Discontinuous Data-Oriented Parsing using Coarse-to-Fine methods

Andreas van Cranenburgh

Huygens ING Royal Netherlands Academy of Arts and Sciences Institute for Logic, Language and Computation University of Amsterdam

November 29, 2012

Overview

This talk

- 1. Discontinuity
- 2. Coarse-to-fine
- 3. Data-Oriented Parsing

Discontinuity ____

Discontinuity

Figure: A discontinuous tree from the Negra corpus. Translation: As for the insurance, one can save it.

Discontinuity

Figure: A discontinuous tree from the Negra corpus. Translation: As for the insurance, one can save it.

Context-Free Grammar (CFG) $NP(ab) \rightarrow DT(a) NN(b)$

Discontinuity

Figure: A discontinuous tree from the Negra corpus. Translation: As for the insurance, one can save it.

Linear Context-Free Rewriting System (LCFRS)

$$S(abcd) \rightarrow VP_2(a, d) \ VMFIN(b) \ PIS(c) \ VP_2(a, b) \rightarrow NP(a) \ VVINF(b)$$

LCFRS are a generalization of CFG:

 \Rightarrow rewrite tuples, trees or graphs!

LCFRS are a generalization of CFG:

⇒ rewrite tuples, trees or graphs!

linear each variable on the left occurs once on the right & vice versa

context-free apply productions based on what they rewrite

rewriting system i.e., grammar

LCFRS are a generalization of CFG:

⇒ rewrite tuples, trees or graphs!

linear each variable on the left occurs once on the right & vice versa

context-free apply productions based on what they rewrite

rewriting system i.e., grammar

Rules can be read off from treebank, relative frequencies give probabilistic LCFRS (PLCFRS)

- Can be parsed with tabular parsing algorithm
- Parsing a binarized LCFRS has complexity

$$\mathcal{O}(|w|^{3\varphi})$$

where φ is the maximum number of components covered by a non-terminal (fan-out).

- Can be parsed with tabular parsing algorithm
- Parsing a binarized LCFRS has complexity

$$\mathcal{O}(|w|^{3\varphi})$$

where φ is the maximum number of components covered by a non-terminal (fan-out).

- Agenda-based probalistic parser for LCFRS (Kallmeyer & Maier 2010)
- Our parser builds an exhaustive chart, because we need the k-best derivations

Punctuation

Problem: Punctuation in Negra causes spurious discontinuity.

Punctuation

Problem: Punctuation in Negra causes spurious discontinuity.

Solution:

- Attach punctuation to highest constituent with neighbor on its right
- Parentheses & quotation marks as low as possible around same constituent

Punctuation

Problem: Punctuation in Negra causes spurious

discontinuity.

Solution:

- Attach punctuation to highest constituent with neighbor on its right
- Parentheses & quotation marks as low as possible around same constituent

Result: original and binarized treebank have same fan-out $\varphi=4$; complexity $O(n^9)$

But ...

40

Coarse-to-fine

Taming parsing complexity

Context summary estimates
Given a new item NP[2, 4], consult table giving (lower bound on) cost to construct parse with that item

precomputed total order on possible items

Problem: table is large & expensive to compute for LCFRS

Taming parsing complexity

Coarse-to-fine parsing

- ▶ Given grammars G₁...G_n, where G_m is an approximation of G_{m+1}
- ▶ Approximation: e.g., each label of G_m is mapped to multiple labels of G_{m+1}
- ▶ parse sentence with G₁...G_n, pruning any item not on whitelist derived from parsing w/previous grammar

Result: can parse very large grammars, e.g.:

- 1. lexicalized grammars
- 2. latent variable / split-merge grammars
- 3. data-oriented parsing grammars (next part)

Coarse-to-fine

k-best G_m derivations help prune G_{m+1} derivations.

van Cranenburgh, Scha, Sangati (2011), Discontinuous Data-Oriented Parsing: A mildly context-sensitive all-fragments grammar

PCFG approximation of PLCFRS

- Transformation is reversible
- Increased independence assumption:
 - ⇒ every component is a new node
- Language is a superset of original PLCFRS
 - ⇒ coarser, overgenerating PCFG (`split-PCFG')

Boyd (2007). Discontinuity revisited.

Coarse-to-fine from PCFG to PLCFRS

D*1	D*O			3
B*1	B*2			
			1.1	
X	Υ	X		Υ
b	b	b		b

- For a discontinuous item, look up multiple items from PCFG chart ('splitprune')
- ▶ e.g. $\{ NP^*1 : [1,2], NP^*2 : [4,5] \} \Rightarrow NP_2 : [1,2; 4,5]$

Evaluation with discontinuous constituents

- ► Labeled bracketings; e.g., NP: [1,2; 6,8]
- COLLINS.prm: discount ROOT node & punctuation (Collins, 1997)

Makes a big difference! Negra dev set \leq 25 words, PLCFRS:

Discounted 72.45 % F1 Not discounted 76.28 % F1

Results w/coarse-to-fine

	words	F1 %	disc. brack.	time
PLCFRS	≤ 30	71.17	255	18h28m
Split-PCFG PLCFRS ($k = 10,000$) PLCFRS ($k = \infty$)	_ ≤ 30	71.29 70.91 71.17	162 250 255	1h22m 18h49m

Results w/coarse-to-fine

	words	F1 %	disc. brack.	time
PLCFRS	≤ 30	71.17	255	18h28m
Split-PCFG PLCFRS ($k = 10,000$) PLCFRS ($k = \infty$)	≤ 30 ≤ 30 ≤ 30	71.29 70.91 71.17	162 250 255	1h22m 18h49m
Split-PCFG PLCFRS ($k = 10,000$)	∞ ∞	64.65 64.94	76 267	

Table: Negra dev set, gold tags

Efficiency

Efficiency (y-axis with log-scale)

Data-Oriented Parsing

Origin: Scha (1990)

- Cognitive research program
 Apply principles of gestalt perception to language
- Performance rather than competence model
- "(Takes) into account the statistical properties of actual language use."

Origin: Scha (1990)

- Cognitive research program
 Apply principles of gestalt perception to language
- Performance rather than competence model
- "(Takes) into account the statistical properties of actual language use."
- Rely on previous experience to process novel sentences,
 - \Rightarrow the treebank is the grammar.
 - "in analysing new input (the system) tries to find the most probable way to reconstruct this input from fragments that are already contained in the corpus."

DOP principles (Scha 1990)

A memory bias: "(T)he number of constructions that is used to re-construct the sentence in order to recognize it must be as small as possible."

A probabilistic bias: "More frequent constructions are to be preferred above less frequent ones."

Contrast: Treebank Grammars

Treebank grammar trees ⇒ productions (+frequencies)

Contrast: Treebank Grammars

Treebank grammar

trees ⇒ productions (+frequencies)

Strong independence assumptions.

The probability of a subtree does not depend on ...

Place invariance: ... where in the string the words it dominates are (...)

Context-free: ... words not dominated by the subtree.

Ancestor-free: ... nodes in the derivation outside the subtree.

Data-Oriented Parsing

Data-Oriented Parsing (DOP)
trees ⇒ fragments (+frequencies)
fragments are arbitrarily sized chunks from the corpus

Data-Oriented Parsing

Data-Oriented Parsing (DOP)

trees ⇒ fragments (+frequencies)
fragments are arbitrarily sized chunks from the corpus
⇒ instead of manually writing a grammar or refining
probabilities . . .

consider all possible fragments from treebank ... and "let the statistics decide"

Definition of a DOP model

Fragments: what are the units on which the model operates?

Operations: what operations can be performed to combine or alter fragments?

Estimation: how will the probability of performing operations on particular fragments be determined?

Disambiguation: how will the most appropriate parse tree be selected among candidates?

Initial implementation: DOP1 (Bod, 1992)

- DOP as probabilistic tree-substitution grammar (TSG) for parsing phrase-structures
- Strongly equivalent to treebank PCFG (given all depth-1 fragments)
- ...but more stochastic power due to probabilities of fragments

TSG is a versatile formalism:

- Parsing (Bayesian SR-TSG is current best result on WSJ!)
- Extraction of Multi-Word Expressions
- Grammaticality judgments
- Authorship classification

Bod (1992): A computational model of language performance

Definition of DOP1 (Bod, 1992)

Fragments: Connected subsets of phrase-structure trees, where each node either has all children in common with the original tree, or none

(substitution site)

Operations: Left-most substitution

e.g., a fragment with an NP-slot can be

combined with an NP fragment.

Estimation: Relative frequency of fragments

(like rules in PCFG)

Disambiguation:

MPD: Most Probable single Derivation

MPP: Most Probable Parse

shortest derivation: Minimize no. of operations

Bod (1992): A computational model of language performance

DOP fragments

$$P(f) = \frac{\text{count}(f)}{\sum_{f' \in F} \text{count}(f')} \text{ where } F = \{ f' \mid root(f') = root(f) \}$$

Note: discontinuous frontier nodes mark destination of components

DOP derivation

$$P(t) = P(d_1) + \dots + P(d_n) = \sum_{f \in \mathcal{A}} \prod_{f \in \mathcal{A}} p(f)$$

 $d \in D(t) f \in d$

 $P(d) = P(f_1 \circ \cdots \circ f_n) = \prod p(f)$

DOP implementation issues

- Exponential number of fragments due to all-fragments assumption
- can restrict number of fragments by depth or frontier nodes &c.,
 - ⇒ but: not data-oriented!
- Exponential number of derivations
 - Makes finding MPP NP-hard.
 - Can approximate with random or n-best derivations.

DOP reduction

DOP reduction

- Polynomial time parsing with all fragments!
- But: probabilities are distributed over 8 rules per node in the treebank
- need to sum many derivations to approximate parse probability

Goodman (2003): Efficient parsing of DOP with PCFG-reductions

Results w/DOP reduction

CTF stage	F1 %
Split-PCFG	66.81
PLCFRS	67.26
DOP reduction	74.27

(Negra dev set \leq 40 words, gold tags)

Double-DOP

- Extract fragments that occur at least twice in treebank
- Number of fragments is small enough to parse with directly

Double-DOP

- Extract fragments that occur at least twice in treebank
- Number of fragments is small enough to parse with directly
- Fragments mapped to unique rules, relative frequencies as probabilities
 - ▶ Remove internal nodes, leaves root node, substitution sites & terminals $X \to X_1 \dots X_n$
- Reconstruct derivations after parsing

Double-DOP

- Extract fragments that occur at least twice in treebank
- Number of fragments is small enough to parse with directly
- Fragments mapped to unique rules, relative frequencies as probabilities
 - ▶ Remove internal nodes, leaves root node, substitution sites & terminals $X \to X_1 \dots X_n$
- Reconstruct derivations after parsing

Contrast: Bayesian TSGs w/Dirichlet Priors (Cohn et al., 2009, Post & Gildea, 2009)

Extract recurring fragments in linear average time

Tree kernel: find similarities in trees of treebank

- Worst case: need to compare every node to all other nodes in treebank
- Speed up fragment extraction by sorting nodes of trees:
 - ⇒ Aligns potentially equal nodes, allowing us to skip the rest! (Moschitti 2006)
- Figure out fragments from list of matching nodes

Extract recurring fragments in linear average time

Implementation	CPU	Time Wall clock	fragments
Sangati (2012): Quadratic tree kernel, wsj	160	10h00m	1,023,092
van Cranenburgh (2012): Fast tree kernel, wsj Fast tree kernel, Negra	2.3 0.8	0h09m 0h04m	1,023,880 370,081

Wall clock time is when using 16 cores.

Sangati (2012): Decomposing and Regenerating Syntactic Trees van Cranenburgh (2012), Extracting tree fragments in linear average time

	F1 %	
DOP reduction Double-DOP	74.27	

(Negra dev set \leq 40 words, gold tags)

	F1 %	
DOP reduction	74.27	
Double-DOP	76.58	

(Negra dev set \leq 40 words, gold tags)

Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments

		k=5000
	F1 %	F1 %
DOP reduction	74.27	73.45
Double-DOP	76.58	

	k=50	k=5000
	F1 %	F1 %
DOP reduction	74.27	73.45
Double-DOP	76.58	78.52

(Negra dev set \leq 40 words, gold tags)

 \Rightarrow For Double-DOP, performance does not deterioriate with expanded search space.

	tags	F1 %	
Gold tags	100	78.52	
Stanford tagger	96.92		

	tags	F1 %	
Gold tags	100	78.52	
Stanford tagger	96.92	74.78	

	tags	F1 %	
Gold tags	100	78.52	
Stanford tagger	96.92	74.78	

Non-discontinuous work on Negra \leq 40 words:

Without discontinuity	tags	F1 %	
Sangati (2012) Petrov & Klein (2008)	94.75	76.5 81.5	

With discontinuity	tags	F1 %	
Gold tags	100	78.52	
Stanford tagger	96.92	74.78	

Non-discontinuous work on Negra \leq 40 words:

Without discontinuity	tags	F1 %	
Sangati (2012) Petrov & Klein (2008)	94.75	76.5 81.5	

NB: with the last two results, discontinuities have been removed from both training & test sets, so scores are not directly comparable.

With discontinuity	tags	F1 %	exact	UAS
Gold tags	100	78.52	41.44	88.62
Stanford tagger	96.92	74.78	37.03	85.0

Non-discontinuous work on Negra \leq 40 words:

Without discontinuity	tags	F1 %	exact	UAS
Sangati (2012) Petrov & Klein (2008)	94.75	76.5 81.5	34.59 45.2	? 82.63

NB: with the last two results, discontinuities have been removed from both training & test sets, so scores are not directly comparable.

Do we need LCFRS for discontinuity?

Do we need LCFRS for discontinuity?

Answer: No!

Fragments can capture discontinuous contexts

 Coarse-to-fine is indispensable for large grammars & complex formalisms

- Coarse-to-fine is indispensable for large grammars & complex formalisms
- All fragments vs. selected fragments

- Coarse-to-fine is indispensable for large grammars & complex formalisms
- All fragments vs. selected fragments
 - Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments

- Coarse-to-fine is indispensable for large grammars & complex formalisms
- All fragments vs. selected fragments
 - Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments
- Not necessary to parse beyond CFG!
 - ⇒ Increase amount of context through fragments / labels

- Coarse-to-fine is indispensable for large grammars & complex formalisms
- All fragments vs. selected fragments
 - Explicit representation of recurring fragments with Double-DOP leads to better sample of derivations than parsing with all fragments
- Not necessary to parse beyond CFG!
 ⇒ Increase amount of context through fragments / labels
 - ► LCFRS could be exploited for other things than discontinuity: adjunction, synchronous parsing, ...

References

Andreas van Cranenburgh, Remko Scha, and Federico Sangati (2011),

Discontinuous Data-Oriented Parsing:

A mildly context-sensitive all-fragments grammar,

Proceedings of SPMRL workshop. October 2011, Dublin, Ireland.

Andreas van Cranenburgh (2012), Efficient parsing with linear context-free rewriting systems.

Proceedings of EACL, April 2012, Avignon, France.

Andreas van Cranenburgh (2012), Extracting tree fragments in linear average time.

ILLC technical report.

http://dare.uva.nl/en/record/421534

Slides, code: http://staff.science.uva.nl/~acranenb

Wait ... there's more

BACKUP SLIDES

Binarization

- mark heads of constituents
- head-outward binarization (parse head first)
- ▶ no parent annotation: v = 1
- ► horizontal Markovization: h = 1

Efficiency

Breakdown by category

label	% gold	Precision	Recall	F_1
NP	29.97	74.91	74.58	74.75
PP	26.05	78.72	78.59	78.65
S	18.71	88.96	88.12	88.54
VP	10.28	61.85	61.49	61.67
AP	4.06	72.53	72.53	72.53
CNP	3.33	62.50	66.99	64.67
MPN	2.44	95.12	97.50	96.30
VZ	1.19	100.00	100.00	100.00
AVP	0.92	45.16	50.91	47.86
CS	0.89	66.67	45.45	54.05

Table: Breakdown of F-scores of the 10 most frequent categories, for Double Disco-DOP on Negra development set up to 40 words.