Discontinuous Parsing with an Efficient and Accurate DOP Model

Andreas van Cranenburgh Rens Bod

Huygens ING Royal Netherlands Academy of Arts and Sciences Institute for Logic, Language and Computation University of Amsterdam

November 27, 2013

IWPT 2013, Nara, Japan

This talk

Parsing with ...

- discontinuous constituents: Linear Context-Free Rewriting Systems (LCFRS)
- treebank fragments: Data-Oriented Parsing (DOP) Tree-Substitution Grammar (TSG)

Discontinuous constituents

Example:

- Why did the chicken cross the road?
- The chicken crossed the road to get to the other side.

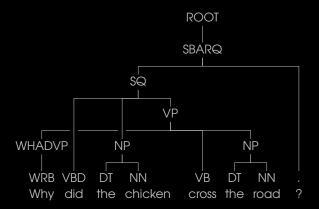


Figure : A discontinuous tree not found in the Penn treebank.

Discontinuous constituents

Motivation:

- Flexible word-order
- Capture argument structure
- Combine information from constituency & dependency structures
- Information is available in treebanks (German, Dutch, English after conversion).

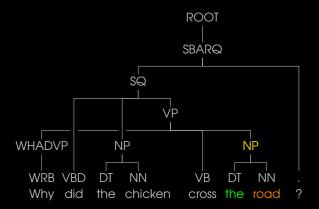


Figure : A discontinuous tree not found in the Penn treebank.

```
Context-Free Grammar (CFG)
NP(ab) \rightarrow DT(a) NN(b)
```

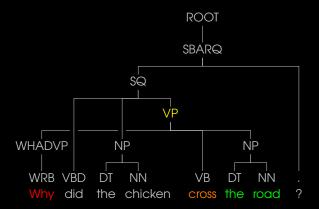


Figure : A discontinuous tree not found in the Penn treebank.

Linear Context-Free Rewriting System (LCFRS) $VP_2(a, bc) \rightarrow WHADVP(a) VB(b) NP(c)$

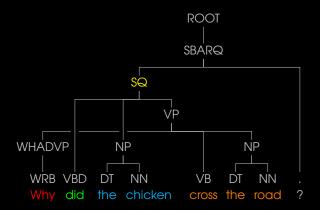
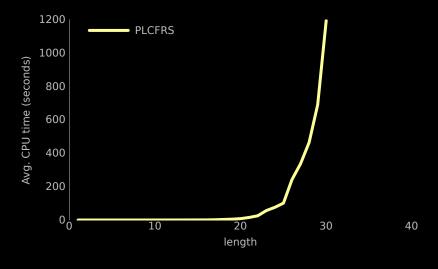


Figure : A discontinuous tree not found in the Penn treebank.

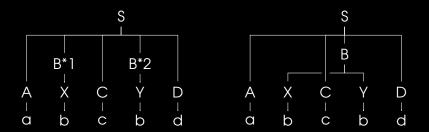
Linear Context-Free Rewriting System (LCFRS) $VP_2(a, bc) \rightarrow WHADVP(a) VB(b) NP(c)$ $SQ(abcd) \rightarrow VBD(b) NP(c) VP_2(a, d)$

Linear Context-Free Rewriting Systems

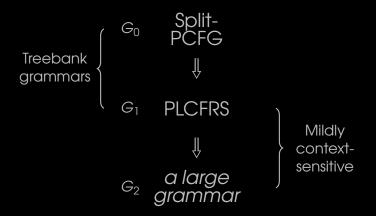

- Mildly context-sensitive grammar formalism
- Can be parsed with tabular parsing algorithm
- Agenda-based probabilistic parser for LCFRS (Kallmeyer & Maier 2010); extended to produce k-best derivations
- Parsing a binarized LCFRS has polynomial complexity:

 $\mathcal{O}(n^{3\varphi})$

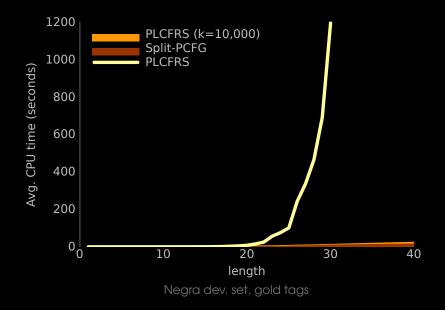
where φ is the maximum number of components covered by a non-terminal (fan-out).


Kallmeyer & Maier (2010). Data-driven parsing with probabilistic linear context-free rewriting systems.

But ...


Negra dev. set, gold tags

PCFG approximation of PLCFRS


- Transformation is reversible
- ► Increased independence assumption: ⇒ every component is a new node
- ► Language is a superset of original PLCFRS ⇒ coarser, overgenerating PCFG ('split-PCFG') Boyd (2007). Discontinuity revisited.

Coarse-to-fine pipeline

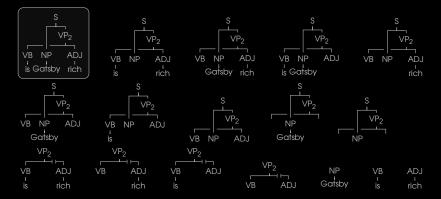
prune parsing with G_{m+1} by only considering items in *k*-best G_m derivations.

With coarse-to-fine

Data-Oriented Parsing

Treebank grammar

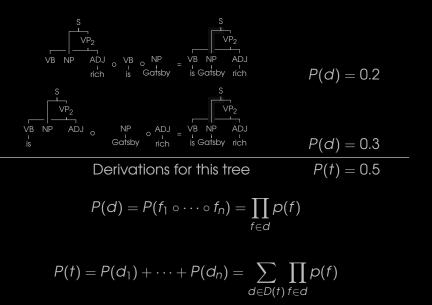
trees \Rightarrow productions + rel. frequencies \Rightarrow problematic independence assumptions


Data-Oriented Parsing (DOP)

trees \Rightarrow fragments + rel. frequencies fragments are arbitrarily sized chunks from the corpus

consider all possible fragments from treebank ... and "let the statistics decide"

Scha (1990): Lang. theory and lang. tech.; competence and performance Bod (1992): A computational model of language performance


DOP fragments

$$P(f) = \frac{\operatorname{count}(f)}{\sum_{f' \in F} \operatorname{count}(f')} \text{ where } F = \{ f' \mid root(f') = root(f) \}$$

Note: discontinuous frontier non-terminals mark destination of components

DOP derivation

DOP implementation issues

Exponential number of fragments due to all-fragments assumption

- Can use DOP reduction (Goodman 2003); weight of fragments spread over many productions
- Can restrict number of fragments by depth or frontier nodes &c.,
 - \Rightarrow but: not data-oriented!


Double-DOP

- Extract fragments that occur at least twice in treebank
- For every pair of trees, extract maximal overlapping fragments
- Can be extracted in linear average time
- Number of fragments is small enough to parse with directly

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP

From fragments to grammar

- Fragments mapped to unique rules, relative frequencies as probabilities
 - Remove internal nodes, leaves root node, substitution sites & terminals $X \rightarrow X_1 \dots X_n$
- Reconstruct derivations after parsing

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP

Preprocessing

- Remove function labels
- Binarize w/markovization (h=1, v=1)
- Simple unknown word model
 - Rare words replaced by features (model 4 from Stanford parser)
 - Reserve probability mass for unseen (tag, word) pairs

F1 %

DOP reduction 74.3 Double-DOP

(Negra dev set \leq 40 words, gold tags)

DOP reduction 74.3 Double-DOP 76.3

(Negra dev set \leq 40 words, gold tags)

Also: parsing $3 \times$ faster, grammar $3 \times$ smaller

(Negra dev set \leq 40 words, gold tags)

What if we reduce pruning?

	k=50	k=5000		
	F1 %	F1 %		
DOP reduction	74.3	73.5		
Double-DOP	76.3	77.7		

(Negra dev set \leq 40 words, gold tags)

What if we reduce pruning?

 \Rightarrow For Double-DOP, performance does not deterioriate with expanded search space.

Main Results: test sets

Parser, treebank	W	POS	F1	EX
GERMAN				
vanCra2012, Negra	\leq 40	100	72.3	33.2
#KaMa2013, Negra	≤ 30	100	75.8	
this paper, Negra	\leq 40	100	76.8	40.5
this paper, Negra	≤ 40	96.3	74.8	38.7
HaNi2008, Tiger	\leq 40	97.0	75.3	32.6
this paper, Tiger	≤ 40	97.6	78.8	40.8

KaMa: Kallmeyer & Maier (2013) (different test set); vanCra: van Cranenburgh (2012); HaNi: Hall & Nivre (2008).

Main Results: test sets

ENGLISH				
#EvKa2011, disc. wsj	< 25	100	79.0	
this paper, disc. wsj	< 40	96.6	85.6	31.3
SaZu2011, wsj	≤ 40		87.9	33.7

EvKa: Evang & Kallmeyer (2011) (different test set); SaZu: Sangati & Zuidema (2011).

Main Results: test sets

ENGLISH				
#EvKa2011, disc. wsj	< 25	100	79.0	
this paper, disc. wsj	< 40		85.6	31.3
SaZu2011, wsj	< 40			33.7
DUTCH				
this paper, Alpino	< 40	85.2	65.9	23.1
this paper, Lassy	≤ 40	94.6	77.0	35.2

EvKa: Evang & Kallmeyer (2011) (different test set); SaZu: Sangati & Zuidema (2011). Can DOP handle discontuinity without LCFRS?

Split-PCFG ↓ PLCFRS ↓ PLCFRS Double-DOP 77.7 % F1 41.5 % EX Split-PCFG

Split-Double-DOP

Can DOP handle discontuinity without LCFRS?

 Split-PCFG
 Split-PCFG

 ↓

 PLCFRS
 ↓

 ↓

 PLCFRS Double-DOP
 Split-Double-DOP

 77.7 % F1
 78.1 % F1

 41.5 % EX
 42.0 % EX

Answer: Yes!

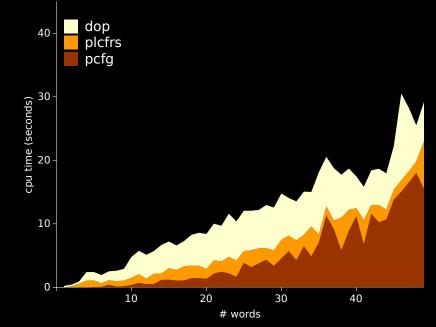
Fragments can capture discontinuous contexts

 Multilingual results for discontinuous parsing, w/automatic assignment of tags

- Multilingual results for discontinuous parsing, w/automatic assignment of tags
- All fragments vs. selected fragments
 - Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments

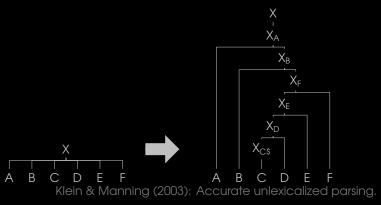
- Multilingual results for discontinuous parsing, w/automatic assignment of tags
- All fragments vs. selected fragments
 - Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments
- Not necessary to parse beyond CFG!
 ⇒ Increase amount of context through fragments / labels

- Multilingual results for discontinuous parsing, w/automatic assignment of tags
- All fragments vs. selected fragments
 - Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments
- ► Not necessary to parse beyond CFG! ⇒ Increase amount of context through fragments / labels
 - LCFRS could be exploited for other things than discontinuity: adjunction, synchronous parsing, ...


THE END

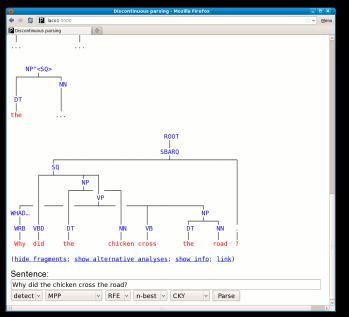
Codes: http://github.com/andreasvc/disco-dop

Wait ... there's more


BACKUP SLIDES

Efficiency (Negra dev set)

Binarization


- mark heads of constituents
- head-outward binarization (parse head first)
- no parent annotation: v = 1
- horizontal Markovization: h = 1

Parser setup

```
traincorpus='wsj02-21.export',
testcorpus='wsj24.export',
corpusdir='../../dptb',
stages=[
   dict(
        name='pcfg', mode='pcfg',
        split=True, markorigin=True,
   dict(
        name='plcfrs', mode='plcfrs',
        prune=True, splitprune=True, k=10000,
    ),
   dict(
        name='dop', mode='plcfrs',
        prune=True, k=5000,
        dop=True, usedoubledop=True, m=10000,
        estimator='dop1', objective='mpp',
    ),
],
Γ...]
```

Web-based interface

