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This talk

Parsing with . . .
I discontinuous constituents:

Linear Context-Free Rewriting Systems (LCFRS)
I treebank fragments:

Data-Oriented Parsing (DOP)
Tree-Substitution Grammar (TSG)



Discontinuous constituents

Example:
I Why did the chicken cross the road?
I The chicken crossed the road to get to the other side.
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Figure : A discontinuous tree not found in the Penn treebank.



Discontinuous constituents

Motivation:
I Flexible word-order
I Capture argument structure
I Combine information from

constituency & dependency structures
I Information is available in treebanks

(German, Dutch, English after conversion).
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Context-Free Grammar (CFG)
NP(ab)→ DT(a) NN(b)
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Linear Context-Free Rewriting System (LCFRS)
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Linear Context-Free Rewriting Systems

I Mildly context-sensitive grammar formalism
I Can be parsed with tabular parsing algorithm
I Agenda-based probabilistic parser for LCFRS

(Kallmeyer & Maier 2010);
extended to produce k-best derivations

I Parsing a binarized LCFRS has polynomial complexity:

O(n3ϕ)

where ϕ is the maximum number of components
covered by a non-terminal (fan-out).

Kallmeyer & Maier (2010). Data-driven parsing with probabilistic linear
context-free rewriting systems.
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PCFG approximation of PLCFRS

S

B*1 B*2

A X C Y D

a b c b d

S

B

A X C Y D

a b c b d

I Transformation is reversible
I Increased independence assumption:
⇒ every component is a new node

I Language is a superset of original PLCFRS
⇒ coarser, overgenerating PCFG (‘split-PCFG’)

Boyd (2007). Discontinuity revisited.



Coarse-to-fine pipeline
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prune parsing with Gm+1 by only considering
items in k-best Gm derivations.



With coarse-to-fine
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Data-Oriented Parsing

Treebank grammar
trees⇒ productions + rel. frequencies
⇒ problematic independence assumptions

Data-Oriented Parsing (DOP)
trees⇒ fragments + rel. frequencies
fragments are arbitrarily sized chunks
from the corpus

consider all possible fragments from treebank
. . .and “let the statistics decide”

Scha (1990): Lang. theory and lang. tech.; competence and performance
Bod (1992): A computational model of language performance



DOP fragments
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P(f ) = count(f )∑
f ′∈F count(f ′) where F = { f ′ | root(f ′) = root(f ) }

Note: discontinuous frontier non-terminals
mark destination of components



DOP derivation
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DOP implementation issues

Exponential number of fragments
due to all-fragments assumption

I Can use DOP reduction (Goodman 2003);
weight of fragments spread over many productions

I Can restrict number of fragments
by depth or frontier nodes &c.,
⇒ but: not data-oriented!

Goodman (2003): Efficient parsing of DOP with PCFG-reductions



Double-DOP

I Extract fragments that occur
at least twice in treebank

I For every pair of trees,
extract maximal overlapping fragments

I Can be extracted in linear average time
I Number of fragments is small enough

to parse with directly

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP



From fragments to grammar

I Fragments mapped to unique rules,
relative frequencies as probabilities

I Remove internal nodes,
leaves root node, substitution sites & terminals
X → X1 . . .Xn

I Reconstruct derivations after parsing
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Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP



Preprocessing

I Remove function labels
I Binarize w/markovization (h=1, v=1)
I Simple unknown word model

I Rare words replaced by features
(model 4 from Stanford parser)

I Reserve probability mass
for unseen (tag, word) pairs



Results w/Double-DOP

F1 %
DOP reduction 74.3
Double-DOP

(Negra dev set ≤ 40 words, gold tags)
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F1 %
DOP reduction 74.3
Double-DOP 76.3

(Negra dev set ≤ 40 words, gold tags)

Also: parsing 3× faster, grammar 3× smaller
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(Negra dev set ≤ 40 words, gold tags)

What if we reduce pruning?



Results w/Double-DOP

k=50 k=5000
F1 % F1 %

DOP reduction 74.3 73.5
Double-DOP 76.3 77.7

(Negra dev set ≤ 40 words, gold tags)

What if we reduce pruning?
⇒ For Double-DOP, performance does not deterioriate
with expanded search space.



Main Results: test sets

Parser, treebank |w | POS F1 EX
GERMAN

vanCra2012, Negra ≤ 40 100 72.3 33.2
#KaMa2013, Negra ≤ 30 100 75.8
this paper, Negra ≤ 40 100 76.8 40.5
this paper, Negra ≤ 40 96.3 74.8 38.7
HaNi2008, Tiger ≤ 40 97.0 75.3 32.6
this paper, Tiger ≤ 40 97.6 78.8 40.8

KaMa: Kallmeyer & Maier (2013) [different test set];
vanCra: van Cranenburgh (2012); HaNi: Hall & Nivre (2008).



Main Results: test sets

ENGLISH
#EvKa2011, disc. wsj < 25 100 79.0
this paper, disc. wsj ≤ 40 96.6 85.6 31.3
SaZu2011, wsj ≤ 40 87.9 33.7

DUTCH
this paper, Alpino ≤ 40 85.2 65.9 23.1
this paper, Lassy ≤ 40 94.6 77.0 35.2

EvKa: Evang & Kallmeyer (2011) [different test set];
SaZu: Sangati & Zuidema (2011).
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Can DOP handle discontuinity without LCFRS?
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Answer: Yes!

Fragments can capture discontinuous contexts
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Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...



Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...



Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...



Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...



THE END

Codes: http://github.com/andreasvc/disco-dop

http://github.com/andreasvc/disco-dop


Wait . . . there’s more

BACKUP SLIDES



Efficiency (Negra dev set)
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Binarization

I mark heads of constituents
I head-outward binarization (parse head first)
I no parent annotation: v = 1
I horizontal Markovization: h = 1

X

A B C D E F

X

XA

XB

XF

XE

XD

XC$

A B C D E F
Klein & Manning (2003): Accurate unlexicalized parsing.



Parser setup
traincorpus='wsj02-21.export',
testcorpus='wsj24.export',
corpusdir='../../dptb',
stages=[

dict(
name='pcfg', mode='pcfg',
split=True, markorigin=True,

),
dict(

name='plcfrs', mode='plcfrs',
prune=True, splitprune=True, k=10000,

),
dict(

name='dop', mode='plcfrs',
prune=True, k=5000,
dop=True, usedoubledop=True, m=10000,
estimator='dop1', objective='mpp',

),
],
[...]



Web-based interface
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