
Linear Average Time Extraction
of Phrase-structure Fragments

Andreas van Cranenburgh

Huygens ING Institute for Logic, Language and Computation
Royal Netherlands Academy of Arts and Sciences University of Amsterdam

January 17, 2014

CLIN 2014, Leiden

Overview
I Given a pair of trees, we can

extract their overlapping fragments
(compare Longest Common Subsequence of strings)

I When applied to a treebank,
this yields a set of recurring patterns

I Fragments can be seen as building blocks of the
treebank

S

VP

NP

NPJJ,NN

NN

dog

JJ

hungry

DT

the

VBP

saw

NP

NN

cat

DT

The

S

VP

NP

NN

dog

DT

the

VBP

saw

NP

NN

cat

DT

The

Applications

S

NP VP

VB NP
loved

NP
Daisy

NP
Gatsby

S

NP VP

VB NP
Daisy loved Gatsby

I Statistical parsing: Sangati & Zuidema (2011)
⇒ Use fragments as a tree-substitution grammar
(Data-Oriented Parsing; DOP)

I Stylometry, e.g., authorship attribution
⇒ Use fragments as features to recognize
the style of an author

I Research into linguistic constructions,
Multi-word Expressions (MWE)

Sangati & Zuidema (2011). Accurate parsing with compact [. . .]: Double-DOP
van Cranenburgh (2012). Literary authorship attribution [. . .] fragments

Contributions

I Complexity of the previously available algorithm is
quadratic in the number of nodes in the treebank

I The present implementation works
in linear average time

I and supports treebanks with discontinuous
constituents

Sangati et al. (2010). Efficiently extract recurring fragments from large treebanks

Definition: tree fragment

I A tree can be seen as a sequence of productions
I A tree fragment is a connected subsequence of

productions from a tree

S

VP

NPVBP

saw

NP

NN

cat

DT

The

(2) NP

NNDT

(3)

DT

the

(2)
NN

dog

(2)

Tree kernels
Given a pair of trees, return multiset of matching nodes

Pseudocode of Quadratic Tree Kernel (QTK):
I For each node of tree a

I For each node of tree b
I Are the productions of the node pair equivalent?

VP VB
P

S N
P

N
P

N
N

N
N

DT DT

VP 1
VBP 1

S 1
NPJJ,NN

NP
NP 1,2 1,2
NN 1
NN 4
JJ
DT 1
DT 3

Collins & Duffy (2002). New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron

The fast tree kernel (FTK)

Most of these comparisons can be avoided by applying a
preprocessing step:

I Sort the nodes of trees
by the productions they contain
(for some arbitrarily defined ordering)

I Exploit this ordering in a set intersection;
i.e., loop over nodes in a and b, move to next node of
a as soon as ai < bj

VP VBP S NP NP NN NN DT DT

VP VBP S NPJJ,NN NP NP NN NN JJ DT DT

Moschitti (2006), Making tree kernels practical for natural lang. learning

Maximal subsets

Turn bitset of matching nodes into a representation of the
tree fragment:

I Traverse tree in depth-first order
I For each matching node, extract a fragment,

and don’t use its node for other fragments
I Resulting fragments are maximal and connected

subgraphs

Fragment frequencies

It is useful to know the occurrence frequency of the
extracted fragments

I Index treebank by productions; i.e., we can obtain
the set of all trees with production A→ B C

I For a given fragment, take intersection of trees with
the productions in that fragment

I Exhaustively scan the resulting candidate trees for
occurrences of the fragment

Discontinuous constituents
Several treebanks contain discontinuous constituents as
part of their annotation (e.g., Alpino / Lassy treebank).

Using some pre- and postprocessing such trees can be
supported:

Pre: Replace leaves with indices,
apply canonical order to leaves

Post: Canonicalize indices in fragments
VP

VP

NP

VB PRP$ NN PRT

0 1 2 3
Wake your friend up

VP

NP

NN

2
friend

PRP$

1
your

VP

PRT

3
up

VB

0
Wake

van Cranenburgh (2013), Discontinuous Parsing
with an Efficient and Accurate DOP Model

Implementation

I Cython: superset of Python, translated to C code
I Trees represented as arrays of node structs,

labels mapped to integers
I Fragments represented as bitsets of trees,

bitset operations using macros
I Fragment extraction with (mostly) native code,

Python for gluing things together (multiprocessing)

Benchmark

Time (hr:min)
Implementation cpu Wall fragments
Sangati et al. (2010), qtk, wsj 160:00 10:00 1,023,092
This work, qtk, wsj 93:00 6:15 1,032,568
This work, ftk, wsj 2:18 0:09 1,023,880

Table: Extracting fragments from WSJ treebank

I training section, binarized with h = 1, v = 2 markovization
I Work is divided over 16 cores

Sangati et al. (2010). Efficiently extract recurring fragments from large treebanks

Plot

0 5000 10000 15000 20000 25000

Treebank size

0

100000

200000

300000

400000

500000

600000

#
 o

f
fr

a
g
m

e
n
ts

0

50

100

150

200

250

300

Ti
m

e
 (

s)

Fragments
Time

Conclusion

I Fragment extraction now 70 times faster!
i.e., a treebank 70 times larger than WSJ
is now feasible

I More efficient implementation (2×)
I Algorithmic speedup (35×)

I Publicly available implementation;
cf. https://github.com/andreasvc/disco-dop

https://github.com/andreasvc/disco-dop

