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Linguistics & Statistics

I Linguistically rich parsers HPSG, LFG, &c.
Non-local relations, function labels,
morphological information.
Often handwritten.

I Statistical Parsing
Automatically induced from treebanks.
Efficient
Limited to constituents or projective dependencies.



This talk

1. Mild context-sensitivity
Parsing with discontinuous constituents.

2. Data-Oriented Parsing
Parsing with tree fragments.

3. Experiments



Two perspectives

Chomsky (1965):
Competence:

the idealized rules of
language

Performance:
actual language use

This talk: Computational Linguistics
should focus more on the latter.

Formal Grammar theory

Statistical NLP

Chomsky (1965). Aspects of the Theory of Syntax.



The Chomsky hierarchy

1. Unrestricted undecidable
2. Context-Sensitive PSPACE complete
3. Context-Free O(n3)

4. Regular O(n)

Chomsky & Schützenberger (1959). The Algebraic Theory of
Context-Free Languages.



Cross-Serial dependencies

Dutch:
dat Karel Marie Peter Hans laat helpen leren zwemmen

English:
that Charles lets Mary help Peter teach Hans to swim

NB: cross-serial easier to process than center embedding!
(Bach et al. 1986)

Bach et al. (1986). Crossed and nested dependencies in German and
Dutch: A psycholinguistic study.



Joshi (1985)

Joshi (1985): How much context
sensitivity is necessary [. . . ]

Goal A grammar formalism
that is efficiently
parsable yet strong
enough to describe
natural language

Figure: Aravind K.
Joshi



Mild Context-Sensitivity

Definition
Mild Context-Sensitivity
1. limited crossed dependencies
2. constant growth
3. polynomial time parsing

Tree-Adjoining Grammar:
Tree Substitution: combine tree fragments
Tree Adjunction: add adjuncts



Discontinuous Constituents

Example:
I Why did the chicken cross the road?
I The chicken crossed the road to get to the other side.



Non-local information in PTB: traces

ROOT

SBARQ

WHADVP-1

WRB

Why

SQ

VBD
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DT
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NN
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DT
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?

Figure: PTB-style annotation.



Discontinuous trees
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Figure: A tree with a discontinuous constituent.



Discontinuous constituents

Motivation:
I Handle flexible word-order, extraposition, &c.
I Capture argument structure
I Combine information from

constituency & dependency structures
(NB: non-projectivity is a subset of
discontinuous phenomena)



Discontinuous treebanks

Treebanks with discontinuous constituents:
German/Negra: Skut et al. (1997). An annotation scheme

for free word order languages.
Dutch/Alpino: van der Beek (2002). The Alpino

dependency treebank.
English/PTB (after conversion): Evang & Kallmeyer (2011).

PLCFRS Parsing of English Discontinuous
Constituents.

Swedish, Polish, . . .



Discontinuous trees
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Figure: A tree with a discontinuous constituent.

Context-Free Grammar (CFG)
NP(ab)→ DT(a) NN(b)
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Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)
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Linear Context-Free Rewriting System (LCFRS)
VP2(a,bc)→WHADVP(a) VB(b) NP(c)
SQ(abcd)→ VBD(b) NP(c) VP2(a,d)



Linear Context-Free Rewriting Systems

LCFRS are a generalization of CFG:
⇒ rewrite tuples, trees or graphs!

linear: each variable on the left occurs
once on the right & vice versa

context-free: apply productions based
on what they rewrite

rewriting system: i.e., formal grammar

Parsing a binarized LCFRS has polynomial time complexity:

O(n3ϕ)

Vijay-Shanker et al. (1987): Structural descriptions [. . . ] grammar formalisms.
Kallmeyer & Maier (2010, 2013). Data-driven parsing with probabilistic [LCFRS].
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But . . .

Negra dev. set, gold tags



Pruning

Pruning can be based on:
1. Very little: e.g., beam threshold
2. Grammar: e.g., A* or context summary estimates
3. Sentence: e.g., coarse-to-fine parsing

Pauls & Klein (NAACL 2009), Hierarchical search for parsing.



Coarse-to-fine
coarse

derivations
coarse
items

fine stage
white list

(1)

(2)

(3)

(50)

NP[11000]

NP[11100]

VP[00010]

VP[00011]

ART[10000]

NN[01000]

NP[11000]
NP@2[11000]
NP@5[11000]
[...]
NP[11100]
NP@2[11100]
NP@5[11100]
[...]
VP[00010]
VP@1[00010]
VP@9[00010]
[...]
VP[00011]
VP@1[00011]
VP@10[00011]
[...]
ART[10000]
ART@3[10000]
ART@9[10000]
[...]

NN[01000]
NN@4[01000]
NN@13[01000]
[...]

k-best plcfrs derivations
help prune dop derivations.

Charniak et al. (2006), Multi-level coarse-to-fine parsing



PCFG approximation of PLCFRS

S

B*1 B*2

A X C Y D

a b c b d

S

B

A X C Y D

a b c b d

I Transformation is reversible
I Increased independence assumption:
⇒ every component is a new node

I Language of PCFG is a superset of original PLCFRS
⇒ coarser, overgenerating PCFG (‘split-PCFG’)

Boyd (2007), Discontinuity revisited.



Coarse-to-fine from PCFG to PLCFRS

B*1 B*2

X Y

b . . . b

B

X Y

b . . . b
I For a discontinuous item, look up multiple items from

PCFG chart (‘splitprune’)
I e.g.: {

NP*1 : [1, 2],
NP*2 : [4, 5]

}
⇒ NP2 : [1, 2; 4, 5]

Barthélemy et al. (2001) Guided parsing of range concatenation languages.
van Cranenburgh (2012), Efficient parsing with LCFRS



With coarse-to-fine

Negra dev. set, gold tags



Coarse-to-fine pipeline

G0

G1

G2

Split-
PCFG

PLCFRS

a large
grammar

Treebank
grammars

Mildly
context-
sensitive

prune parsing with Gm+1 by only considering
items in k-best Gm derivations.



Data-Oriented Parsing

Treebank grammar
trees⇒ productions + rel. frequencies
⇒ problematic independence assumptions

Data-Oriented Parsing (DOP)
trees⇒ fragments + rel. frequencies
fragments are arbitrarily sized chunks
from the corpus

consider all possible fragments from treebank
. . .and “let the statistics decide”

Scha (1990): Lang. theory and lang. tech.; competence and performance
Bod (1992): A computational model of language performance



DOP fragments
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P(f ) = count(f )∑
f ′∈F count(f ′) where F = { f ′ | root(f ′) = root(f ) }

Note: discontinuous frontier non-terminals
mark destination of components



DOP derivation

S

VP2

VB NP ADJ
rich

VB
is

NP
Gatsby

S

VP2

VB NP ADJ
is Gatsby rich P(d) = 0.2

S

VP2

VB NP ADJ
is

NP
Gatsby

ADJ
rich

S

VP2

VB NP ADJ
is Gatsby rich P(d) = 0.3

Derivations for this tree P(t) = 0.5

P(d) = P(f1 ◦ · · · ◦ fn) =
∏
f∈d

p(f )

P(t) = P(d1) + · · ·+ P(dn) =
∑

d∈D(t)

∏
f∈d

p(f )



Tree-Substitution Grammar

This DOP model (Bod 1992) is based on
Tree-Substitution Grammar (TSG):

I Weakly equivalent to CFG; typically strongly
equivalent as well; advantage is in stochastic power
of Probabilistic TSG.

I Same Context-Free property as CFG, but multiple
productions applied at once;
⇒ captures more structural relations than PCFG.

I CFG backbone can be replaced with LCFRS to get
Discontinuous Tree-Substitution Grammar (PTSGLCFRS).



Tree Fragments

Multiword expressions (MWE):
VP

PP

NP

NN

ground

DT

the

IN

off

NP

. . .

VB

get

Statistical regularities:
VP

PP

NN

fork

DT

a

IN

with

NP

. . .

VB

eat



Double-DOP
S

VP

NP

NPJJ,NN

NN
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JJ

hungry

DT
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NN

cat

DT
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NN

cat

DT

The

Problem: Exponential number of fragments
due to all-fragments assumption

I Extract fragments that occur
at least twice in treebank

I For every pair of trees,
extract maximal overlapping fragments

I Number of fragments is small enough
to parse with directly

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP



Extract recurring fragments in linear average time

Tree kernel: find similarities in trees of treebank
I Worst case: need to compare every node to all other

nodes in treebank
I Speed up comparisons by sorting nodes of trees:
⇒ Aligns potentially equal nodes, allowing us to skip
the rest! (Moschitti 2006)

I Figure out fragments from list of matching nodes

Moschitti (2006): Making tree kernels practical for natural language learning
van Cranenburgh (2014), Extraction of [. . . ] fragments w/linear average time

tree kernel



Extract recurring fragments in linear average time

Number of Time (hr:min)
Method, Corpus Trees Fragments Wall cpu
Sangati et al. (2010):
qtk, wsj 2–21 39,832 990,156 8:23 124:04
van Cranenburgh (2014):
ftk*, wsj 2–21 39,832 990,890 0:05 1:16
ftk, Gigaword, subset 502,424 9.7 million 9:54 ∼ 160

Wall clock time is when using 16 cores.
* Includes roaring bitmap

datastructure (Chambi et al. 2014).

Sangati et al. (2010): Efficiently extract recurring tree fragments
van Cranenburgh (2014), Extraction of [. . . ] fragments with a linear average

time tree kernel



Experimental setup

English: Penn treebank, WSJ section
German: Tiger

Dutch: Lassy



Function labels

Syntactic categories (form): NP, VP, S, . . .
Function labels (function): SBJ, OBJ, TMP, LOC, . . .

I Classifier:
I Blaheta & Charniak (2000), Assigning Function Tags to

Parsed Text
I Integrate in grammar:

I Gabbard et al. (2006), Fully parsing the Penn treebank
I Fraser et al. (2013), Knowledge sources for constituent

parsing of German

Evaluation: function tag accuracy over correctly parsed
labeled bracketings.



State splits

VP

PP

NN

fork

DT

a

IN

with

NP

. . .

VB

eat

I Tree fragments and state splits are (relatively)
complementary:
tree fragments include more context, but substitution
is only restricted by the fine-grainedness of labels.

I Combine tree-substitution with manual state splits
from:

English: Klein & Manning (2003)
German: Fraser et al. (2013)

Dutch: new work



Preprocessing

I Binarize w/markovization (h=1, v=1)
I Simple unknown word model

I Rare words replaced by features
(model 4 from Stanford parser):
‘forty-two’⇒ _UNK-L-H-o

Not reproduced: morphological tags, secondary parents



Can DOP handle discontinuity without LCFRS?

Negra dev set, gold tags:

Split-PCFG
⇓

PLCFRS
⇓

PLCFRS Double-DOP
77.7 % F1
41.5 % EX

Split-PCFG

⇓

Split-Double-DOP

78.1 % F1
42.0 % EX

Answer: Yes!

Fragments can capture discontinuous contexts
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Parsing results

Parser F1 EX func
GERMAN: Tiger

Dep: HaNi2008 75.3 32.6
2DOP: Cr et al 78.2 40.0 93.5
Dep: FeMa2015 82.6 45.9

ENGLISH: wsj
PLCFRS: EvKa2011 79.0
2DOP: Cr et al, wsj 87.0 34.4 86.3
2DOP: SaZu2011, no disc. 87.9 33.7

DUTCH: Lassy
2DOP: Cr et al 76.6 34.0 92.8

HaNi: Hall & Nivre (2008); FeMa: Fernández-González & Martins (2015);
SaZu: Sangati & Zuidema (2011); EvKa: Evang & Kallmeyer (2011);

Cr et al: van Cranenburgh, Scha, Bod (submitted).



Recap

Linguistically rich: non-local relations, function tags
Efficiency: CFG base grammer, tree fragment extraction

Competence: idealized rules
Performance: actual language use

Tree fragments increase the abilities of a performance
model w.r.t. discontinuous constituents, without increasing
formal complexity.



THE END

Codes: http://github.com/andreasvc/disco-dop

Papers: http://andreasvc.github.io

http://github.com/andreasvc/disco-dop
http://andreasvc.github.io


Wait . . . there’s more

BACKUP SLIDES



Efficiency (Negra dev set)



Binarization

I mark heads of constituents
I head-outward binarization (parse head first)
I no parent annotation: v = 1
I horizontal Markovization: h = 1

X

A B C D E F

X

XA

XB

XF

XE

XD

XC$

A B C D E F
Klein & Manning (2003): Accurate unlexicalized parsing.



Implementation details

I Cython: combines best of both worlds
C speed, Python convenience.

I Where it matters, manual memory
management & layout;

I e.g., grammar rules & edges compactly packed in
arrays of structs.

I FWIW, lines of code:

Collins parser C 3k (!?)
bitpar C++ 6k
disco-dop parser Cython 21k
Berkeley parser Java 58k
Charniak & Johnson parser C++ 62k
Stanford parser Java 151k
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