
Discontinuous Parsing with an Efficient
and Accurate DOP Model

Andreas van Cranenburgh Rens Bod

Huygens ING Institute for Logic, Language and Computation
Royal Netherlands Academy of Arts and Sciences University of Amsterdam

November 27, 2013

IWPT 2013, Nara, Japan

This talk

Parsing with . . .
I discontinuous constituents:

Linear Context-Free Rewriting Systems (LCFRS)
I treebank fragments:

Data-Oriented Parsing (DOP)
Tree-Substitution Grammar (TSG)

Discontinuous constituents

Example:
I Why did the chicken cross the road?
I The chicken crossed the road to get to the other side.

Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure : A discontinuous tree not found in the Penn treebank.

Discontinuous constituents

Motivation:
I Flexible word-order
I Capture argument structure
I Combine information from

constituency & dependency structures
I Information is available in treebanks

(German, Dutch, English after conversion).

Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure : A discontinuous tree not found in the Penn treebank.

Context-Free Grammar (CFG)
NP(ab)→ DT(a) NN(b)

Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure : A discontinuous tree not found in the Penn treebank.

Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)

Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure : A discontinuous tree not found in the Penn treebank.

Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)
SQ(abcd)→ VBD(b) NP(c) VP2(a,d)

Linear Context-Free Rewriting Systems

I Mildly context-sensitive grammar formalism
I Can be parsed with tabular parsing algorithm
I Agenda-based probabilistic parser for LCFRS

(Kallmeyer & Maier 2010);
extended to produce k-best derivations

I Parsing a binarized LCFRS has polynomial complexity:

O(n3ϕ)

where ϕ is the maximum number of components
covered by a non-terminal (fan-out).

Kallmeyer & Maier (2010). Data-driven parsing with probabilistic linear
context-free rewriting systems.

But . . .

0 10 20 30 40

length

0

200

400

600

800

1000

1200

A
v
g
.
C

P
U

 t
im

e
 (

se
co

n
d
s)

PLCFRS

Negra dev. set, gold tags

PCFG approximation of PLCFRS

S

B*1 B*2

A X C Y D

a b c b d

S

B

A X C Y D

a b c b d

I Transformation is reversible
I Increased independence assumption:
⇒ every component is a new node

I Language is a superset of original PLCFRS
⇒ coarser, overgenerating PCFG (‘split-PCFG’)

Boyd (2007). Discontinuity revisited.

Coarse-to-fine pipeline

G0

G1

G2

Split-
PCFG

PLCFRS

a large
grammar

Treebank
grammars

Mildly
context-
sensitive

prune parsing with Gm+1 by only considering
items in k-best Gm derivations.

With coarse-to-fine

0 10 20 30 40

length

0

200

400

600

800

1000

1200
A
v
g

.
C

P
U

 t
im

e
 (

se
co

n
d

s)

PLCFRS (k=10,000)
Split-PCFG
PLCFRS

Negra dev. set, gold tags

Data-Oriented Parsing

Treebank grammar
trees⇒ productions + rel. frequencies
⇒ problematic independence assumptions

Data-Oriented Parsing (DOP)
trees⇒ fragments + rel. frequencies
fragments are arbitrarily sized chunks
from the corpus

consider all possible fragments from treebank
. . .and “let the statistics decide”

Scha (1990): Lang. theory and lang. tech.; competence and performance
Bod (1992): A computational model of language performance

DOP fragments
S

VP2

VB NP ADJ
is Gatsby rich

S

VP2

VB NP ADJ
is rich

S

VP2

VB NP ADJ
Gatsby rich

S

VP2

VB NP ADJ
is Gatsby

S

VP2

VB NP ADJ
rich

S

VP2

VB NP ADJ
Gatsby

S

VP2

VB NP ADJ
is

S

VP2

VB NP ADJ

S

VP2

NP
Gatsby

S

VP2

NP
VP2

VB ADJ
is rich

VP2

VB ADJ
rich

VP2

VB ADJ
is

VP2

VB ADJ

NP
Gatsby

VB
is

ADJ
rich

P(f) = count(f)∑
f ′∈F count(f ′) where F = { f ′ | root(f ′) = root(f) }

Note: discontinuous frontier non-terminals
mark destination of components

DOP derivation

S

VP2

VB NP ADJ
rich

VB
is

NP
Gatsby

S

VP2

VB NP ADJ
is Gatsby rich P(d) = 0.2

S

VP2

VB NP ADJ
is

NP
Gatsby

ADJ
rich

S

VP2

VB NP ADJ
is Gatsby rich P(d) = 0.3

Derivations for this tree P(t) = 0.5

P(d) = P(f1 ◦ · · · ◦ fn) =
∏
f∈d

p(f)

P(t) = P(d1) + · · ·+ P(dn) =
∑

d∈D(t)

∏
f∈d

p(f)

DOP implementation issues

Exponential number of fragments
due to all-fragments assumption

I Can use DOP reduction (Goodman 2003);
weight of fragments spread over many productions

I Can restrict number of fragments
by depth or frontier nodes &c.,
⇒ but: not data-oriented!

Goodman (2003): Efficient parsing of DOP with PCFG-reductions

Double-DOP

I Extract fragments that occur
at least twice in treebank

I For every pair of trees,
extract maximal overlapping fragments

I Can be extracted in linear average time
I Number of fragments is small enough

to parse with directly

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP

From fragments to grammar

I Fragments mapped to unique rules,
relative frequencies as probabilities

I Remove internal nodes,
leaves root node, substitution sites & terminals
X → X1 . . .Xn

I Reconstruct derivations after parsing

S

VP2

VB NP ADJ
rich

S

VB NP rich

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP

Preprocessing

I Remove function labels
I Binarize w/markovization (h=1, v=1)
I Simple unknown word model

I Rare words replaced by features
(model 4 from Stanford parser)

I Reserve probability mass
for unseen (tag, word) pairs

Results w/Double-DOP

F1 %
DOP reduction 74.3
Double-DOP

(Negra dev set ≤ 40 words, gold tags)

Results w/Double-DOP

F1 %
DOP reduction 74.3
Double-DOP 76.3

(Negra dev set ≤ 40 words, gold tags)

Also: parsing 3× faster, grammar 3× smaller

Results w/Double-DOP

k=50 k=5000
F1 % F1 %

DOP reduction 74.3 73.5
Double-DOP 76.3

(Negra dev set ≤ 40 words, gold tags)

What if we reduce pruning?

Results w/Double-DOP

k=50 k=5000
F1 % F1 %

DOP reduction 74.3 73.5
Double-DOP 76.3 77.7

(Negra dev set ≤ 40 words, gold tags)

What if we reduce pruning?
⇒ For Double-DOP, performance does not deterioriate
with expanded search space.

Main Results: test sets

Parser, treebank |w | POS F1 EX
GERMAN

vanCra2012, Negra ≤ 40 100 72.3 33.2
#KaMa2013, Negra ≤ 30 100 75.8
this paper, Negra ≤ 40 100 76.8 40.5
this paper, Negra ≤ 40 96.3 74.8 38.7
HaNi2008, Tiger ≤ 40 97.0 75.3 32.6
this paper, Tiger ≤ 40 97.6 78.8 40.8

KaMa: Kallmeyer & Maier (2013) [different test set];
vanCra: van Cranenburgh (2012); HaNi: Hall & Nivre (2008).

Main Results: test sets

ENGLISH
#EvKa2011, disc. wsj < 25 100 79.0
this paper, disc. wsj ≤ 40 96.6 85.6 31.3
SaZu2011, wsj ≤ 40 87.9 33.7

DUTCH
this paper, Alpino ≤ 40 85.2 65.9 23.1
this paper, Lassy ≤ 40 94.6 77.0 35.2

EvKa: Evang & Kallmeyer (2011) [different test set];
SaZu: Sangati & Zuidema (2011).

Main Results: test sets

ENGLISH
#EvKa2011, disc. wsj < 25 100 79.0
this paper, disc. wsj ≤ 40 96.6 85.6 31.3
SaZu2011, wsj ≤ 40 87.9 33.7

DUTCH
this paper, Alpino ≤ 40 85.2 65.9 23.1
this paper, Lassy ≤ 40 94.6 77.0 35.2

EvKa: Evang & Kallmeyer (2011) [different test set];
SaZu: Sangati & Zuidema (2011).

Can DOP handle discontuinity without LCFRS?

Split-PCFG
⇓

PLCFRS
⇓

PLCFRS Double-DOP
77.7 % F1
41.5 % EX

Split-PCFG

⇓

Split-Double-DOP

78.1 % F1
42.0 % EX

Answer: Yes!

Fragments can capture discontinuous contexts

Can DOP handle discontuinity without LCFRS?

Split-PCFG
⇓

PLCFRS
⇓

PLCFRS Double-DOP
77.7 % F1
41.5 % EX

Split-PCFG

⇓

Split-Double-DOP
78.1 % F1
42.0 % EX

Answer: Yes!

Fragments can capture discontinuous contexts

Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...

Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...

Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...

Conclusions

I Multilingual results for discontinuous parsing,
w/automatic assignment of tags

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context
through fragments / labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...

THE END

Codes: http://github.com/andreasvc/disco-dop

http://github.com/andreasvc/disco-dop

Wait . . . there’s more

BACKUP SLIDES

Efficiency (Negra dev set)

10 20 30 40

words

0

10

20

30

40

cp
u
 t

im
e
 (

se
co

n
d
s)

dop
plcfrs
pcfg

Binarization

I mark heads of constituents
I head-outward binarization (parse head first)
I no parent annotation: v = 1
I horizontal Markovization: h = 1

X

A B C D E F

X

XA

XB

XF

XE

XD

XC$

A B C D E F
Klein & Manning (2003): Accurate unlexicalized parsing.

Parser setup
traincorpus='wsj02-21.export',
testcorpus='wsj24.export',
corpusdir='../../dptb',
stages=[

dict(
name='pcfg', mode='pcfg',
split=True, markorigin=True,

),
dict(

name='plcfrs', mode='plcfrs',
prune=True, splitprune=True, k=10000,

),
dict(

name='dop', mode='plcfrs',
prune=True, k=5000,
dop=True, usedoubledop=True, m=10000,
estimator='dop1', objective='mpp',

),
],
[...]

Web-based interface

	Title
	Discontinuous constituents
	Coarse-to-fine
	Data-Oriented Parsing
	Conclusions
	References
	Backup slides

