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This talk

Characterizing Literary Language:
I What makes a literary novel literary?
I Can a model predict this?

Specifically . . .

Research Question
are there particular textual conventions in literary novels
that contribute to readers judging them to be literary?
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Background

Definition
Literature is the body of work with the most artistic or
imaginative fine writing (Britannica, 1911).

I Demarcation problem
I Some argue text is irrelevant,

only context/prestige matters

I Therefore, interesting to quantify influence of text
I NB: not the same as success, popularity, quality, &c.
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The Riddle of Literary Quality

Corpus:
I 401 recent Dutch novels (translated & original)
I Published 2007–2012
I Selected by popularity

Contrast: Gutenberg, Google Books
I more books (thousands, millions)
I not representative (volunteer work, digital availability)
I not contemporary (19th century)

cf. Pechenick et al. (2015), PloS ONE. Characterizing the Google Books Corpus:
Strong Limits [. . . ]

http://www.literaryquality.huygens.knaw.nl

http://dx.doi.org/10.1371/journal.pone.0137041
http://dx.doi.org/10.1371/journal.pone.0137041
http://www.literaryquality.huygens.knaw.nl
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Survey ratings: 401 novels; N=14k
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Overview
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Experimental setup

Task: predict mean literary rating (1–7)
Training data: 1000 sentences per novel
Evaluation metric: R2 (≈ % variation explained,

baseline=0.0, perfect=100 %)
Show incremental improvement with each
type of feature.



Simple Stylistic Measures

R2

Mean sent. len.

16.4

+ % Direct speech

23.1

+ % Basic vocab. (top 3000 words)

23.5

+ Compression ratio (bzip2)

24.4

+ Cliche expressions

30.0

Table: Basic features

, incremental scores.
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Strong lexical baselines

Setup: Linear Support Vector Regression,
5-fold crossvalidation

R2

Basic features

30.0

+ LDA: 50 topic weights

52.2

+ Word bigrams

59.5

+ Char. 4-grams

59.9

On average,
I 59.9 % of variation in ratings (R2) is explained

using basic and lexical features.
I the prediction is off by 0.64 (RMSE) out of 0–7.
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n-gram limitations

1. fixed n:
no MWE, long-distance relations

2. no linguistic abstraction:
e.g., syntactic categories, grammatical functions

3. small features:
harder to interpret

I Larger features⇒ combinatorial explosion
I Use data-driven feature selection
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Recurring Tree Fragments
I Syntactic tree fragments of arbitrary size

(connected subsets of tree productions)
I Extract automatically from training data:

find overlapping parts of parse trees
I Apply cross-validation
I Feature selection using correlation with literary rating

fold 1 fold 2 fold 3 fold 4 fold 5



Example fragments
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Results w/Fragments

R2

Basic features 30.0
+ LDA: 50 topic weights 52.2
+ Word bigrams 59.5
+ Char. 4-grams 59.9
+ Syntactic fragments 62.2

I Syntax gives modest performance improvement
I However, features are linguistically more interesting
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Analysis of tree fragments

Fragments positively correlated w/literary ratings:
I Many small fragments
I Indicators of more complex syntax, e.g.:

appositive NPs:
His name was Adrian Finn, a tall, shy boy who [. . . ]
(Barnes, Sense of an ending)

complex, nested NPs/PPs:
[. . . ] a whole storetank of existential rage
(Barnes, Sense of an ending)

discontinuous constituents:
‘Miss Aibagawa,’ declared Ogawa, ’is a midwife.’
(Mitchell, Thousand autumns of J. Zoet)



Metadata

Coarse genre: Fiction, Suspense, Romance, Other
Translated vs. originally Dutch
Author gender: male, female, mixed/unknown

R2

Basic features 30.0
+ Auto. induced feat. 61.2
+ Genre 74.3
+ Translated 74.0
+ Author gender 76.0

Table: Metadata features; incremental scores.



Metadata

Coarse genre: Fiction, Suspense, Romance, Other
Translated vs. originally Dutch
Author gender: male, female, mixed/unknown

R2

Basic features 30.0
+ Auto. induced feat. 61.2
+ Genre 74.3
+ Translated 74.0
+ Author gender 76.0

Table: Metadata features; incremental scores.



Prediction scatter plot
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Conclusion

Research Question
are there particular textual conventions in literary novels
that contribute to readers judging them to be literary?

I Yes! Literary conventions are non-arbitrary
because they are associated with textual features

I Literariness can be predicted from text
to a large extent: text-intrinsic literariness

I Cumulative improvements with ensemble of features
I Robust result: both coarse & fine rating differences

are predicted
I Literature is characterized by a larger inventory of

lexico-syntactic constructions
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THE END
Dissertation & code: http://andreasvc.github.io

Figure: Huff (1954). How to lie with statistics.

http://andreasvc.github.io


BUT WAIT, THERE’S MORE



Fragment size (non-terminals)
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Syntactic category of root node
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Function tag of root node
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1. n-hd , r=0.52
2. NP-su SMAIN-dp , SMAIN-dp r=0.46
3. lid-det n-hd r=0.42
4. lid-det NP-app r=0.41
5. SMAIN-dp DU . r=0.41
6. vz-hd CONJ-obj1 NP-obj1 r=0.41
7. ww-hd NP-su r=0.41
8. lid-det n-hd r=0.41
9. [SMAIN-dp . . . , . . . ] r=0.41
10. In r=0.41



7770. ? r=-0.32
7771. ’ tsw-tag DU . r=-0.33
7772. NP-su r=-0.34
7773. vnw-hd r=-0.34
7774. echt r=-0.34
7775. Oké r=-0.34
7776. ’ Ik SMAIN . r=-0.35
7777. ’ DU . r=-0.39
7778. ’ NP-su SMAIN . r=-0.40
7779. ww-hd adj-mod r=-0.43
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