# A Data-Oriented Model of Literary Language

Andreas van Cranenburgh

**Rens Bod** 

hainver

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF Institut für Sprache und Information Heinrich Heine University Düsseldorf



Institute for Logic, Language and Computation, University of Amsterdam

EACL, Valencia, April 7, 2017

# This talk

Characterizing Literary Language:

- What makes a literary novel literary?
- Can a model predict this?

## This talk

Characterizing Literary Language:

- What makes a literary novel literary?
- Can a model predict this?

Specifically ...

#### Research Question

are there particular textual conventions in literary novels that contribute to readers judging them to be literary?

# Background

#### Definition

Literature is the body of work with the most artistic or imaginative fine writing (Britannica, 1911).

# Background

#### Definition

Literature is the body of work with the most artistic or imaginative fine writing (Britannica, 1911).

- Demarcation problem
- Some argue text is irrelevant, only context/prestige matters
- Therefore, interesting to quantify influence of text
- ▶ NB: not the same as success, popularity, quality, &c.

# The Riddle of Literary Quality

Corpus:

- 401 recent Dutch novels (translated & original)
- Published 2007–2012
- Selected by popularity

# The Riddle of Literary Quality

Corpus:

- 401 recent Dutch novels (translated & original)
- Published 2007–2012
- Selected by popularity

Contrast: Gutenberg, Google Books

- more books (thousands, millions)
- not representative (volunteer work, digital availability)
- not contemporary (19th century)

cf. Pechenick et al. (2015), PloS ONE. Characterizing the Google Books Corpus: Strong Limits (...)

#### Survey ratings: 401 novels; N=14k



http://www.hetnationalelezersonderzoek.nl

#### Survey ratings: 401 novels; N=14k



http://www.hetnationalelezersonderzoek.nl

#### Survey ratings: 401 novels; N=14k



http://www.hetnationalelezersonderzoek.nl

### Overview



Task: predict mean literary rating (1–7)Training data: 1000 sentences per novelEvaluation metric:  $R^2 (\approx \%$  variation explained,<br/>baseline=0.0, perfect=100 %)<br/>Show incremental improvement with each<br/>type of feature.

# Simple Stylistic Measures

R<sup>2</sup>

Mean sent. len.

- + % Direct speech
- + % Basic vocab. (top 3000 words)
- + Compression ratio (bzip2)
- + Cliche expressions

Table: Basic features

#### Simple Stylistic Measures

\_

|                                   | $R^2$ |
|-----------------------------------|-------|
| Mean sent. len.                   | 16.4  |
| + % Direct speech                 | 23.1  |
| + % Basic vocab. (top 3000 words) | 23.5  |
| + Compression ratio (bzip2)       | 24.4  |
| + Cliche expressions              | 30.0  |

Table: Basic features, incremental scores.

#### Strong lexical baselines

Setup: Linear Support Vector Regression, 5-fold crossvalidation

 $R^2$ 

Basic features

- + LDA: 50 topic weights
- + Word bigrams
- + Char. 4-grams

#### Strong lexical baselines

Setup: Linear Support Vector Regression, 5-fold crossvalidation

|                         | $R^2$ |
|-------------------------|-------|
| Basic features          | 30.0  |
| + LDA: 50 topic weights | 52.2  |
| + Word bigrams          | 59.5  |
| + Char. 4-grams         | 59.9  |

On average,

- ► 59.9 % of variation in ratings (R<sup>2</sup>) is explained using basic and lexical features.
- ▶ the prediction is off by 0.64 (RMSE) out of 0–7.

## n-gram limitations

1. fixed *n*:

no MWE, long-distance relations

- 2. no linguistic abstraction: e.g., syntactic categories, grammatical functions
- 3. small features:

harder to interpret

## n-gram limitations

1. fixed *n*:

no MWE, long-distance relations

- 2. no linguistic abstraction: e.g., syntactic categories, grammatical functions
- 3. small features: harder to interpret
  - Larger features  $\Rightarrow$  combinatorial explosion
  - Use data-driven feature selection

# **Recurring Tree Fragments**

- Syntactic tree fragments of arbitrary size (connected subsets of tree productions)
- Extract automatically from training data: find overlapping parts of parse trees
- Apply cross-validation
- Feature selection using correlation with literary rating



#### Example fragments



# Results w/Fragments

|                         | $R^2$ |
|-------------------------|-------|
| Basic features          | 30.0  |
| + LDA: 50 topic weights | 52.2  |
| + Word bigrams          | 59.5  |
| + Char. 4-grams         | 59.9  |
| + Syntactic fragments   | 62.2  |

### Results w/Fragments

|                         | R=   |
|-------------------------|------|
| Basic features          | 30.0 |
| + LDA: 50 topic weights | 52.2 |
| + Word bigrams          | 59.5 |
| + Char. 4-grams         | 59.9 |
| + Syntactic fragments   | 62.2 |

n2

- Syntax gives modest performance improvement
- However, features are linguistically more interesting

# Analysis of tree fragments

Fragments positively correlated w/literary ratings:

- Many small fragments
- Indicators of more complex syntax, e.g.:

appositive NPs:

His name was Adrian Finn, a tall, shy boy who (...) (Barnes, Sense of an ending)

complex, nested NPs/PPs:

(...) a whole storetank of existential rage (Barnes, Sense of an ending)

discontinuous constituents:

'Miss Aibagawa,' declared Ogawa, 'is a midwife.' (Mitchell, Thousand autumns of J. Zoet)

#### Metadata

Coarse genre: Fiction, Suspense, Romance, Other Translated vs. originally Dutch Author gender: male, female, mixed/unknown

#### Metadata

Coarse genre: Fiction, Suspense, Romance, Other Translated vs. originally Dutch Author gender: male, female, mixed/unknown

|                       | $R^2$ |
|-----------------------|-------|
| Basic features        | 30.0  |
| + Auto. Induced feat. | 61.2  |
| + Genre               | 74.3  |
| + Translated          | 74.0  |
| + Author gender       | 76.0  |

Table: Metadata features; incremental scores.

# Prediction scatter plot



# Conclusion

#### **Research Question**

are there particular textual conventions in literary novels that contribute to readers judging them to be literary?

- Yes! Literary conventions are non-arbitrary because they are associated with textual features
- Literariness can be predicted from text to a large extent: text-intrinsic literariness

# Conclusion

#### **Research Question**

are there particular textual conventions in literary novels that contribute to readers judging them to be literary?

- Yes! Literary conventions are non-arbitrary because they are associated with textual features
- Literariness can be predicted from text to a large extent: text-intrinsic literariness
- Cumulative improvements with ensemble of features
- Robust result: both coarse & fine rating differences are predicted
- Literature is characterized by a larger inventory of lexico-syntactic constructions

# THE END

Dissertation & code: http://andreasvc.github.io



Figure: Huff (1954). How to lie with statistics.

# BUT WAIT, THERE'S MORE

#### Fragment size (non-terminals)



# Syntactic category of root node



## Function tag of root node



1. n-hd r=0.52 2. NP-su SMAIN-dp , SMAIN-dp r = 0.463. lid-det n-hd r=0.424. lid-det NP-app r=0.41 5. SMAIN-dp DU . r=0.41 6. vz-hd CONJ-obi1 NP-obi1 r=0.41 7. ww-hd NP-su r=0.41 8. lid-det n-hd r=0.41 9. (SMAIN-dp ..., ...) r=0.41 10. In r=0.41

7770. ? r=-0.32 7771. ' tsw-tag DU. r=-0.33 7772. NP-su r=-0.34 7773. vnw-hd r=-0.34 7774. echt r=-0.34 7775. Oké r=-0.34 7776. ' Ik SMAIN . r=-0.35 7777. ' DU . r=-0.39 7778. ' NP-su SMAIN . r=-0.40 7779. ww-hd adj-mod r=-0.43