
An efficient and linguistically rich
statistical parser

Andreas van Cranenburgh

Huygens ING Institute for Logic, Language and Computation
Royal Netherlands Academy of Arts and Sciences University of Amsterdam

April 16, 2015

Gothenburg 2015



Linguistics & Statistics

I Linguistically rich parsers HPSG, LFG, &c.
Non-local relations, function labels,
morphological information.
Often handwritten.

I Statistical Parsing
Automatically induced from treebanks.
Efficient
Limited to constituents or projective dependencies.



This talk

1. Mild context-sensitivity
Parsing with discontinuous constituents.

2. Data-Oriented Parsing
Parsing with tree fragments.

3. Experiments



Two perspectives

Chomsky (1965):
Competence:

the idealized rules of
language

Performance:
actual language use

This talk: Computational Linguistics
should focus more on the latter.

Formal Grammar theory

Statistical NLP

Chomsky (1965). Aspects of the Theory of Syntax.



The Chomsky hierarchy

1. Unrestricted undecidable
2. Context-Sensitive PSPACE complete
3. Context-Free O(n3)

4. Regular O(n)

Chomsky & Schützenberger (1959). The Algebraic Theory of
Context-Free Languages.



Cross-Serial dependencies

Dutch:
dat Karel Marie Peter Hans laat helpen leren zwemmen

English:
that Charles lets Mary help Peter teach Hans to swim

NB: cross-serial easier to process than center embedding!
(Bach et al. 1986)

Bach et al. (1986). Crossed and nested dependencies in German and
Dutch: A psycholinguistic study.



Joshi (1985)

Joshi (1985): How much context
sensitivity is necessary [. . . ]

Goal A grammar formalism
that is efficiently
parsable yet strong
enough to describe
natural language

Figure: Aravind K.
Joshi



Mild Context-Sensitivity

Definition
Mild Context-Sensitivity
1. limited crossed dependencies
2. constant growth
3. polynomial time parsing

Tree-Adjoining Grammar:
Tree Substitution: combine tree fragments
Tree Adjunction: add adjuncts



Discontinuous Constituents

Example:
I Why did the chicken cross the road?
I The chicken crossed the road to get to the other side.



Non-local information in PTB: traces

ROOT

SBARQ

WHADVP-1

WRB

Why

SQ

VBD

did

NP

DT

the

NN

chicken

VP

VB

cross

NP

DT

the

NN

road

ADVP

-NONE-

*T*-1

.

?

Figure: PTB-style annotation.



Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure: A tree with a discontinuous constituent.



Discontinuous constituents

Motivation:
I Handle flexible word-order, extraposition, &c.
I Capture argument structure
I Combine information from

constituency & dependency structures
(NB: non-projectivity is a subset of
discontinuous phenomena)



Discontinuous treebanks

Treebanks with discontinuous constituents:
German/Negra: Skut et al. (1997). An annotation scheme

for free word order languages.
Dutch/Alpino: van der Beek (2002). The Alpino

dependency treebank.
English/PTB (after conversion): Evang & Kallmeyer (2011).

PLCFRS Parsing of English Discontinuous
Constituents.

Swedish, Polish, . . .



Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure: A tree with a discontinuous constituent.

Context-Free Grammar (CFG)
NP(ab)→ DT(a) NN(b)



Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure: A tree with a discontinuous constituent.

Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)



Discontinuous trees
ROOT

SBARQ

SQ

VP

WHADVP

WRB
Why

VB
cross

NP

DT
the

NN
road

VBD
did

NP

DT
the

NN
chicken

.
?

Figure: A tree with a discontinuous constituent.

Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)
SQ(abcd)→ VBD(b) NP(c) VP2(a,d)



Linear Context-Free Rewriting Systems

LCFRS are a generalization of CFG:
⇒ rewrite tuples, trees or graphs!

linear: each variable on the left occurs
once on the right & vice versa

context-free: apply productions based
on what they rewrite

rewriting system: i.e., formal grammar

Parsing a binarized LCFRS has polynomial time complexity:

O(n3ϕ)

Vijay-Shanker et al. (1987): Structural descriptions [. . . ] grammar formalisms.
Kallmeyer & Maier (2010, 2013). Data-driven parsing with probabilistic [LCFRS].



Linear Context-Free Rewriting Systems

LCFRS are a generalization of CFG:
⇒ rewrite tuples, trees or graphs!

linear: each variable on the left occurs
once on the right & vice versa

context-free: apply productions based
on what they rewrite

rewriting system: i.e., formal grammar

Parsing a binarized LCFRS has polynomial time complexity:

O(n3ϕ)

Vijay-Shanker et al. (1987): Structural descriptions [. . . ] grammar formalisms.
Kallmeyer & Maier (2010, 2013). Data-driven parsing with probabilistic [LCFRS].



But . . .

Negra dev. set, gold tags



Pruning

Pruning can be based on:
1. Very little: e.g., beam threshold
2. Grammar: e.g., A* or context summary estimates
3. Sentence: e.g., coarse-to-fine parsing

Pauls & Klein (NAACL 2009), Hierarchical search for parsing.



Coarse-to-fine
coarse

derivations
coarse
items

fine stage
white list

(1)

(2)

(3)

(50)

NP[11000]

NP[11100]

VP[00010]

VP[00011]

ART[10000]

NN[01000]

NP[11000]
NP@2[11000]
NP@5[11000]
[...]
NP[11100]
NP@2[11100]
NP@5[11100]
[...]
VP[00010]
VP@1[00010]
VP@9[00010]
[...]
VP[00011]
VP@1[00011]
VP@10[00011]
[...]
ART[10000]
ART@3[10000]
ART@9[10000]
[...]

NN[01000]
NN@4[01000]
NN@13[01000]
[...]

k-best plcfrs derivations
help prune dop derivations.

Charniak et al. (2006), Multi-level coarse-to-fine parsing



PCFG approximation of PLCFRS

S

B*1 B*2

A X C Y D

a b c b d

S

B

A X C Y D

a b c b d

I Transformation is reversible
I Increased independence assumption:
⇒ every component is a new node

I Language of PCFG is a superset of original PLCFRS
⇒ coarser, overgenerating PCFG (‘split-PCFG’)

Boyd (2007), Discontinuity revisited.



Coarse-to-fine from PCFG to PLCFRS

B*1 B*2

X Y

b . . . b

B

X Y

b . . . b
I For a discontinuous item, look up multiple items from

PCFG chart (‘splitprune’)
I e.g.: {

NP*1 : [1, 2],
NP*2 : [4, 5]

}
⇒ NP2 : [1, 2; 4, 5]

Barthélemy et al. (2001) Guided parsing of range concatenation languages.
van Cranenburgh (2012), Efficient parsing with LCFRS



With coarse-to-fine

Negra dev. set, gold tags



Coarse-to-fine pipeline

G0

G1

G2

Split-
PCFG

PLCFRS

a large
grammar

Treebank
grammars

Mildly
context-
sensitive

prune parsing with Gm+1 by only considering
items in k-best Gm derivations.



Data-Oriented Parsing

Treebank grammar
trees⇒ productions + rel. frequencies
⇒ problematic independence assumptions

Data-Oriented Parsing (DOP)
trees⇒ fragments + rel. frequencies
fragments are arbitrarily sized chunks
from the corpus

consider all possible fragments from treebank
. . .and “let the statistics decide”

Scha (1990): Lang. theory and lang. tech.; competence and performance
Bod (1992): A computational model of language performance



DOP fragments
S

VP2

VB NP ADJ
is Gatsby rich

S

VP2

VB NP ADJ
is rich

S

VP2

VB NP ADJ
Gatsby rich

S

VP2

VB NP ADJ
is Gatsby

S

VP2

VB NP ADJ
rich

S

VP2

VB NP ADJ
Gatsby

S

VP2

VB NP ADJ
is

S

VP2

VB NP ADJ

S

VP2

NP
Gatsby

S

VP2

NP
VP2

VB ADJ
is rich

VP2

VB ADJ
rich

VP2

VB ADJ
is

VP2

VB ADJ

NP
Gatsby

VB
is

ADJ
rich

P(f ) = count(f )∑
f ′∈F count(f ′) where F = { f ′ | root(f ′) = root(f ) }

Note: discontinuous frontier non-terminals
mark destination of components



DOP derivation

S

VP2

VB NP ADJ
rich

VB
is

NP
Gatsby

S

VP2

VB NP ADJ
is Gatsby rich P(d) = 0.2

S

VP2

VB NP ADJ
is

NP
Gatsby

ADJ
rich

S

VP2

VB NP ADJ
is Gatsby rich P(d) = 0.3

Derivations for this tree P(t) = 0.5

P(d) = P(f1 ◦ · · · ◦ fn) =
∏
f∈d

p(f )

P(t) = P(d1) + · · ·+ P(dn) =
∑

d∈D(t)

∏
f∈d

p(f )



Tree-Substitution Grammar

This DOP model (Bod 1992) is based on
Tree-Substitution Grammar (TSG):

I Weakly equivalent to CFG; typically strongly
equivalent as well; advantage is in stochastic power
of Probabilistic TSG.

I Same Context-Free property as CFG, but multiple
productions applied at once;
⇒ captures more structural relations than PCFG.

I CFG backbone can be replaced with LCFRS to get
Discontinuous Tree-Substitution Grammar (PTSGLCFRS).



Tree Fragments

Multiword expressions (MWE):
VP

PP

NP

NN

ground

DT

the

IN

off

NP

. . .

VB

get

Statistical regularities:
VP

PP

NN

fork

DT

a

IN

with

NP

. . .

VB

eat



Double-DOP
S

VP

NP

NPJJ,NN

NN

dog

JJ

hungry

DT

the

VBP

saw

NP

NN

cat

DT

The

S

VP

NP

NN

dog

DT

the

VBP

saw

NP

NN

cat

DT

The

Problem: Exponential number of fragments
due to all-fragments assumption

I Extract fragments that occur
at least twice in treebank

I For every pair of trees,
extract maximal overlapping fragments

I Number of fragments is small enough
to parse with directly

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP



Extract recurring fragments in linear average time

Tree kernel: find similarities in trees of treebank
I Worst case: need to compare every node to all other

nodes in treebank
I Speed up comparisons by sorting nodes of trees:
⇒ Aligns potentially equal nodes, allowing us to skip
the rest! (Moschitti 2006)

I Figure out fragments from list of matching nodes

Moschitti (2006): Making tree kernels practical for natural language learning
van Cranenburgh (2014), Extraction of [. . . ] fragments w/linear average time

tree kernel



Extract recurring fragments in linear average time

Number of Time (hr:min)
Method, Corpus Trees Fragments Wall cpu
Sangati et al. (2010):
qtk, wsj 2–21 39,832 990,156 8:23 124:04
van Cranenburgh (2014):
ftk*, wsj 2–21 39,832 990,890 0:05 1:16
ftk, Gigaword, subset 502,424 9.7 million 9:54 ∼ 160

Wall clock time is when using 16 cores.
* Includes roaring bitmap

datastructure (Chambi et al. 2014).

Sangati et al. (2010): Efficiently extract recurring tree fragments
van Cranenburgh (2014), Extraction of [. . . ] fragments with a linear average

time tree kernel



Experimental setup

English: Penn treebank, WSJ section
German: Tiger

Dutch: Lassy



Function labels

Syntactic categories (form): NP, VP, S, . . .
Function labels (function): SBJ, OBJ, TMP, LOC, . . .

I Classifier:
I Blaheta & Charniak (2000), Assigning Function Tags to

Parsed Text
I Integrate in grammar:

I Gabbard et al. (2006), Fully parsing the Penn treebank
I Fraser et al. (2013), Knowledge sources for constituent

parsing of German

Evaluation: function tag accuracy over correctly parsed
labeled bracketings.



State splits

VP

PP

NN

fork

DT

a

IN

with

NP

. . .

VB

eat

I Tree fragments and state splits are (relatively)
complementary:
tree fragments include more context, but substitution
is only restricted by the fine-grainedness of labels.

I Combine tree-substitution with manual state splits
from:

English: Klein & Manning (2003)
German: Fraser et al. (2013)

Dutch: new work



Preprocessing

I Binarize w/markovization (h=1, v=1)
I Simple unknown word model

I Rare words replaced by features
(model 4 from Stanford parser):
‘forty-two’⇒ _UNK-L-H-o

Not reproduced: morphological tags, secondary parents



Can DOP handle discontinuity without LCFRS?

Negra dev set, gold tags:

Split-PCFG
⇓

PLCFRS
⇓

PLCFRS Double-DOP
77.7 % F1
41.5 % EX

Split-PCFG

⇓

Split-Double-DOP

78.1 % F1
42.0 % EX

Answer: Yes!

Fragments can capture discontinuous contexts



Can DOP handle discontinuity without LCFRS?

Negra dev set, gold tags:

Split-PCFG
⇓

PLCFRS
⇓

PLCFRS Double-DOP
77.7 % F1
41.5 % EX

Split-PCFG

⇓

Split-Double-DOP
78.1 % F1
42.0 % EX

Answer: Yes!

Fragments can capture discontinuous contexts



Parsing results

Parser F1 EX func
GERMAN: Tiger

Dep: HaNi2008 75.3 32.6
2DOP: Cr et al 78.2 40.0 93.5
Dep: FeMa2015 82.6 45.9

ENGLISH: wsj
PLCFRS: EvKa2011 79.0
2DOP: Cr et al, wsj 87.0 34.4 86.3
2DOP: SaZu2011, no disc. 87.9 33.7

DUTCH: Lassy
2DOP: Cr et al 76.6 34.0 92.8

HaNi: Hall & Nivre (2008); FeMa: Fernández-González & Martins (2015);
SaZu: Sangati & Zuidema (2011); EvKa: Evang & Kallmeyer (2011);

Cr et al: van Cranenburgh, Scha, Bod (submitted).



Recap

Linguistically rich: non-local relations, function tags
Efficiency: CFG base grammer, tree fragment extraction

Competence: idealized rules
Performance: actual language use

Tree fragments increase the abilities of a performance
model w.r.t. discontinuous constituents, without increasing
formal complexity.



THE END

Codes: http://github.com/andreasvc/disco-dop

Papers: http://andreasvc.github.io

http://github.com/andreasvc/disco-dop
http://andreasvc.github.io


Wait . . . there’s more

BACKUP SLIDES



Efficiency (Negra dev set)



Binarization

I mark heads of constituents
I head-outward binarization (parse head first)
I no parent annotation: v = 1
I horizontal Markovization: h = 1

X

A B C D E F

X

XA

XB

XF

XE

XD

XC$

A B C D E F
Klein & Manning (2003): Accurate unlexicalized parsing.



Implementation details

I Cython: combines best of both worlds
C speed, Python convenience.

I Where it matters, manual memory
management & layout;

I e.g., grammar rules & edges compactly packed in
arrays of structs.

I FWIW, lines of code:

Collins parser C 3k (!?)
bitpar C++ 6k
disco-dop parser Cython 21k
Berkeley parser Java 58k
Charniak & Johnson parser C++ 62k
Stanford parser Java 151k


	Title
	Mild Context-Sensitivity
	Data-Oriented Parsing
	References
	Backup slides

