
The Journal of Logic and Algebraic Programming 70 (2007) 222–235
www.elsevier.com/locate/jlap

A generalization of ACP using Belnap’s logic

Alban Ponse∗, Mark B. van der Zwaag

Programming Research Group, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, Netherlands

Abstract

ACP is combined with Belnap’s four-valued logic via conditional composition (if–then–else). We show that the operators of
ACP can be seen as instances of more general, conditional operators. For example, both the choice operator + and δ (deadlock)
can be seen as instances of conditional composition, and the axiom x + δ = x follows from this perspective. Parallel composition
is generalized to the binary conditional merge φ‖ψ where φ covers the choice between interleaving and synchronization, and ψ
determines the order of execution. The instance B‖B is ACP’s parallel composition, where B (both) is the truth value that models
both true and false in Belnap’s logic. Other instances of this conditional merge are sequential composition, pure interleaving and
synchronous merge. We investigate the expression of scheduling strategies in the conditions of the conditional merge.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Belnap’s logic; Conditional composition; Process algebra; ACP

1. Introduction

In 1994, our research group at the University of Amsterdam experienced a revival in the specification of datatypes
with divergence, errors and recovery or exception handling. This was triggered by languages such as VDM [13] and an
upcoming interest in Java [9]. The first outcome was a paper on a four-valued propositional logic by Bergstra, Bethke
and Rodenburg [4]. Consequently it was felt that a combination with ACP [5] via a conditional composition construct
(i.e., an if–then–else operator) was obvious, and a first paper involving Kleene’s three-valued logic [14] was written
[7], the idea being that in

if φ then p else q

the conditionφmay take Kleene’s truth value undefined. This led to [8] in which the logic of [4] is combined with ACP, to
papers in which other non-classical logics were used, and ultimately to the four-valued logic C4 for ACP with conditional
composition ([16] baptized “the logic of ACP”). In [16] we show that this logic (with one, sequential connective) is
equivalent to the natural extension of Kleene’s three-valued logic with a fourth truth value (which has symmetric
connectives). As known from, e.g., [11], this latter logic is in fact Belnap’s four-valued logic [2]. In a recent paper
based on [16] we report on Belnap’s logic with conditional composition as a functional basis [18]. Here, we focus on the
generalization of ACP using this logic. An extended abstract of this paper was presented at the APC25 workshop [17].

∗
Corresponding author. Tel.: +31 20 525 7592; fax: +31 20 525 7490.
E-mail address: alban@science.uva.nl (A. Ponse).

1567-8326/$ - see front matter (2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2006.08.006

www.elsevier.com/locate/jlap
mailto:alban@science.uva.nl

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 223

A tricky corner in ACP is the combination of choice and deadlock. One often reads that the process p + q makes a
choice between p and q. However, this is not true for a + δ, where a is an action and δ represents deadlock. Indeed,
x + δ = x is an axiom of ACP, and it suggests a descriptive interpretation of the choice. In this paper we show that
a prescriptive reading of choice can be obtained via a straightforward correspondence with conditional composition
over Belnap’s logic, allowing one to explain the nature of choice in process algebra from a logical perspective. Writing

p +φ q

for if φ then p else q, and with truth value B (both) standing for both true and false, and N (none) standing for neither
true or false, we define

p + q
def= p +B q,

δ
def= p +N q.

Secondly, we generalize parallel composition (‖) to a conditional operator as well:

pφ‖ψq
is the parallel composition of p and q under conditions φ and ψ , as explained in Section 3.3. This will allow us to
define several forms of parallel composition. Moreover, we can enforce certain strategies for scheduling.

In Section 2 we review Belnap’s logic and conditional composition. In Section 3 we define generalized ACP using
the conditional operators. Section 4 contains the completeness proof for generalized ACP. This result is extended to
ω-completeness in Section 4.3. In Section 5 we consider ways to express scheduling strategies in the conditions of the
conditional merge.

2. Belnap’s logic and conditional composition

Belnap’s Logic B4 [2] has truth values B, T, F, and N, where B (both) represents both true and false, T and F are
the values true and false, and N (none) represents undefinedness.1 Negation is defined as an involution (i.e., it satisfies
¬¬x = x) by ¬B = B, ¬T = F, ¬F = T, and ¬N = N, and conjunction (∧) and disjunction (∨) are the greatest lower
bound and the least upper bound in the distributive lattice

F

B N

T

˝̋JJ

˝̋ JJ

called the truth ordering [11]. This characterization of the logic as a distributive lattice with involution leads directly
to a finite and complete equational axiomatization [16].

Now we define an alternative logic C4 over these truth values that has only one, ternary operator _ � _ � _ called
conditional composition. This operator is defined by

x � T � y = x,

x � F � y = y,

x � N � y = N,

x � B � y = x � y,
where � is the least upper bound of x and y in the lattice

N

T F

B

˝̋JJ

˝̋ JJ

1 Belnap motivated B as the result of conflicting outcomes of database queries, and N as the absence of answers.

224 A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235

Table 1
C4 axioms

(C1) x � (u � v � w) � y = (x � u � y) � v � (x � w � y)
(C2) (x � w � y) � v � (x′ � w � y′) = (x � v � x′) � w � (y � v � y′)
(C3) (x � w � y) � w � z = x � w � (y � w � z)
(C4) T � x � F = x

(C5) x � T � y = x

(C6) x � F � y = y

(C7) x � N � y = N
(C8) x � B � y = y � B � x
(C9) x � B � N = x

(C10) B � B � x = B

called the information (or knowledge) ordering [4,11]. Conditional composition has an operational, sequential reading:
in x � y � z, first y is evaluated, and depending on the outcome, possibly x and/or z. In Table 1 we give a complete set
of axioms for C4 (see [16]).

The logics B4 and C4 have exactly the same expressiveness, that is, their operators can be defined in terms of each
other. Using B, T, F we have

¬x = F � x � T, (1)

x ∧ y = (y � x � F) � B � (x � y � F), (2)

x ∨ y = (T � x � y) � B � (T � y � x), (3)

and, vice versa, using N,

x � y � z = (x ∧ y) ∨ (z ∧ ¬y) ∨ (x ∧ z ∧ N) ∨ (y ∧ ¬y ∧ N).

Hence the two logics can be considered “the same”, but with a different functional basis. We refer to [18] for a further
exposition.

3. Generalized ACP

We generalize ACP’s operators for alternative composition and parallel composition to conditional operators, where
the conditions are propositions in the four-valued logic introduced in Section 2.

3.1. Conditional composition

We first look at Generalized Basic Process Algebra with deadlock (GBPAδ). It is parametrized by a non-empty set
A of actions symbols, and has the binary operators sequential composition ·, and conditional composition +φ , where
φ ranges over the terms of the logic C4. The composition

p +φ q

is read as if φ then p else q. Finally it has the constant δ for deadlock. Process terms p are generated by the grammar

p ::= a | δ | x | p +φ p | p · p,
where a ranges over A, x ranges over a given non-empty, countably infinite set V of process variables, and φ ranges
over the terms of the logic C4. We use x, y, z to range over the variables in V , and p, q, r to range over process terms.
Sequential composition binds strongest and the symbol · is often omitted from terms (so we may write pq for p · q).
The axiom system GBPAδ consists of the axioms in Table 2. For the proof system (equational logic) we adopt the rule

C4
 φ = ψ ⇒ GBPAδ
 x +φ y = x +ψ y.

Next, we give an operational semantics for process-closed terms, that is, for process terms that do not contain
process variables. The conditions may be open C4 terms. Let P be the set of process-closed terms, let W be the set of
valuations for C4 terms, and let A×W be the set of transition labels. The transition rules are given in Table 3, where
a transition with label a,w models the execution of action a under valuation w.

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 225

Table 2
GBPAδ axioms

(G1) x +φ �ψ �χ y = (x +φ y)+ψ (x +χ y)
(G2) (x +ψ y)+φ (x′ +ψ y′) = (x +φ x′)+ψ (y +φ y′)
(G3) x +φ (y +φ z) = (x +φ y)+φ z
(G4) (x +φ y)z = xz+φ yz
(G5) (xy)z = x(yz)

(G6) x +T y = x

(G7) x +F y = y

(G8) x +N y = δ

Table 3
Transition rules (a ∈ A, w ∈ W)

a
a,w−→ √ p

a,w−→ √
pq

a,w−→ q

p
a,w−→ p′

pq
a,w−→ p′q

p
a,w−→ √

, w(φ)∈{B,T}
p+φq a,w−→ √ p

a,w−→ √
, w(φ)∈{B,F}

q+φp a,w−→ √

p
a,w−→ p′, w(φ)∈{B,T}
p+φq a,w−→ p′

p
a,w−→ p′, w(φ)∈{B,F}
q+φp a,w−→ p′

We define (strong) bisimulation as usual:

Definition 1. A binary relation R on P is a bisimulation if it is symmetric, and whenever pRq, then

• p a,w−→ √
implies q

a,w−→ √
, and

• p a,w−→ p′ for some p′, implies q
a,w−→ q ′ for some q ′ with p′Rq ′.

Process-closed terms are bisimilar (↔−) if they are related by a bisimulation. Since bisimilar terms have matching
action steps for every valuation, we allow (user-defined) propositions in the logic, the evaluation of which may not be
constant throughout the execution of a process. The transition rules are in the panth format [19] (if for each φ, +φ is
considered a binary operator), from which it follows that bisimilarity is a congruence. Furthermore, the GBPAδ axioms
are sound, as can be easily proved. Completeness will be proved in Section 4. Bisimulation equivalence of open terms,
and ω-completeness, are addressed and proven in Section 4.3.

3.2. Alternative composition

Both deadlock and alternative composition can be seen as instances of conditional composition. For deadlock this is

obvious by axiom G8. We define alternative composition by p + q
def= p +B q. If we restrict conditional composition

to alternative composition we obtain Basic Process Algebra with deadlock (BPAδ) [5], that is, by this restriction we
characterize exactly the models of BPAδ (its axioms are collected in Table 4). In particular, the BPAδ axioms can be
derived:

Proposition 2. Defining + as +B, the axioms A1–A7 in Table 4 are derivable in GBPAδ.

Proof. Axiom A1 is derived by

x +B y = (y +F x)+B (y +T x) = y +F � B � T x = y +B x

using axioms G6, G7, G1, C8, and C4. Axiom A2 is an instance of G3. Axiom A3:

x +B x = (x +T y)+B (x +T y) = x +T � B � T y = x

226 A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235

Table 4
BPAδ axioms

(A1) x + y = y + x

(A2) (x + y)+ z = x + (y + z)

(A3) x + x = x

(A4) (x + y)z = xz+ yz

(A5) (xy)z = x(yz)

(A6) x + δ = x

(A7) δx = δ

using G6, G1, and C4
 x � B � x = x. Axiom A4 is an instance of G4, and A5 occurs here as axiom G5. Axiom A6
can be derived by

x +B δ = (x +T y)+B (x +N y) = x +T � B � N y = x

using G6, G8, G1, and C9. Finally, A7 can be derived using G8 and G4. �

3.3. Generalized parallel composition

GACP (Generalized ACP) is parametrized by a nonempty set A of action symbols, and a binary commutative and
associative function | onA ∪ {δ} which defines which actions communicate (we say that actions a and b communicate if
a | b /= δ, and we assume that a | δ = δ for all a). It extends GBPAδ with a generalization φ‖ψ of parallel composition,
where the condition φ covers the choice between interleaving and synchronization, and ψ determines the order of
execution, see the explanation below. Furthermore, the axiomatization uses auxiliary operators for generalized left
merge φ��ψ and generalized communication merge φ |ψ , and there is the encapsulation operator ∂H , which renames
actions from the set H ⊆ A to δ. The axioms of GACP are those of GBPAδ together with the axioms in Table 5.

If either of the conditions in

pφ‖ψq
has value N, no action is enabled. The other cases:
• If φ = T, we have pure interleaving (no communication), which may be restricted byψ . Ifψ = T, only the left-hand

side p is allowed to execute, and we find that T‖T represents sequential composition. Similarly, if ψ = F only q
may execute, and upon its termination p continues. If ψ = B both may execute, so T‖B represents nondeterministic
interleaving (free merge). For example, we can derive

aaT‖Fbb = bbaa, and aT‖Bb = ab + ba.

• Next, φ = F means only synchronization (no interleaving). In this case the sequentiality defined by ψ is not used;
F‖� for � ∈ {B, T, F} defines synchronous merge.

• Finally, φ = B means both interleaving and synchronization, as in ACP; again ψ determines the order of non-
synchronized actions.
The parallel composition of ACP corresponds to B‖B; in this spectrum, it maximizes the number of nondeterministic

alternatives, as was the case with alternative composition in GBPAδ .
Some typical identities:

xφ‖ψy = yφ‖¬ψx,
xφ |ψy = yφ |¬ψx,
δφ |ψx = δ.

The transition rules are collected in Tables 3 and 6. In Table 6 we use some notational conventions such aspφ‖ψ√ =
p (of course,

√
is not a term) to reduce the number of rules. Bisimilarity is a congruence, and all axioms are sound in the

model thus obtained. The parallel composition operators can be eliminated from process-closed terms, so completeness
of GACP follows from the completeness of GBPAδ , which is proved in Section 4.

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 227

Table 5
Axioms for conditional merge (a, b ∈ A, H ⊆ A)

(GM1) xφ‖ψy = (xφ��ψy +ψ yφ��¬ψx)+φ (xφ |ψy +ψ yφ |¬ψx)
(GM2) aφ��ψx = ax

(GM3) axφ��ψy = a(xφ‖ψy)
(GM4) (x +φ y)ψ ��χ z = xψ ��χ z+φ yψ ��χ z
(GM5) aφ |ψb = a | b
(GM6) aφ |ψbx = (a | b)x
(GM7) axφ |ψb = (a | b)x
(GM8) axφ |ψby = (a | b)(xφ‖ψy)
(GM9) (x +φ y)ψ |χ z = xψ |χ z+φ yψ |χ z
(GM10) zφ |ψ(x +χ y) = zφ |ψx +χ zφ |ψy

(GD1) ∂H (a) = a if a �∈ H
(GD2) ∂H (a) = δ if a ∈ H
(GD3) ∂H (x +φ y) = ∂H (x)+φ ∂H (y)
(GD4) ∂H (xy) = ∂H (x)∂H (y)

Table 6
Transition rules (a, b, c ∈ A, w ∈ W , p′, q ′ range over P ∪ {√}, and we let pφ‖ψ√ = p,

√
φ‖ψp = p,

√
φ‖ψ√ = √

, and ∂H (
√
) = √

)

p
a,w−→ p′, w(φ)∈{B,T}, w(ψ)∈{B,T}

pφ‖ψq a,w−→ p′
φ‖ψq

p
a,w−→ p′, w(φ)∈{B,T}, w(ψ)∈{B,F}

qφ‖ψp a,w−→ qφ‖ψp′

p
a,w−→ p′, q b,w−→ q′, a|b=c, w(φ)∈{B,F}, w(ψ)∈{B,T,F}

pφ‖ψq c,w−→ p′
φ‖ψq′

p
a,w−→ p′, q b,w−→ q′, a|b=c
pφ |ψq c,w−→ p′

φ‖ψq′
p
a,w−→ p′

pφ��ψq a,w−→ p′
φ‖ψq

p
a,w−→ p′, a �∈H

∂H (p)
a,w−→ ∂H (p

′)

4. Completeness

We prove that the axiom system GBPAδ is complete with respect to strong bisimulation equivalence.

4.1. Preliminaries

The guarded command construct [10] is defined by

φ :→ p
def= p +φ δ.

It expresses the instruction to execute process p if the condition φ is satisfied. We use this construct in the next section
because it allows a more elegant normal form representation than is possible with conditional composition. Here, we
shall prove a number of useful identities concerning the guarded command. We use

δ +φ δ = δ, (4)

which is derived by

δ +φ δ = (x +N x)+φ (x +N x) = (x +φ x)+N (x +φ x) = δ,

using axioms G8 and G2. The following identities can be derived straightforwardly2:

2 Here and in the following we freely use the definition of + as +B, and the axioms A1–A7, which can all be derived (Proposition 2).

228 A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235

x +φ y = φ :→ x + ¬φ :→ y, (5)

φ :→ (x + y)= φ :→ x + φ :→ y, (6)

(φ :→ x)y = φ :→ xy, (7)

x + (φ :→ x)= x, (8)

φ :→ (ψ :→ x)= ψ :→ (φ :→ x). (9)

For the derivation of (8) we argue as follows:

x + (φ :→ x) = (x +B δ)+ (x +φ δ) = x +B � B �φ δ = x + δ = x,

and for (9) we use (4) and axiom G2:

(x +ψ δ)+φ δ = (x +ψ δ)+φ (δ +ψ δ) = (x +φ δ)+ψ (δ +φ δ).

Clearly, the following identities are derivable as well:

B :→ x = T :→ x = x; F :→ x = N :→ x = δ. (10)

We see that, as a guard, the truth values B and T have the same behavior, and so do F and N. Consequently, the
guarded command has nicer distribution properties over the logical operators than conditional composition:

φ ∨ ψ :→ x = φ :→ x + ψ :→ x, (11)

φ ∧ ψ :→ x = φ :→ (ψ :→ x), (12)

φ � ψ � χ :→ x = ψ ∧ φ :→ x + ¬ψ ∧ χ :→ x. (13)

These identities can all be derived without difficulty; for example, in the case of (11) we replace the disjunction by its
definition (3) and derive that the left-hand side equals

φ :→ x + ¬φ :→ (ψ :→ x)+ ψ :→ x + ¬ψ :→ (φ :→ x).

This term can be derived equal to the right-hand side using (8). For (12), we use (2) and find that the left-hand side
equals

φ :→ (ψ :→ x)+ ψ :→ (φ :→ x),

so that we can finish the proof using (9).

4.2. Completeness proof

In the proof it is convenient to write terms in the basic term format that is defined below. We usually work modulo
the associativity and commutativity of alternative composition (axioms A1 and A2). Hence, we let

∑
i∈I pi , where I

is a finite set of indices, stand for the alternative composition of the processes pi with i ∈ I ; furthermore, we define∑
i∈∅ pi ≡ δ. Note: we write p ≡ q for “term p is defined to be syntactically equal to q”.

Definition 3. Let A be the set of action symbols; then basic terms are terms of the form∑
i∈I

φi :→ pi,

where pi ∈ {a, aq | a ∈ A, q a basic term} for all i ∈ I .

Lemma 4. For all process-closed terms p and basic terms q, the sequential composition pq is derivably equal to a
basic term.

Proof. We apply induction on the structure of p. If p ≡ a ∈ A, then aq equals the basic term T :→ aq by (10). If
p ≡ δ, then pq equals the basic term δ by A7. If p ≡ p1 +φ p2, then derive using (5), G4, and (7) that

pq = φ :→ p1q + ¬φ :→ p2q.

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 229

It follows from the induction hypothesis that there are basic terms

p′ ≡
∑
i

ψi :→ ri and p′′ ≡
∑
j

ψj :→ rj ,

with p′ = p1q and p′′ = p2q. Using (6) and (12), we derive that pq equals the basic term∑
i

φ ∧ ψi :→ ri +
∑
j

¬φ ∧ ψj :→ rj .

Finally, if p ≡ p1p2, then we find by axiom G5 that pq equals p1(p2q). Now we can apply the induction hypothesis
twice in succession. �

Lemma 5. Every process-closed process term p is derivably equal to a basic term.

Proof. We apply induction on the structure of p. If p ≡ δ, then p equals an empty summation by definition. If
p ≡ a ∈ A, then p equals the basic term T :→ a by (10). If p ≡ p1 +φ p2, then by induction hypothesis there are
basic terms

p′
1 ≡

∑
i

ψi :→ pi and p′
2 ≡

∑
j

ψj :→ pj ,

with p1 = p′
1 and p2 = p′

2. By (5), we find that p equals

φ :→ p′
1 + ¬φ :→ p′

2.

Using (12) and (6) we get that this term equals the basic term∑
i

φ ∧ ψi :→ pi +
∑
j

¬φ ∧ ψj :→ pj .

Finally, let p ≡ p1p2. By induction hypothesis, p2 is derivably equal to a basic term, so we can finish this case by
application of Lemma 4. �

Next, we define the height of basic terms, that will be used as the basis for the induction in the completeness proof.

h(a)= 1,

h(δ)= 0,

h(φ :→ p)= h(p),

h(p + q)= max(h(p), h(q)),

h(ap)= 1 + h(p).

Lemma 6. Every basic term p is derivably equal to a basic term

q ≡
∑
i∈I

φi :→ qi,

with the following properties:
(i) h(q) ≤ h(p),

(ii) for all distinct i, j ∈ I with qi, qj ∈ A, qi /= qj (that is, qi and qj are distinct symbols),
(iii) for all i ∈ I,
 φi = φi ∧ B,
(iv) for all i ∈ I, �
 φi = F.

Proof. Starting from p written

p ≡
∑
i

ψi :→ pi,

we first join summandsψi :→ pi andψj :→ pj withpi = pj = a ∈ A to a single summandψi ∨ ψj :→ a using (11).
Observe that this does not change the height of the term, so the first property is preserved. The resulting term satisfies
property (ii). Then, we add a conjunct B to all conditions ψ : we derive using (10) and (12) that

ψ :→ pi = ψ :→ (B :→ pi) = ψ ∧ B :→ pi.

230 A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235

The resulting term satisfies property (iii). Observe that this does not change the height of the term, so the first
property is preserved. Also, the second property is preserved. Finally, if the condition of one of the summands in the
resulting term is derivably equal to F, then that summand can be omitted. The resulting term satisfies property (iv).
Also, the other properties are preserved. �

Theorem 7. All bisimilar process-closed terms are derivably equal.

Proof. Take bisimilar process-closed terms p1 and p2, and assume, without loss of generality (Lemma 5), that they
are basic terms. We apply induction on h = h(p1 + p2). First, observe that if h = 0, then it must be that p1 and p2 are
both syntactically equal to δ. Next, let h > 0. By Lemma 6 we may assume that for k = 1, 2, the term

pk ≡
∑
i∈Ik

φk,i :→ pk,i

satisfies the properties (i)–(iv) of Lemma 6. For k = 1, 2, we make the following observations.
(a) We may assume thatpk,i ↔−� pk,j for all distinct i, j ∈ Ik . Ifpk,i andpk,j inA, then this follows from property (ii)

of Lemma 6. Otherwise, let pk,i ≡ aq and pk,j ≡ ar and q ↔− r . By induction hypothesis, we find that

q = r . Hence, the summands φk,i :→ pk,i and φk,j :→ pk,j could have been joined to the single summand
φk,i ∨ φk,j :→ pk,i using (11). This does not increase the height of pk .

(b) We may assume, using idempotency of +, that all summands of pk are unique.
(c) For every w ∈ W and i ∈ Ik , we have by property (iii) of Lemma 6 that either w(φk,i) = B or w(φk,i) = F.
(d) For all i ∈ Ik , w(φk,i) = B for at least one w ∈ W , as follows from property (iv) of Lemma 6 and (c).
We show that each summand in pk is derivably equal to a unique summand in p3−k . Take an arbitrary i ∈ Ik .

• First, we consider the case pk,i ≡ a ∈ A. By property (ii) of Lemma 6 and (c), we find that

pk
a,w−→ √

if and only if w(φk,i) = B,

and, since pk ↔− p3−k , also p3−k
a,w−→ √

if and only if w(φk,i) = B. Using (d), we find that p3−k,j ≡ a for some
unique j ∈ I3−k . It follows that w(φk,i) = B if and only if w(φ3−k,j) = B, and so by (c), we find |= φk,i = φ3−k,j
and hence
 φk,i = φ3−k,j . This finishes the case with pk,i ∈ A.

• Next, suppose that pk,i ≡ aq. Using (c), we find that

pk
a,w−→ q if and only if w(φk,i) = B.

Then it follows from pk ↔− p3−k that p3−k
a,w−→ r for some r with q ↔− r if and only ifw(φk,i) = B. By (d), we find

that p3−k,j ≡ ar for some unique (using (a)) j ∈ I3−k . It follows that w(φk,i) = B if and only if w(φ3−k,j) = B,
and so by (c), we have |= φk,i = φ3−k,j and hence
 φk,i = φ3−k,j . Finally,
 pk,i = p3−k,j , since q ↔− r implies

 q = r by induction hypothesis. �

4.3. ω-Completeness

GBPAδ is ω-complete, that is, if all closed instantiations of an equation between open terms are derivable, then
the equation is derivable. To prove this, we define an operational semantics for open terms, for which we can use the
completeness result for process-closed terms. (But note that ω-completeness does not depend on a particular semantic
equivalence.) We obtain this semantics by treating variables as constants: we take again the transition rules presented
in Table 3, in which we now let the letter a range over the variables in V as well. In particular it follows that

x
x,w−→ √

for all variables x ∈ V and valuations w ∈ W . Bisimulation semantics is obtained by requiring that both action steps
and variable steps are matched:

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 231

Definition 8. A binary relation R between (open) process terms is a bisimulation if it is symmetric, and whenever
pRq, then, for all α ∈ A ∪ V , w ∈ W ,
• p α,w−→ √

implies q
α,w−→ √

, and

• p α,w−→ p′ for some p′, implies q
α,w−→ q ′ for some q ′ with p′Rq ′.

Process terms are bisimilar (↔−) if they are related by a bisimulation.
The proof of the following lemma was inspired by a proof of a similar property in the setting of Milner’s basic CCS

in [1].

Lemma 9. For all (open) terms p and q, if σ(p) ↔− σ(q) for every closed instantiation σ of the process variables in

p and q, then p ↔− q.

Proof. First, for any process term s, we define the set Res(s) of residuals of s inductively as follows:
• s ∈ Res(s), and
• if t ∈ Res(s) and t

α,w−→ t ′ for some α,w, then t ′ ∈ Res(s).
Take terms p and q. Let n be the total number of symbols (for actions, variables, and operators) occurring in p and q.

Take an arbitrary action a ∈ A (the set A is non-empty by assumption), let ak for k ≥ 1 be the sequential composition
of k times action a, and let

t
def=
(∑

0<i<n

ai · δ
)

+ an.

We write s[x := at] for term s under the substitution of the closed term a · t for process variable x. Observation:
for all s ∈ Res(p) ∪ Res(q),

s ↔−� t, (a)

s[x := at] ↔−� t, (b)

s[x := at] ↔−� t · r, for all r. (c)

Assume that

σ(p) ↔− σ(q) for all closed instantiations σ. (d)

We prove p ↔− q by induction on the total number of process variables occurring in p and q. The base case (with p
and q process-closed) is trivial.

Inductive step. First observe that it follows from (d) that, for all closed instantiations σ ,

σ(p[x := at]) ↔− σ(q[x := at]),
where x is a process variable occurring in p and/or q. By induction hypothesis we find that

p[x := at] ↔− q[x := at].
We now show that the symmetric closure of the relation

R = {(r, s) | r ∈ Res(p), s ∈ Res(q), r[x := at] ↔− s[x := at]}
is a bisimulation, and thereby that p ↔− q.

Take any (r, s) ∈ R. Cases:
• r α,w−→ √

, for someα ∈ A ∪ V \ {x}. Then also r[x := at]has an (α,w)-step to
√

, and because r[x := at] ↔− s[x :=
at] it is easy to see that s has an (α,w)-step to

√
as well.

• r x,w−→ √
. Then r[x := at] has an (a,w)-step to t . Because r[x := at] ↔− s[x := at], this step must be matched by

s[x := at], and it is easy to see that this is possible only if s has an (x,w)-step to
√

.

• r α,w−→ r ′, for some α ∈ A ∪ V \ {x}. Then r[x := at] has an (α,w)-step to r ′[x := at], and because r[x :=
at] ↔− s[x := at] it must be that s[x := at] has an (α,w)-step to some s′[x := at] with r ′[x := at] ↔− s′[x := at].

232 A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235

We find that s
α,w−→ s′: in case α /= a this is easy to see. In case α = a observe that the (a,w)-step of s[x := at]

cannot be a step leading to a process starting with t resulting from a substitution x := at , because then we would
violate (b) or (c). So, we find that r ′ ∈ Res(p) and s′ ∈ Res(q), so that (r ′, s′) ∈ R.

• r x,w−→ r ′. Then r[x := at] has an (a,w)-step to t · r ′[x := at]. Because r[x := at] ↔− s[x := at], this step must
be matched by s[x := at] with an (a,w)-step to some s∗ such that t · r ′[x := at] ↔− s∗. Then it must be (because
the branching degree of t can only be matched by a t resulting from a substitution x := at) that s∗ = t · s′[x := at]
for some s′ with s

x,w−→ s′ and r ′[x := at] ↔− s′[x := at]. So (r ′, s′) ∈ R. �

With this semantics for open terms we can prove ω-completeness along the lines of the proof of Theorem 7:

Theorem 10. GBPAδ is ω-complete, i.e., if all closed instantiations of an equation between open terms are derivable,
then the equation is derivable.

Proof. Take terms p and q and assume that σ(p) = σ(q) is derivable for all closed instantiations σ of the process
variables in p and q. Then by soundness of the axioms we find that σ(p) ↔− σ(q) for all σ , and therefore p ↔− q by
Lemma 9. Now redo the proof of Theorem 7, treating variables as action symbols. This is straightforward.

More examples of this proof technique can be found in [1,12].

5. Scheduling parallel processes

In this section we lift GACP to a setting that admits a form of modal, algebraic reasoning based on C4. In particular
we show how conditional merge can be used to model certain forms of scheduling with help of a so-called history
operator. In order to discuss some non-trivial examples, we shall consider (potentially) infinite processes specified with
∗, the binary Kleene star [15]. In process algebra, ∗ is defined by

x ∗y = x(x ∗y)+ y.

(See also [3].) For example, a∗δ repeatedly performs a, as follows easily from GBPAδ and this defining axiom.
The minimal history operator H0 uses its index to keep track of the number of actions that a process has performed

and increases stepwise its index. The knowledge of the history of a process is ‘minimal’ in the sense that this operator
only counts the actions that are performed. For example, we find that

H0(abc)
a−→ H1(bc)

b−→ H2(c)
c−→ √

.

For n ∈ N, the minimal history operator is axiomatized by

Hn(a)= a for a ∈ A ∪ {δ},
Hn(ax)= a · Hn+1(x) for a ∈ A,

Hn(x +φ y)= Hn(x)+Hn(φ) Hn(y),

where the occurrence of +Hn(φ) reflects the ‘lifting’ mentioned above: by defining Hn also on conditions we involve
the history of a process in our conditional operators, thus admitting various forms of scheduling in the specification of
parallel processes.

Below we discuss some applications using Hn and conditional merge. For this purpose we introduce the following
type of modal conditions:

φ ::= c | In | P(φ) | ¬φ | φ ∧ φ for c ∈ {B, T, F, N},
where In is the assertion which is true for the initial state of a process and false thereafter, and P(φ) is the assertion
that φ is valid in all previous states (i.e., in all states with an action leading to the current state); if there is no such
state, then P(φ) = N. It is not necessary to define ‘states’ formally as will become clear below where we define the
interaction between the minimal history operator and these modal conditions. We have

P(T)= ¬In ∨ N,

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 233

P(¬φ)= ¬P(φ),
P(φ ∧ ψ)= P(φ) ∧ P(ψ),

and it is reasonable to define

P(B)= N � In � B,

P(N)= N.

It then follows that P can be removed from finite expressions except for expressions of the form Pk(In) for k > 0.
The minimal history operator Hn is, for n ≥ 0, defined on conditions by

Hn(c)= c for c ∈ {B, T, F, N},
Hn(In)=

{
T if n = 0,
F otherwise,

Hn(P(φ))=
{
N if n = 0,
Hn−1(φ) otherwise,

Hn(¬φ)= ¬Hn(φ),

Hn(φ ∧ ψ)= Hn(φ) ∧ Hn(ψ).

With these modal conditions we can specify the scheduling of parallel processes. As a first example consider
H0(aabT‖
cd), where

 = In ∨
(¬P(In) ∧ P2(In)) ∨
(¬P(In) ∧ ¬P2(In) ∧ ¬P3(In) ∧ P4(In)).

The assertion
 is true in states where the action history length is 0, 2, or 4, and false otherwise (i.e., Hn(
) = T if
n ∈ {0, 2, 4} and F otherwise). The history operator in cooperation with
 schedules the process above as an alternation
of steps of aab and cd, beginning with aab:

H0(aabT‖
cd)=H0(aabT��
cd +
 cdT��¬
aab)
=a · H1(abT��
cd +
 cdT��¬
ab)
...

=acadb.
Note that in this case, the conditional merge excludes communication.

We now consider the scheduling of infinite processes using recursively defined conditions. As an example, let

even = In ∨ ¬P(
even).

Thus
even will be true if the action history length is even, and false otherwise. It easily follows that

H0(a
∗δT‖
evenb

∗δ) = (ab)∗δ. (14)

Of course,
even can also be used for finite processes, e.g., H0(aabT‖
evencd) = acadb.
For an example on scheduling that exploits also communication, consider the parallel composition of the processes

S =
(∑

d

r1(d) · s2(d)
)

∗δ,

R =
(∑

d

r2(d) · s3(d)
)

∗δ.

234 A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235

The intended scheduling is that senderS receives a datum from some finite domain along channel 1 from the environment
and then sends this datum via channel 2, while receiver R receives data along channel 2 and propagates these along
channel 3. So the requirement of scheduling is that if the action history length modulo 3 is 0, the sender S should
execute, if it is 1 a communication r2(d) | s2(d) should take place, and otherwise the receiverR may perform an action.
Therefore we consider H0(S�‖�R) with the conditions � and � defined as follows:

� = In ∨ (¬P(In) ∧ ¬P2(In) ∧ P3(�)),

�= In ∨ ¬P(�).
So � is true if the action history length is a multiple of 3 and false otherwise, and � is false if this length modulo 3 is
1 and true otherwise. In particular, the intended communications (data transmissions) can occur along channel 2 and
it is not hard to show that for k ∈ N,

H3k(S�‖�R) =
(∑

d

r1(d) · (r2(d) | s2(d)) · s3(d)
)

· H3k+3(S�‖�R).

So, we find that H0(S�‖�R) describes the intended scheduling.
The setting described in this section provides an abstract level for reasoning about questions how scheduling can be

specified. For example, to what extent can scheduling be specified in the components of a parallel composition, and to
what extent in some scheduling operator. Such questions are of relevance in the modeling and analysis of multithreading
in programming languages as Java [9], and also in theoretical accounts about operators for scheduled interleaving [6].
We give some simple examples. First, consider

H0((
even :→ a)∗δ ‖ (¬
even :→ b)∗δ). (15)

Observe that in this case, scheduling is steered from within the component processes. Furthermore, observe that if no
communications are defined (so a | b = δ), the behavior of (15) equals that in (14) (where scheduling was completely
determined by the conditional merge). Our next example sketches a naive form of fair interleaving: let some large,
even number N be given and let the recursive condition
 be defined such that

Hn(
) =
⎧⎨
⎩
T if n mod N = 0,
F if n mod N = N

2 ,

B otherwise.

Then in e.g. H0(a
∗δT‖
b∗δ) it is guaranteed that at each point in execution, each of the component processes gets a

turn within N steps.
Finally, we note that the minimal history operator stems from [8], where it supports Minimal History Logic (MHL).

In that paper also Action History Logic (AHL) is defined; this logic comprises conditions on the identity of the last
action executed and a so-called action history operator. Incorporating such features would admit various forms of
dynamic scheduling in which actions may influence the control of execution.

6. Conclusion

We have generalized ACP by conditional operators over Belnap’s logic: conditional composition characterizes
choice and deadlock, and conditional merge models several kinds of parallel composition. In particular we have shown
how the truth value B (both) corresponds to nondeterministic choice. Thus we have added a logical perspective on the
nature of choice in ACP. Moreover we introduced a setting in which the conditional merge can be used to model and
analyze various kinds of parallel scheduling.

Acknowledgments

We thank the referees for their valuable reviews.

A. Ponse, M.B. van der Zwaag / Journal of Logic and Algebraic Programming 70 (2007) 222–235 235

References

[1] L. Aceto, W.J. Fokkink, R.J. van Glabbeek, A. Ingólfsdóttir, Axiomatizing prefix iteration with silent steps, Inform. and Comput., 127 (1)
(1996) 26–40.

[2] N.D. Belnap, A Useful Four-Valued Logic, in: J.M. Dunn, G. Epstein (Eds.), Modern Uses of Multiple-Valued Logic, D. Reidel, 1977, pp.
8–37.

[3] J.A. Bergstra, I. Bethke, A. Ponse, Process algebra with iteration and nesting, The Computer Journal 37 (4) (1994) 243–258.
[4] J.A. Bergstra, I. Bethke, P.H. Rodenburg, A propositional logic with 4 values: true, false, divergent and meaningless, J. Appl. Non-Classical

Logics 5 (2) (1995) 199–218.
[5] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Inform. and Control 60 (1/3) (1984) 109–137.
[6] J.A. Bergstra, C.A. Middelburg, A thread algebra with multi-level strategic interleaving, in: S.B. Cooper, B. Loewe, L. Torenvliet (Eds.), CiE

2005, LNCS, vol. 3526, Springer-Verlag, 2005, pp. 35–48.
[7] J.A. Bergstra, A. Ponse, Kleene’s three-valued logic and process algebra, Inform. Process. Lett. 67 (2) (1998) 95–103.
[8] J.A. Bergstra, A. Ponse, Process algebra with four-valued logic, J. Appl. Non-Classical Logics 10 (1) (2000) 27–53.
[9] G. Bracha, et al., The Java Language Specification, 2nd ed., Addison Wesley, 2000.

[10] E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys (Ed.), Programming Languages, Academic Press, New York, 1968, pp. 43–112.
[11] M.C. Fitting, Kleene’s three valued logics and their children, Fund. Inform. 20 (1994) 113–131.
[12] R.J. van Glabbeek, A complete axiomatization for branching bisimulation congruence of finite-state behaviours, in: A.M. Borzyszkowski,

S. Sokolowski (Eds.), Proceedings 18th Symposium on Mathematical Foundations of Computer Science (MFCS’93), LNCS, vol. 711,
Springer-Verlag, 1993, pp. 473–484.

[13] C.B. Jones, Systematic Software Development using VDM, 2nd ed., Prentice-Hall International, Englewood Cliffs, 1990.
[14] S.C. Kleene, On a notation for ordinal numbers, J. Symbolic Logic 3 (1938) 150–155.
[15] S.C. Kleene, Representation of events in nerve nets and finite automata, Automata Studies, Princeton University Press, 1956, pp. 3–41.
[16] A. Ponse, M.B. van der Zwaag, The logic of ACP. Report SEN-R0207, CWI, 2002. Also appeared in: M.B. van der Zwaag, Models and Logics

for Process Algebra, Ph.D. thesis, IPA Dissertation Series 2002-11, ISBN 90-5170-636-7, 2002.
[17] A. Ponse, M.B. van der Zwaag, ACP and Belnap’s Logic, in: Short Contributions from the Workshop on Algebraic Process Calculi: The First

Twenty Five Years and Beyond, Bertinoro, Italy, August 2005. BRICS Notes Series NS-05-3, 2005.
[18] A. Ponse, M.B. van der Zwaag, Belnap’s logic and conditional composition, to appear in TCS.
[19] C. Verhoef, A congruence theorem for structured operational semantics with predicates and negative premises, Nordic Journal of Computing

2 (2) (1995) 274–302.

	Introduction
	Belnap's logic and conditional composition
	Generalized ACP
	Conditional composition
	Alternative composition
	Generalized parallel composition

	Completeness
	Preliminaries
	Completeness proof
	-Completeness

	Scheduling parallel processes
	Conclusion
	Acknowledgments
	References

