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Discontinuity



Discontinuity
S

VP

NP

ART NN VMFIN PIS VVINF

Die Versicherung kann man sparen
The insurance can one save

Figure: A discontinuous tree from the Negra corpus.
Translation: As for the insurance, one can save it.
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Context-Free Grammar (CFG)
NP(ab)→ DT(a) NN(b)



Discontinuity
S

VP
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The insurance can one save

Figure: A discontinuous tree from the Negra corpus.
Translation: As for the insurance, one can save it.

Linear Context-Free Rewriting System (LCFRS)
S(abcd)→ VP2(a,d) VMFIN(b) PIS(c)
VP2(a,b)→ NP(a) VVINF(b)



Linear Context-Free Rewriting Systems

LCFRS are a generalization of CFG:
⇒ rewrite tuples, trees or graphs!

linear each variable on the left occurs once on the
right & vice versa

context-free apply productions based on what they
rewrite

rewriting system i.e., grammar
Rules can be read off from treebank,
relative frequencies give probabilistic LCFRS (PLCFRS)

Vijay-Shanker, Weir, Joshi (1987): Structural descriptions
produced by various grammar formalisms
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Linear Context-Free Rewriting Systems

I Can be parsed with tabular parsing algorithm
I Parsing a binarized LCFRS has complexity

O(|w |3ϕ)

where ϕ is the maximum number of components
covered by a non-terminal (fan-out).

I Agenda-based probalistic parser for LCFRS
(Kallmeyer & Maier 2010)

I Our parser builds an exhaustive chart, because we
need the k-best derivations

Kallmeyer & Maier (2010). Data-driven parsing with probabilistic linear
context-free rewriting systems.
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Punctuation

Problem: Punctuation in Negra causes spurious
discontinuity.

Solution:
1. Attach punctuation to highest constituent with

neighbor on its right
2. Parentheses & quotation marks as low as possible

around same constituent
Result: original and binarized treebank have same fan-out

ϕ = 4; complexity O(n9)

van Cranenburgh (2012), Efficient parsing with linear context-free
rewriting systems. EACL.
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Coarse-to-fine



Taming parsing complexity

Context summary estimates
Given a new item NP[2, 4], consult table giving (lower
bound on) cost to construct parse with that item

I precomputed total order on possible items
Problem: table is large & expensive to compute for LCFRS

Kallmeyer & Maier (2010). Data-driven parsing with probabilistic linear
context-free rewriting systems.



Taming parsing complexity

Coarse-to-fine parsing
I Given grammars G1 . . .Gn,

where Gm is an approximation of Gm+1
I Approximation: e.g., each label of Gm is mapped to

multiple labels of Gm+1
I parse sentence with G1 . . .Gn,

pruning any item not on whitelist derived from parsing
w/previous grammar

Result: can parse very large grammars, e.g.:
1. lexicalized grammars
2. latent variable / split-merge grammars
3. data-oriented parsing grammars (next part)

Charniak et al. (2006), Multi-level coarse-to-fine parsing



Coarse-to-fine
coarse

derivations
coarse
items

fine stage
white list

(1)

(2)

(3)

(50)

NP[11000]

NP[11100]

VP[00010]

VP[00011]

ART[10000]

NN[01000]

NP[11000]
NP@2[11000]
NP@5[11000]
[...]
NP[11100]
NP@2[11100]
NP@5[11100]
[...]
VP[00010]
VP@1[00010]
VP@9[00010]
[...]
VP[00011]
VP@1[00011]
VP@10[00011]
[...]
ART[10000]
ART@3[10000]
ART@9[10000]
[...]

NN[01000]
NN@4[01000]
NN@13[01000]
[...]

k-best Gm derivations
help prune Gm+1 derivations.

van Cranenburgh, Scha, Sangati (2011), Discontinuous Data-Oriented Parsing:
A mildly context-sensitive all-fragments grammar



PCFG approximation of PLCFRS

S

B

A X C Y D

a b c b d

S

B*1 B*2

A X C Y D

a b c b d

I Transformation is reversible
I Increased independence assumption:
⇒ every component is a new node

I Language is a superset of original PLCFRS
⇒ coarser, overgenerating PCFG (‘split-PCFG’)

Boyd (2007). Discontinuity revisited.



Coarse-to-fine from PCFG to PLCFRS

B*1 B*2

X Y

b . . . b

B

X Y

b . . . b
I For a discontinuous item, look up multiple items from

PCFG chart (‘splitprune’)
I e.g. { NP*1 : [1, 2], NP*2 : [4, 5] } ⇒ NP2 : [1, 2; 4, 5]

Barthélemy et al. (2001) Guided parsing of range concatenation languages.
van Cranenburgh (2012), Efficient parsing with LCFRS



Evaluation with discontinuous constituents

I Labeled bracketings; e.g., NP : [1, 2; 6, 8]
I COLLINS.prm: discount ROOT node & punctuation

(Collins, 1997)

Makes a big difference!
Negra dev set ≤ 25 words, PLCFRS:

Discounted 72.45 % F1
Not discounted 76.28 % F1



Results w/coarse-to-fine

disc.
words F1 % brack. time

PLCFRS ≤ 30 71.17 255 18h28m
Split-PCFG ≤ 30 71.29 162
PLCFRS (k = 10, 000) ≤ 30 70.91 250 1h22m
PLCFRS (k =∞) ≤ 30 71.17 255 18h49m

Split-PCFG ∞ 64.65 76
PLCFRS (k = 10, 000) ∞ 64.94 267

Table: Negra dev set, gold tags
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Efficiency
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Efficiency (y-axis with log-scale)
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Data-Oriented Parsing



Origin: Scha (1990)

I Cognitive research program
Apply principles of gestalt perception to language

I Performance rather than competence model
I “[Takes] into account the statistical properties of

actual language use.”

I Rely on previous experience to process novel
sentences,
⇒ the treebank is the grammar.
“in analysing new input [the system] tries to find the
most probable way to reconstruct this input from
fragments that are already contained in the corpus.”

Scha (1990): Language theory and language technology;
competence and performance
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DOP principles (Scha 1990)

A memory bias: “[T]he number of constructions that is
used to re-construct the sentence in order to
recognize it must be as small as possible.”

A probabilistic bias: “More frequent constructions are to
be preferred above less frequent ones.”

Scha (1990): Language theory and language technology;
competence and performance



Contrast: Treebank Grammars

Treebank grammar
trees⇒ productions (+frequencies)

Strong independence assumptions.
The probability of a subtree does not depend on . . .
Place invariance: . . .where in the string the words it

dominates are [...]
Context-free: . . .words not dominated by the subtree.
Ancestor-free: . . . nodes in the derivation outside the

subtree.

Manning & Schütze (1999, ch. 11): Foundations of Statistical NLP
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Data-Oriented Parsing

Data-Oriented Parsing (DOP)
trees⇒ fragments (+frequencies)
fragments are arbitrarily sized chunks from the corpus

⇒ instead of manually writing a grammar or refining
probabilities . . .

consider all possible fragments from treebank
. . .and “let the statistics decide”

Bod (1992): A computational model of language performance
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Definition of a DOP model

Fragments: what are the units on which the model
operates?

Operations: what operations can be performed to
combine or alter fragments?

Estimation: how will the probability of performing
operations on particular fragments be
determined?

Disambiguation: how will the most appropriate parse tree
be selected among candidates?



Initial implementation: DOP1 (Bod, 1992)

I DOP as probabilistic tree-substitution grammar (TSG)
for parsing phrase-structures

I Strongly equivalent to treebank PCFG (given all
depth-1 fragments)

I . . .but more stochastic power due to probabilities of
fragments

TSG is a versatile formalism:
I Parsing (Bayesian SR-TSG is current best result on WSJ!)
I Extraction of Multi-Word Expressions
I Grammaticality judgments
I Authorship classification

Bod (1992): A computational model of language performance



Definition of DOP1 (Bod, 1992)

Fragments: Connected subsets of phrase-structure trees,
where each node either has all children in
common with the original tree, or none
(substitution site)

Operations: Left-most substitution
e.g., a fragment with an NP-slot can be
combined with an NP fragment.

Estimation: Relative frequency of fragments
(like rules in PCFG)

Disambiguation:
MPD: Most Probable single Derivation
MPP: Most Probable Parse

shortest derivation: Minimize no. of operations
Bod (1992): A computational model of language performance



DOP fragments
S

VP2

VB NP ADJ
is Gatsby rich

S

VP2

VB NP ADJ
is rich

S

VP2

VB NP ADJ
Gatsby rich

S

VP2

VB NP ADJ
is Gatsby

S

VP2

VB NP ADJ
rich

S

VP2

VB NP ADJ
Gatsby

S

VP2

VB NP ADJ
is

S

VP2

VB NP ADJ

S

VP2

NP
Gatsby

S

VP2

NP
VP2

VB ADJ
is rich
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is
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rich

P(f ) = count(f )∑
f ′∈F count(f ′) where F = { f ′ | root(f ′) = root(f ) }

Note: discontinuous frontier nodes mark destination of
components



DOP derivation
S

VP2

VMFIN PIS
kann man

VP2

NP VVINF
sparen

NP

ART NN
DieVersicherung

S

VP2

NP

ART NN VMFIN PIS VVINF
DieVersicherung kann man sparen

P(d) = P(f1 ◦ · · · ◦ fn) =
∏
f∈d

p(f )

P(t) = P(d1) + · · ·+ P(dn) =
∑

d∈D(t)

∏
f∈d

p(f )



DOP implementation issues

I Exponential number of fragments due to all-fragments
assumption

I can restrict number of fragments by depth or frontier
nodes &c.,
⇒ but: not data-oriented!

I Exponential number of derivations
I Makes finding MPP NP-hard.
I Can approximate with random or n-best derivations.



DOP reduction

A

B C

Aj

Bk Cl

Aj(~α)→ B( ~αB) C( ~αC) (1/aj) A(~α)→ B( ~αB) C( ~αC) (1/a)
Aj(~α)→ Bk( ~αB) C( ~αC) (bk/aj) A(~α)→ Bk( ~αB) C( ~αC) (bk/a)
Aj(~α)→ B( ~αB) Cl( ~αC) (cl/aj) A(~α)→ B( ~αB) Cl( ~αC) (cl/a)
Aj(~α)→ Bk( ~αB) Cl( ~αC) (bkcl/aj) A(~α)→ Bk( ~αB) Cl( ~αC) (bkcl/a)

I Polynomial time parsing with all fragments!
I But: probabilities are distributed over 8 rules per node

in the treebank
I need to sum many derivations to approximate parse

probability

Goodman (2003): Efficient parsing of DOP with PCFG-reductions
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Results w/DOP reduction

CTF stage F1 %
Split-PCFG 66.81
PLCFRS 67.26
DOP reduction 74.27

(Negra dev set ≤ 40 words, gold tags)

van Cranenburgh (2012), Efficient parsing with linear context-free
rewriting systems.



Double-DOP

I Extract fragments that occur at least twice in
treebank

I Number of fragments is small enough to parse with
directly

I Fragments mapped to unique rules, relative
frequencies as probabilities

I Remove internal nodes,
leaves root node, substitution sites & terminals
X → X1 . . .Xn

I Reconstruct derivations after parsing
Contrast: Bayesian TSGs w/Dirichlet Priors
(Cohn et al., 2009, Post & Gildea, 2009)

Sangati & Zuidema (2011). Accurate parsing w/compact TSGs: Double-DOP
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Extract recurring fragments in linear average time

Tree kernel: find similarities in trees of treebank
I Worst case: need to compare every node to all other

nodes in treebank
I Speed up fragment extraction by sorting nodes of

trees:
⇒ Aligns potentially equal nodes, allowing us to skip
the rest! (Moschitti 2006)

I Figure out fragments from list of matching nodes

Moschitti (2006): Making tree kernels practical for natural language learning
van Cranenburgh (2012), Extracting tree fragments in linear average time



Extract recurring fragments in linear average time

Time
Implementation cpu Wall clock fragments
Sangati (2012):
Quadratic tree kernel, wsj 160 10h00m 1,023,092
van Cranenburgh (2012):
Fast tree kernel, wsj 2.3 0h09m 1,023,880
Fast tree kernel, Negra 0.8 0h04m 370,081

Wall clock time is when using 16 cores.

Sangati (2012): Decomposing and Regenerating Syntactic Trees
van Cranenburgh (2012), Extracting tree fragments in linear average time



Results w/Double-DOP

F1 %
DOP reduction 74.27
Double-DOP

(Negra dev set ≤ 40 words, gold tags)
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Explicit representation of recurring fragments with
Double-DOP leads to better sample of derivations than
parsing with all fragments



Results w/Double-DOP

k=50 k=5000
F1 % F1 %

DOP reduction 74.27 73.45
Double-DOP 76.58

78.52

(Negra dev set ≤ 40 words, gold tags)

⇒ For Double-DOP, performance does not deterioriate
with expanded search space.
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Part-of-speech tagging

tags F1 %
Gold tags 100 78.52
Stanford tagger 96.92

74.78

Non-discontinuous work on Negra ≤ 40 words:

Without discontinuity tags F1 %
Sangati (2012) 94.75 76.5
Petrov & Klein (2008) 81.5

NB: with the last two results, discontinuities have been
removed from both training & test sets, so scores are not
directly comparable.
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Part-of-speech tagging

With discontinuity tags F1 %
Gold tags 100 78.52
Stanford tagger 96.92 74.78

Non-discontinuous work on Negra ≤ 40 words:

Without discontinuity tags F1 %
Sangati (2012) 94.75 76.5
Petrov & Klein (2008) 81.5
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Part-of-speech tagging

With discontinuity tags F1 % exact UAS
Gold tags 100 78.52 41.44 88.62
Stanford tagger 96.92 74.78 37.03 85.0

Non-discontinuous work on Negra ≤ 40 words:

Without discontinuity tags F1 % exact UAS
Sangati (2012) 94.75 76.5 34.59 ? 82.63
Petrov & Klein (2008) 81.5 45.2

NB: with the last two results, discontinuities have been
removed from both training & test sets, so scores are not
directly comparable.



Do we need LCFRS for discontinuity?

Split-PCFG
⇓

PLCFRS
⇓

PLCFRS Double-DOP
78.52 % F1
41.44 % EX
88.62 UAS

Split-PCFG

⇓

Split-Double-DOP

78.25 % F1
41.44 % EX
88.27 UAS

Answer: No!

Fragments can capture discontinuous contexts
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Conclusions

I Coarse-to-fine is indispensable for large grammars &
complex formalisms

I All fragments vs. selected fragments
I Explicit representation of recurring fragments with

Double-DOP leads to better sample of derivations
than parsing with all fragments

I Not necessary to parse beyond CFG!
⇒ Increase amount of context through fragments /
labels

I LCFRS could be exploited for other things than
discontinuity: adjunction, synchronous parsing, ...
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Wait . . . there’s more

BACKUP SLIDES



Binarization

I mark heads of constituents
I head-outward binarization (parse head first)
I no parent annotation: v = 1
I horizontal Markovization: h = 1

X

A B C D E F

X

XA

XB

XF

XE

XD

XC$

A B C D E F
Klein & Manning (2003): Accurate unlexicalized parsing.
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Breakdown by category

label % gold Precision Recall F1
np 29.97 74.91 74.58 74.75
pp 26.05 78.72 78.59 78.65

s 18.71 88.96 88.12 88.54
vp 10.28 61.85 61.49 61.67
ap 4.06 72.53 72.53 72.53

cnp 3.33 62.50 66.99 64.67
mpn 2.44 95.12 97.50 96.30

vz 1.19 100.00 100.00 100.00
avp 0.92 45.16 50.91 47.86

cs 0.89 66.67 45.45 54.05
Table: Breakdown of F-scores of the 10 most frequent
categories, for Double Disco-dop on Negra development set up
to 40 words.
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