mated parallelization of applications, nor design space exploration
at application level. Both [15] and [5] require applications to be
specified by hand in UML and SystemC, respectively.

Other examples of related work can be found in [16, 8, 2, 4].
However, these efforts are limited to processor-coprocesor archi-
tectures [16], only provide a limited degree of automation [8, 2], or
do not provide an automated step towards RTL [4].

Companies such as Xilinx and Altera provide design tool chains
attempting to generate efficient implementations starting from de-
scriptions higher than (but still related to) the register transfer level
of abstraction. The required input specifications are still so detailed
that designing a single processor system is still error-prone and time
consuming, let alone designing alternative multiprocessor systems.
In contrast, Daedalus raises the design to an even higher level of
abstraction allowing the exploration, design, and programming of
multiprocessor systems in a short amount of time.

The next section provides a birds-eye overview of the Daedalus
design flow with its three core tools. Section 3 describes Daedalus
supporting infrastructure that improves the user-friendliness, and
therefore also the deployability, of the framework. In Section 4,
we present the results from a DSE study with the aforementioned
JPEG encoder application mapped to a range of different MP-SoCs.
Section 5 concludes the paper.

2. THE DAEDALUS DESIGN FLOW
In Figure 1, the conceptual design flow of the Daedalus frame-

work is depicted. As mentioned before, Daedalus provides a single
environment for rapid system-level architectural exploration, high-
level synthesis, programming, and prototyping of multimedia MP-
SoC architectures. Here, a key assumption is that the MP-SoCs are
constructed from a library of pre-defined and pre-verified IP com-
ponents. These components include a variety of programmable and
dedicated processors, memories and interconnects, thereby allow-
ing the implementation of a wide range of MP-SoC platforms. So,
this means that Daedalus aims at composable MP-SoC design, in
which MP-SoCs are strictly composed of IP library components.

Starting from a sequential multimedia application specification
in C, the KPNgen tool [18] allows for automatically converting the

result
ESPAMvisualization

XML
saver

XML
saver

DSE
KPNgen

RDBMS

Sesame

Workflow description

Figure 2: Daedalus’ customizable work flow.

sequential application into a parallel Kahn Process Network (KPN)
[7] specification. Here, the sequential input specifications are re-
stricted to so-called static affine nested loop programs, which is an
important class of programs in, e.g., the scientific and multimedia
application domains.

The generated or handcrafted KPNs (the latter in the case that,
e.g., the input specification did not entirely meet the requirements
of the KPNgen tool) are subsequently used by our Sesame mod-
eling and simulation environment [13, 3] to perform system-level
architectural design space exploration. To this end, Sesame uses
(high-level) architecture model components from the IP component
library (see the left part of Figure 1). Sesame allows for quickly
evaluating the performance of different application to architecture
mappings, HW/SW partitionings, and target platform architectures.
Such exploration should result in a number of promising candi-
date system designs, of which their specifications (system-level
platform description, application-architecture mapping description,
and application description) act as input to the ESPAM tool [12,
11]. This tool uses these system-level input specifications, together
with RTL versions of the components from the IP library, to auto-
matically generate synthesizable VHDL that implements the can-
didate MP-SoC platform architecture. In addition, it also generates
the C code for those application processes that are mapped onto
programmable cores. Using commercial synthesis tools and com-
pilers, this implementation can be readily mapped onto an FPGA
for prototyping. Such prototyping also allows for calibrating and
validating Sesame’s system-level models, and as a consequence,
improving the trustworthiness of these models.

3. THE DAEDALUS INFRASTRUCTURE
As discussed in the previous section, the heart of Daedalus con-

sist of the three core tools KPNgen, Sesame and ESPAM. In addi-
tion, Daedalus also features several supporting tools to improve the
user-friendliness and deployability of the framework. This section
provides a brief overview of the supporting infrastructure.

In Daedalus, most design information (e.g., structural descrip-
tions of the application, architecture, and the mapping of the for-
mer onto the latter) as well as experimental results are described
using XML-based descriptions. Daedalus therefore contains the
Oracle Berkeley DB XML relational database management system
(RDBMS) to store all information (models, parameters and results)
related to designs and experiments. This RDBMS, together with its
GUI, provide the designer with a powerful tool to e.g., explore and
visualize the large amounts of data generated by Daedalus design
space exploration. Moreover, it guarantees the reproducibility of
experiments at all times.

The vision behind the Daedalus software infrastructure is that it
should be open for integration of new tools as well as that it should
allow for customization of the design flow. Therefore, the design
flow (or tool flow) in Daedalus is composable and constructed from
’design-flow blocks’. These design-flow blocks, which are illus-
trated as the dashed boxes in Figure 2, are the tools that take part

in the design flow together with their input- and output descrip-
tions. The latter descriptions, illustrated by the grey boxes in Fig-
ure 2, provide information about what input/output data a tool con-
sumes/produces and from/to where it reads/writes this data. This
allows us to describe a design flow as a simple composition of the
design-flow blocks, specified in the workflow description. For ex-
ample, Figure 2 shows a design flow which includes a visualization
block to visualize Sesame’s DSE results and which stores both the
DSE and ESPAM’s prototyping results in the RDBMS (using the
so-called ’XML saver’ tool). Evidently, this composability of the
design flow allows for easily adding new design steps to a design
flow, or to customize design flows for specific design domains.

We have also developed control and monitoring software utilities
to facilitate the process of setting up and executing experiments on
the FPGA-based prototypes of MP-SoCs generated by Daedalus.
Such utilities are necessary and very useful for: (i) conducting an
effective and efficient design space exploration at implementation
level on a narrow design space defined by Sesame; (ii) measur-
ing real performance and cost numbers used for calibration of the
Daedalus’ high-level architecture models [14]; (iii) preparing real
HW/SW demonstrators. The control and monitoring utilities in-
clude a configuration manager, an execution control panel, and an
on-line monitoring console, all supported by a GUI which allows
users unfamiliar with the FPGA prototyping board to perform ex-
periments with the MP-SoCs.

4. PUTTING DAEDALUS TO WORK
We have initiated a project together with a Dutch SME called

Chess B.V. (www.chess.nl), which involves the design of a still im-
age compression system for very high resolution images. Chess
B.V. is a company that provides image processing solutions for cus-
tomers that build industrial process monitoring and medical appli-
ances. With respect to this, the still image compression systems for
different customers have to meet different performance and cost
requirements. Chess needs tool support for very fast exploration
and implementation of alternative systems (e.g., MP-SoCs realiz-
ing JPEG or JPEG2000 encoders) whereby trade-offs can be made
between cost, design time, space, performance, etc. in order to
offer its customers several solutions at different prices and let the
customers select the most suitable ones. The Daedalus framework
provides such tool support for MP-SoC design. Therefore, it is
used in a project with Chess for design space exploration (DSE)
at a high-level of abstraction by running system simulations and
at implementation level by evaluating real system prototypes. In
this section, we report on the project’s initial findings and results
obtained by deploying the Daedalus framework in the early design
stage of JPEG-based image compression MP-SoCs.

Before describing our DSE experiments, we first would like to
point out that the design space targeted by our implementation-level
DSE is currently constrained by:

1) The amount of the available memory. In order to achieve
high performance, in our MP-SoCs we use on-chip memory for
processors’ program and data segments, including buffers for inter-
processor data communication. We do not consider using external
(off-chip) memory because of its large latency compared to the on-
chip memory. Moreover, usually there is a limited number of avail-
able external memory banks which requires the external memory to
be shared between several processors. This fact significantly limits
the overall MP-SoC performance. We use external memories only
for communication with the environment (source of data and desti-
nation of the generated results). An average size FPGA nowadays
has around 200–300KB of on-chip memory distributed on several
blocks. In our experiments, we use a Xilinx VirtexII-6000 FPGA,

...

...

...

...

...

DCT1

Q2

Q8

Q1

VLE Vout

Tile = 128 MacroBlocks MacroBlock = 2 Yblocks + 1Ublock + 1Vblock
Yblock = 64 pixels,Ublock = 64 pixels,Vblock = 64 pixels

Compressed byte sequence for Tile

Vin

JPEG

IMAGE

DCT8

DCT2

JPEG

JPEG
Tile

Tile

Packet of bytes

Figure 3: The JPEG application KPN.

and therefore, we constrain the total MP-SoC memory to be up to
288KB, being the amount of on-chip memory of this FPGA.

2) The type of the processing components. The MP-SoCs are
built of components from our library. Our library is under de-
velopment and currently contains two programmable processors:
PowerPC 405 (IBM) and MicroBlaze (Xilinx). In addition, the li-
brary contains several dedicated HW IP cores. However, for the
JPEG encoder we can use only one, i.e., the Discrete Cosine Trans-
form (DCT) IP. For the considered FPGA, PowerPC processors can
not be used. Therefore, the processing components of the MP-SoCs
are limited to MicroBlaze processors and DCT HW IP cores only.

4.1 Simulation-level DSE
In our experiments, we assume that the image that needs to be

compressed is tiled, and that multiple JPEG encoders can process
these tiles in parallel. This is illustrated in Figure 3, which also
shows the applied KPN application specification for a JPEG en-
coder. The JPEG KPN for a single tile can again exploit task-level
parallelism by pipelining tasks as well as data-parallelism by per-
forming multiple DCT s and Quantizations in parallel. By deploy-
ing Sesame’s efficient system-level simulations, we explored a sub-
stantial number of different implementations of a single JPEG en-
coder in the system, as represented by the KPN in Figure 3. To
this end, we mapped the KPN to a variety of MP-SoC architectures,
ranging from a 1-processor system (all KPN processes mapped to
a single processor) to a 19-processor system (every process in a
KPN with 8 data-parallel streams mapped to a different processor).
Moreover, in our Sesame-based exploration we also varied the type
of processors in these MP-SoC platforms: KPN tasks can be exe-
cuted on a MicroBlaze, while for the DCT , Q(uantization) and V LE
tasks we also assessed dedicated HW IP implementations. Evi-
dently, our simulation-level DSE also explores ‘non-implementable’
design instances. That is, design instances that cannot be further
explored at implementation level since it uses HW IP components

Vin,Q,VLE,Vout DCT

32KB 4KB

Vin,DCT Q,VLE,Vout

16KB 32KB
2KB

Vin

DCT

Vin

Q

b)

DCT,Q

DCT,Q

DCT,Q

DCT,Q
DCT Q

VLE,Vout

2KB

2KB2KB 2KB

8KB

32KB8KB

4x16KB

8KB

8KB
2KB 2KB

VLE,Vout

d)

a)

c) 6 MicroBlaze processors

2 MicroBlaze processors

4 MicroBlazes, 2 HW DCT

1 MicroBlaze, 1 HW DCT

4x2KB

4x2KB

32KB

Figure 4: Alternative design instances to process one tile.

Performance-memory trade-off DSE

0

5

10

15

20

25

30

35

40

0 25 50 75 100 125 150 175 200 225

Memory utilization (KB)

M
ill

io
n

s
 o

f
c
lo

c
k
 c

y
c
le

s
 /

 t
ile

implementable

implementable pareto front

non-implementable

homogeneous

Figure 5: DSE for performance/memory utilization trade-offs.

that are not (yet) available in our library of RTL-level IP compo-
nents. In Figure 4, four (implementable) example design instances
are depicted.

Figure 5 shows a scatter plot with the performance results of
the explored design instances plotted against the expected memory
utilization of each design instance once implemented on the tar-
geted FPGA. The memory utilization of the design instances was
estimated using a simple accumulative model that has been cali-
brated with numbers from implementation-level experiments (see
the next section). Since the memory utilization of all design points
in Figure 5 is below 288KB, they will all fit on the targeted FPGA
memory-wise. But, as will be shown further on, the real system
will consist of a combination of multiple of these (single JPEG
encoder) design instances working in parallel, which, of course,
may not necessarily fit on the FPGA. The points in Figure 5 can
be classified as three types of design instances: 1) design instances
that are ’implementable’ (i.e., do not use the non-implemented HW
IP components for the Q and V LE tasks) but are not part of the
Pareto front, 2) implementable design instances that are part of the
Pareto front, and 3) design instances that are non-implementable
(i.e., contain HW IP components for the Q or V LE tasks). More-
over, the homogeneous design instances (i.e., the platforms only
using MicroBlaze processors) are tagged with circles.

A number of observations can be made from Figure 5. The
(implementable) Pareto optimal solutions are all heterogeneous de-
signs, containing one or two DCT HW IP components. Two of
these Pareto optimal solutions are shown in Figures 4(b) and 4(d).
Clearly, the (non-implementable) design instance in which the DCT ,
Q and V LE tasks are all implemented by a HW IP core is the fastest
and most memory efficient. When considering the homogeneous
design points in Figure 5, another observation can be made: The
design points with a memory utilization less than 75KB are the de-
signs that exploit task-level parallelism only. The speed-up due to
task-level parallelism levels off at a performance of around 18 Mcy-
cles/tile. But, when data-parallelism is also exploited, the speed-up
levels off at around 7 Mcycles/tile at the cost of increased memory
utilization. Here, we found that increasing data-parallelism beyond
4 parallel DCT -Q streams (see Figure 3) does not improve perfor-
mance anymore as the V LE becomes the bottleneck.

As mentioned and as will be illustrated in the next section, the
design points in Figure 5 are the building blocks for the entire sys-
tem, in which multiple of these instances, possibly in a hybrid con-
stellation, are encoding image tiles in parallel. For example, the
most optimal, but (currently) non-implementable, system would
consist of multiple JPEG encoders with HW IPs for the DCT , Q
and V LE tasks. The projected performance of this system, consid-
ering the targeted FPGA, equals to an execution time of about 6

Figure 6: Estimated speed-ups.

Giga cycles to encode an image with a 1 Gigapixel resolution. For
implementable solutions, the Pareto optimal design instances from
Figure 5 are obvious candidate building blocks for the MP-SoC.

Figure 6 shows the estimated maximum performance – in terms
of speed-up over a single JPEG encoder executed on one MicroBlaze
– for different JPEG compression MP-SoCs realized with a com-
bination of implementable design instances from Figure 5. The x-
axis indicates the number of processing cores (either MicroBlaze or
HW IP) in the MP-SoC, and the y-axis shows the estimated speed-
up for the optimal combination of design instances for a specific
number of cores in the MP-SoC which still adheres to the mem-
ory constraints of the targeted FPGA. Furthermore, a distinction
is made between homogeneous systems (i.e., only MicroBlazes)
and heterogeneous systems (i.e., containing DCT HW IP compo-
nents). For example, the optimal homogeneous 4-core system is a
combination of four sequential JPEG design instances, i.e. a sys-
tem containing four MicroBlazes that all perform a full JPEG on
different image tiles in parallel. In the next section, more exam-
ples of, sometimes hybrid, combinations of design instances will
be discussed.

Essentially, Figure 6 provides a projection of the feasible sys-
tem performance, given the constraints of the targeted FPGA. For
homogeneous solutions, our simulations predict that a speed-up of
around 10 to 12 is attainable. Our memory utilization model indi-
cates that scaling the homogeneous system beyond 24 cores is not
possible because of the memory constraints. For heterogeneous
systems, on the other hand, our memory model indicates that the
system can be scaled to 30 cores since the HW IP components only
use a fraction of the memory used by a MicroBlaze. Here, our pre-
dictions show that a speed-up of around 20 to 22 is feasible. The re-
sults from our simulation-level DSE, as displayed in Figures 5 and
6, are used in the next section for steering the implementation-level
DSE. These implementation-level experiments will also provide a
validation of our simulation-based predictions.

4.2 Implementation-level DSE
Performing DSE at a high-level of abstraction by simulation can

not deliver 100% accurate performance/cost numbers but it can
rapidly narrow down the design space to a few promising design
points. Thus, we perform 100% accurate exploration in the nar-
rowed design space by generating real MP-SoC prototypes and we
measure the actual performance/cost in order to select the opti-
mal MP-SoC designs given a set of physical implementation con-
straints. Below, we present our initial implementation-level DSE
results for MP-SoCs implemented on Xilinx FPGAs.

Due to the aforementioned implementation-level constraints, some
of the best design points found by the simulation-level DSE (see

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13

#MicroBlaze processors

M
ill

io
ns

 o
f

cl
oc

k
cy

cl
es

2x

8040

3x

120

4x

160

5x

200

6x

240

7x

280

Memory utilization (KB)

7.4x 8x 8.4x 8.4x 9.7x 10.3x

260 270 280 260 240 280

Figure 7: Performance results: homogeneous MP-SoCs.

Figure 5) could not be implemented, e.g., all application tasks to be
realized as HW IPs. Therefore, we considered the implementable
design instances depicted in Figure 6. From them, we selected only
the instances that have efficiency above 0.8, where

efficiency =
speed−up

number of cores
.

This selection resulted in implementations of homogeneous MP-
SoCs with up to 13 MicroBlaze processors and heterogeneous MP-
SoCs with up to 24 cores. Evidently, better performance is de-
livered by the heterogeneous systems, however, the homogeneous
systems add more flexibility in choosing the right solution, e.g.,
performance/cost, for a particular customer.

The implementation results for the homogeneous MP-SoCs are
depicted in Figure 7. The x-axis represents the number of MicroBlaze
processors in an MP-SoC and the y-axis depicts the number of
clock cycles (in millions) to compress one image consisting of 32
tiles. Above each bar, we indicated the achieved speed-up of the
particular MP-SoC compared to a single MicroBlaze system (the
leftmost bar). At the top of the figure, we present the amount of
memory utilized by each MP-SoC.

As mentioned before, our JPEG encoding MP-SoCs process the
input image in tiles. We started with a single MicroBlaze sys-
tem (processing all the tiles) and then we increased the number
of processors by selecting the best points found by the simulation-
level DSE. These points exploit data-level parallelism, i.e., several
MicroBlazes process different tiles. This is the most efficient way
to increase performance because if we increase the number of pro-
cessors that process independent tiles, then the speed-up increases
linearly with the number of processors. To execute the JPEG ap-
plication, a single MicroBlaze processor system requires 40KB of
memory. Therefore, we were able to implement systems with up
to 7 processors on the considered FPGA (7x40=280KB), achieving
speed-ups (see the first 7 bars in the Figure 7) up to 7x.

By exploiting only data-level parallelism, with 7 MicroBlazes
processing 7 tiles in parallel, we reached the limit of the available
memory in our FPGA. Then, the question is whether there are de-
sign points that give even better performance (with more proces-
sors) and still match the resource constraints. We were able to in-
crease the number of processors to more than 7 by selecting points
that exploit both data-level parallelism between tiles and also task-
level parallelism within the tiles. For this purpose, we used the 2-
MicroBlaze architecture depicted in Figure 4(a), where the Vin and
all DCT processes (see Figure 3) are executed on the first proces-
sor and the remaining processes on the second one. By exploiting
task-level parallelism, reaching linear speed-up is not possible due
to data dependencies between the tasks. However, the total mem-
ory requirement of the system is reduced because the application
tasks are distributed, and each processor executes a portion of the

0

100

200

300

400

500

600

700

M
ill

io
ns

 o
f

cl
oc

k
cy

cl
es

Memory utilization (KB)

2#Cores:
MB/DCT: 1/1

4
2/2

6
3/3

8
4/4

10
5/5

12
6/6

14
7/7

16
8/8

18
11/7

20
13/7

22
14/8

24
16/8

36
1.9x

72 108 144 180 216 252

19.7x

288 244 240 276 272

3.8x

5.7x 7.6x 9.5x

11.4x 13.3x 15.2x 15.2x 15.9x 17.7x

Figure 8: Performance results: heterogeneous MP-SoCs.

initial application. As a result, larger systems can be built, and con-
sequently, larger overall speed-up can be achieved. For instance, a
single-processor system needs 40K to execute the JPEG encoder,
while a two-processor system – exploiting task-level parallelism –
needs a total amount of 50KB for the same application, on average
25KB per processor. Thus, by exploiting the reduced memory re-
quirement, we were able to increase the number of processors and
to implement systems with up to 11 MicroBlaze processors. The
selected points are actually combinations of a 1-MicroBlaze system
per tile and a 2-MicroBlaze system per tile. The MP-SoCs with 8 to
11 MicroBlazes process 6 tiles in parallel. The achieved speed-ups
are not linear, e.g., 7.4x for an 8-processor MP-SoC and 8.4x for an
11-processor MP-SoC, but they are higher than the speed-up of the
7-processor system.

In order to implement even larger systems, we exploited data-
level parallelism between the tiles and data- and task-level paral-
lelism within the tiles. We selected and implemented points rep-
resenting 12 and 13 processor systems with total memory require-
ments that match our physical constraints. The 12-processor sys-
tem processes 2 tiles in parallel where each tile is processed by a 6-
MicroBlaze architecture depicted in Figure 4(c). This architecture
requires 120KB of memory. The 13-processor MP-SoC utilizes an
additional MicroBlaze processor (additional 40KB), therefore, in-
creasing the number of tiles processed in parallel to 3. The results
are shown at the right part (the two rightmost bars) of Figure 7. The
achieved speed-up of 12- and 13-MicroBlaze systems is 9.7x and
10.3x respectively, compared to a 1-MicroBlaze system.

The implementation results for the heterogeneous MP-SoCs are
depicted in Figure 8. The notation is the same as in Figure 7 with
the only difference that the x-axis of Figure 8 indicates how many
of the used cores are MicroBlaze processors and how many DCT
HW IPs. By exploiting data- and task-level parallelism, we imple-
mented heterogeneous MP-SoCs consisting of up to 24 cores. As
a reference number to estimate the speed-up of each MP-SoC, we
again used the number of clock cycles of the 1-MicroBlaze system
(see the leftmost bar in Figure 7). We started with a 2-core system
consisting of 1 MicroBlaze and 1 DCT IP. Its architecture is de-
picted in Figure 4(b). It exploits task-level parallelism within a tile,
which affects the achieved speed-up. Although the DCT IP core is
very efficient and fast in terms of performance, the overall speed-
up is only 1.9x (see the leftmost bar in Figure 8), which actually is
in line with Amdahl’s law. Similarly to the experiments with the
homogeneous systems, we continued with points that exploit data-
level parallelism between the tiles, increasing the number of tiles
processed in parallel. The 2-core system requires 36KB of mem-
ory, i.e., the DCT IP core reduces the MicroBlaze memory require-
ment to 32KB but with an additional 4KB used for communication
buffers, see Figure 4(b). Therefore, with 288KB of memory, we
were able to implement systems with up to 8 MicroBlazes and 8

DCT IPs (16 cores, processing 8 tiles in parallel). The achieved
speed-up linearly scales from 1.9x for 2 cores to 15.2x for 16 cores
as illustrated in Figure 8.

Like in the previous experiment, with the given constraints larger
MP-SoCs can be implemented (and higher speed-ups can be achieved
respectively) by exploiting data-level parallelism between the tiles
and data- and task-level parallelism within the tiles. The most effi-
cient heterogeneous MP-SoC architecture found by the simulation-
level DSE to exploit data- and task-level parallelism within a tile
is depicted in Figure 4(d). It consists of 4 MicroBlaze processors
and 2 DCT IP cores. The total memory requirement of this sys-
tem is 68KB.We selected and implemented the 18-, 20-, 22-, and
24-core systems in Figure 6 which actually are combinations of 2-
cores per tile (2-CPT) and 6-cores per tile (6-CPT) architectures
(see Figure 4(b) and Figure 4(d) respectively). The 18-core system
consists of 11 MicroBlazes and 7 DCT IPs. It processes 5 tiles in
parallel: 3 tiles are processed by 3 2-CPT architectures and 2 tiles
are processed by 2 6-CPT architectures. The speed-up of this MP-
SoC is 15.2x. The 20-core system processes 4 tiles in parallel: 1
tile is processed by 1 2-CPT architecture and 3 tiles are processed
by 3 6-CPT architectures. In total, 13 MicroBlazes and 7 DCT IPs
achieve a speed-up of 15.9x. The speed-up of the 22-core system
is 17.7x. This MP-SoC consists of 14 MicroBlazes and 8 DCT IPs
that process 5 tiles in parallel: 2 tiles are processed by 2 2-CPT
architectures and 3 tiles are processed by 3 6-CPT architectures.
The 24-core MP-SoC, consisting of 16 Microblazes and 8 DCT
IPs, processes 4 tiles in parallel utilizing 4 6-CPT architectures.
The achieved speed-up by this system is 19.7x compared to a 1-
MicroBlaze system.

5. CONCLUSIONS
We presented the Daedalus system-level design framework and

our first industrial experiences in deploying Daedalus in the early
design stage of JPEG-based image compression MP-SoCs. All pre-
sented DSE experiments and the real implementation of 25 MP-
SoCs on FPGA were performed in a short amount of time, 5 days
in total, due to the highly automated Daedalus design flow. Around
70% of this time was taken by the low-level commercial synthesis
and place-and-route FPGA tools. The obtained results show that
the Daedalus high-level MP-SoC models are capable of accurately
predicting the overall system performance, i.e., the performance er-
ror is around 5%. By exploiting the data- and task-level parallelism
in the JPEG application, Daedalus can deliver scalable MP-SoC so-
lutions in terms of performance and cost. We were able to achieve
a performance speed-up of up to 20x compared to a single pro-
cessor system. The MP-SoC system performance was limited by
the available on-chip FPGA memory resources and the available
IP cores in Daedalus RTL library. To achieve higher performance
speed-up, the RTL library has to be extended with more dedicated
HW IP cores. The next step in our joint project with Chess B.V. is
to use Daedalus for the exploration and design of JPEG2000-based
image compression MP-SoCs.

6. ACKNOWLEDGMENTS
This work was supported by the Dutch Technology Foundation

(PROGRESS/STW) under the Artemisia project (LES.6389).

7. REFERENCES
[1] Daedalus system-level design, http://daedalus.liacs.nl/.
[2] D. Lyonnard et al. Automatic Generation of

Application-Specific Architectures for Heterogeneous
Multiprocessor System-on-Chip. In Proc. of the Design
Automation Conference (DAC’2001), June 18-22 2001.

[3] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra. A
framework for system-level modeling and simulation of
embedded systems architectures. EURASIP Journal on
Embedded Systems, vol. 2007, Article ID 82123, 2007.

[4] A. Gerstlauer and D. Gajski. System-level abstraction
semantics. In Proc. 15th Int. Symposium on System Synthesis
(ISSS’02), pages 231–236, Oct. 2-4 2002.

[5] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubuhr,
A. Deyhle, A. Hadert, and J. Teich. A SystemC-Based
Design Methodology for Digital Signal Processing Systems.
EURASIP Journal on Embedded Systems, 2007:Article ID
47580, 22 pages, 2007. doi:10.1155/2007/47580.

[6] K. Keutzer et al. System level design: Orthogonalization of
concerns and platform-based design. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
19(12), Dec. 2000.

[7] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress 74, 1974.

[8] M. J. Rutten et al. A Heterogeneous Multiprocessor
Architecture for Flexible Media Processing. IEEE Design &
Test of Computers, 19(4), 2002.

[9] G. Martin. Overview of the MPSoC Design Challenge. In
Proc. Design Automation Conference (DAC), San Francisco,
USA, July 24-28 2006.

[10] A. Mihal and K. Keutzer. Mapping concurrent applications
onto architectural platforms. In A. Jantsch and H. Tenhunen,
editors, Networks on Chips, pages 39–59. Kluwer Academic
Publishers, 2003.

[11] H. Nikolov, T. Stefanov, and E. F. Deprettere.
Multi-processor system design with ESPAM. In Proc. of the
Int. Conf. on HW/SW Codesign and System Synthesis
(CODES+ISSS ’06), pages 211–216, Oct. 2006.

[12] H. Nikolov, T. Stefanov, and E. F. Deprettere. Systematic and
automated multi-processor system design, programming, and
implementation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD),
27(3):542–555, March 2008.

[13] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic
approach to exploring embedded system architectures at
multiple abstraction levels. IEEE Transactions on
Computers, 55(2):99–112, 2006.

[14] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas.
Calibration of abstract performance models for system-level
design space exploration. Journal of Signal Processing
Systems for Signal, Image, and Video Technology, 50(2),
2008.

[15] T. Kangas et al. UML-based multi-processor SoC design
framework. ACM Trans. on Embedded Computing Systems,
5(2):281–320, May 2006.

[16] T. Stefanov et al. System design using Kahn process
networks: The Compaan/Laura approach. In Proc. of the Int.
Conference on Design, Automation and Test in Europe
(DATE), pages 340–345, Feb. 2004.

[17] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel,
C. Erbas, S. Polstra, and E. F. Deprettere. A framework for
rapid system-level exploration, synthesis, and programming
of multimedia MP-SoCs. In Proc. of the Int. Conference on
Hardware-Software Codesign and System Synthesis
(CODES+ISSS ’07), pages 9–14, 2007.

[18] S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: a tool for
improved derivation of process networks. EURASIP Journal
on Embedded Systems, vol. 2007, Article ID 75947, 2007.

